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Abstract
An abundance of tabular data exists and is used by a wide range of applications. However, a big portion of
these data lack the semantic information necessary for users and machines to properly understand them.
This lack of table semantic understanding impedes their usage in data analytics pipelines. Solutions
to semantically interpret tables exist but they are focused on specific annotation tasks and types of
tables, and rely on large knowledge bases, making it difficult to re-use in real-world settings. Thus, more
robust systems that produce more precise annotations and adapt to different table types are needed. The
Semantic Web Challenge on Tabular Data to Knowledge Graph Matching (SemTab) was introduced in an
effort to benchmark semantic table interpretation systems, by evaluating them over diverse datasets and
tasks. In this paper, we introduce TorchicTab, a versatile semantic table interpretation system able to
annotate tables with varied structures by using either an external knowledge graph, such as Wikidata, or
annotated tables with pre-defined terms for training. We evaluate our proposed system according to
the different annotation tasks of the SemTab challenge. The results show that our system can produce
accurate annotations for different tasks across varied datasets.
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1. Introduction

Semantic Table Interpretation (STI) aims to understand and semantically annotate tables, lever-
aging external knowledge bases as reference [1, 2, 3]. To extract meaningful insights from
tables and unleash their full potential, understanding their semantic structure and underlying
meaning is needed. The Semantic Web Challenge on Tabular Data to Knowledge Graph Match-
ing (SemTab)1 was introduced to benchmark systems, providing different tasks and datasets
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[4, 5, 6, 7]. Systems leverage different methods to generate annotations by analyzing large
knowledge bases [4, 5, 6, 7, 8] or employing classification over training examples [9, 10].

In past editions of the SemTab challenge, heuristic systems, whose scoring is based onmajority
voting, were the most accurate in annotating synthetic, real-world, and noisy tables for all tasks.
However, as this year’s newly introduced datasets reveal, the systems should be able to adapt to
different table structures, missing content or limited knowledge bases. Existing systems assume
that each table contains a unique subject column and all other columns refer to it. However, in
real-world datasets, a subject column may be missing or some columns may provide information
for a non-subject column. In addition, previous approaches rely on pre-existing RDF graphs,
assuming that all relevant information is already present in another RDF graph. However, in
some cases, such a knowledge base may not be available, but instead annotated table only.

We propose TorchicTab, a versatile annotation system, consisting of two complementary
sub-systems, ‘TorchicTab-Heuristic’ and ‘TorchicTab-Classification’. Each subsystem targets
different scenarios of the semantic table interpretation problem and provides adequate solutions.
‘TorchicTab-Heuristic’ requires access to RDF graphs to: (i) leverage heuristic data mining to link
tables with existing RDF graphs, and annotate tables by inferring the subject column from other
elements in the table; and (ii) predict properties and qualifiers from large RDF graphs, such as
Wikidata, for n-ary relations expressed by three table columns, allowing it to capture complex
relationships between entities, going beyond one-to-one mappings. ‘TorchicTab-Classification’
does not require access to RDF graphs, but a sufficiently large number of annotated tables for
training to: (i) leverage the pre-trained language model DODUO [10] that learns from provided
table annotations, developing a rich understanding of the table content; (ii) adopt a sub-table
sampling strategy and incorporate rich context to address the challenges from extra large tables.
TorchicTab provides high-quality annotations both by leveraging heuristic methods to link

table concepts with Wikidata entities and properties, as well as by applying classification meth-
ods to annotated tables for predicting columns and predicates for unseen tables. Experiments
carried out in the context of SemTab 2023 challenge show promising results for all tasks, ranking
TorchicTab amongst the top systems for all tasks it competed. While most systems focus on
specific tasks, TorchicTab provides accurate annotations for all tasks, showcasing its adaptability
to different scenarios, datasets and available knowledge bases. We plan to continue developing
TorchicTab, providing more fine-grained solutions to improve its accuracy and efficiency.

The remainder of this paper is organized as follows: Section 2 shortly describes the SemTab
competition and Section 3 provides an overview of related annotation systems. In Section
4, TorchicTab is explained, with details regarding its architecture and workflow. Section 5
demonstrates our experimental settings and results. Conclusions are presented in Section 6.

2. SemTab Challenge

The Semantic Web Challenge on Tabular Data to Knowledge Graph Matching (SemTab)1 bench-
marks table annotation systems over varied datasets and annotation tasks [4, 5, 6, 7]. In its fifth
edition (SemTab 2023), it includes two rounds, each having a variety of tables to be annotated
with concepts from Wikidata [11], DBPedia [12] or Schema.org [13].

The challenge consists of four annotation tasks: (1) The Cell Entity Annotation (CEA)
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Figure 1: SemTab tasks

associates a table cell with an entity, given the input table (Figure 1a); (2) the Column Type
Annotation (CTA) assigns a semantic type to a column; (3) theColumn Property Annotation
(CPA) discovers a semantic relation contained in the RDF graph that best represents the relation
between two columns; and (4) the Topic Detection (TD) is newly introduced in this edition. It
identifies the topic of a table that lacks a subject column and assigns a class (Figure 1b & 1c).

Tasks can also be classified depending on whether pre-existing RDF graphs are directly
involved: Some tasks target an RDF graph, which the annotation system uses as a knowledge
base to identify similarities between the entities and relations observed within the table and
the ones in the RDF graph; Other tasks only have a pre-defined set of terms from popular RDF
graphs, accompanied by numerous tables annotated with classes and properties contained in
the terms set, which are formulated as multi-class classification problems.

Datasets of varying difficulty are provided to be annotated using Wikidata entities and prop-
erties. (1) The Wikidata tables provided in Round 1 (Figure 1a) contain synthetic information
present in the Wikidata knowledge graph, covering a wide range of domains. Each table con-
tains numerous columns, with the first being the subject column, and the rest providing context
regarding the subject column. (2) The Wikidata Column-Qualifier Tables2 are Wikidata
tables with columns providing additional context to the main Wikidata properties, containing
n-ary relations expressed by three table columns. (3) The SOTAB Tables refer to the WDC
Schema.org Table Annotation Benchmark3, generated by extracting Schema.org data from the
Common Crawl. The data is grouped into separate tables for each class/host combination with
the label spaces being constructed from two main sources, Schema.org and DBpedia. Tables
lacking a subject column are introduced in the tFood4 [14] dataset, which is derived from the
food domain. (4) The tFood Entity Tables with a single missing entity (Figure 1c) which
consist of a single row, with the first element being the subject element, but its content is
missing. The rest of the row elements refer to the subject element, with the second containing
a type description, e.g., in Figure 1c, the hidden element is the word ‘Oslo’, Norway’s capital,
represented by the entity 𝑃585 in Wikidata. Amongst other categories, 𝑃585 is an instance of
the entity 𝑃515 which represents the concept ‘city’ and is described by the text excerpt: ‘large
permanent human settlement’ in Wikidata. (5) The tFood Horizontal Relational Tables
contain values related to multiple missing entities associated by the same topic, e.g., in Figure
1b, the subject column is missing but can be derived from the table’s context.

2https://github.com/bennokr/semtab2023-CQA/
3http://webdatacommons.org/structureddata/sotab/
4https://zenodo.org/record/7828163
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3. Related Work

Most semantic table interpretation systems rely on large knowledge bases to establish links
between tables and related annotations or use annotated tables as training data to developmodels
generating annotations for unseen tables. Systems that reference large RDF graphs are mostly
based on external lookup methods to retrieve candidates for values, headers and relationships
within the table [15, 16, 17]. Internal lookup methods are also adopted by some systems, by
indexing RDF graphs to analytics engines (e.g., Elasticsearch5), to improve entity lookup results
and avoid using inconsistent online API services [18, 19, 20, 21] which often restrict usage,
result set sizes and query response time. To deal with noisy table cells, combinations of multiple
lookup strategies, e.g., fuzzy search [22, 15], and spelling correction [16, 23] are leveraged.

To rank the selected candidates, solutions consider heuristic score-based (DAGOBAH 2022 [15],
KGCODE-Tab [16], MTab 2021 [23], LinkingPark [24]) or graph-based (IDLab [25], MantisTable
[26]) ranking algorithms, comparing the context of the input tables with the sub-graphs of
the candidate entities; embedding techniques capturing all information in the neighborhood of
nodes within the graph and entities clustering based on their representations (DAGOBAH 2019
[19], Magic [27]); and probabilistic graphical models to rank the candidates (MTab 2019 [28],
Mulwad et al. [29]). Existing solutions lack versatility and adaptability to real-world annotation
problems. They heavily rely on large RDF graphs for annotation, assuming that all information
is available and a subject column exists in each table, with all other columns referring to it.

In contrast to table annotation methods that rely on existing knowledge bases, tabular data
annotation can be approached as a multi-class classification task given sufficient training
annotation data. The WDC Schema.org Table Annotation Benchmark (SOTAB) [30] provides an
evaluation framework for table annotation systems, and shows the difficulty of the benchmark
using supervised classifications, which can be broadly categorized into two main approaches:
feature engineering-based and deep learning-based [31]. The former extracts features (statistical
information [32], textual similarities [33], etc.) from table rows and columns. These features are
then used in conjunctionwithmachine learningmodels (Random Forest [34], Logistic Regression
[34], and K-Nearest Neighbor [32], etc.) to perform classification. However, feature engineering
requires domain knowledge and manual effort to select and create relevant features, which can
be time-consuming and may limit the model’s ability to capture high-level abstractions.

Deep learning models learn complex representations automatically [35] and demonstrated
potential in annotating of tabular data. TURL [9] pioneers the application of pre-trained
language models to extract the structure information in relational Wikipedia tables. Although
it exhibited promising results in various tasks including CTA and CPA, it heavily relies on table
metadata (e.g., headers, caption, etc.), which are not available in SOTAB datasets. DODUO [10]
was proposed as a generic framework also with a pre-trained language model. It only relies on
cell values to make the prediction and demonstrated outstanding performance with multi-task
learning in comparison to DOSOLO (i.e. without multi-task learning). To be specific, DODUO

fine-tunes BERT [36] with a task combination (CTA & CPA) using table serialization. In our
work, we further develop it with a sub-table sampling strategy for input data efficiency towards
large tables and incorporate richer table context for table column and relation classification.

5https://www.elastic.co
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Figure 2: TorchicTab semantic table interpretation with Wikidata, given an input table.

4. TorchicTab Approach

The architecture of TorchicTab consists of 2 subsystems: (1) TorchicTab-Heuristic (Section 4.1) to
annotate datasets with Wikidata as reference knowledge base, and (2) TorchiTab-Classification
(Section 4.2) to annotate column type and properties within a given pre-defined set of terms.

4.1. TorchicTab-Heuristic

TorchicTab-Heuristic annotates complete tables (Section 4.1.1), tables lacking subject column
(Section 4.1.2), or containing column-qualifiers (Section 4.1.3).

4.1.1. Semantic Annotation with RDF Graph Analysis

TorchicTab-Heuristic semantically annotates tables with entities and relations from Wikidata
(Figure 2). It employs a combination of candidate lookup methods to maximize candidate cover-
age and heuristic scoring algorithms to assign various scores to rank the retrieved candidates in
four steps: (1) table pre-processing, (2) candidate search, (3) ranking, and (4) task estimation.

Table Pre-Processing Firstly, all input tables go through a pre-processing step: Non-cell-
values and HTML tags are removed, and incorrect encodings are fixed using the ftfy6 tool.
Afterwards, the input tables go through a structural annotations step to identify columns
whose values can be represented as named entities in the reference RDF graph (NE-columns) or
as literal values (L-columns). This way, candidates are retrieved only for cells that are expected
to be represented as entities in the RDF graph. We employ a combination of REGEX pattern
recognition and pre-trained SpaCy7 Natural Language Processing (NLP) models to classify cells
as named entities (NE) or literals (L). The column label is decided from the majority voting of
the column cells’ labels, thus splitting the table to NE-columns and L-columns.

Candidate search The candidate lookup step assigns candidate entities to all NE-column
cells. We employ a combination of lookup strategies mainly targeting an Elasticsearch5 index
due to its robustness, ease of use and fast response times compared to online APIs which
frequently exhibit inconsistencies and lack advanced search capabilities. We populated our
Wikidata index with entity names, retrieved from Wikidata entity labels, and aliases from all
Wikidata entities, referring to nicknames, short names, alternative names etc. (e.g., P1448 →
official name, P1813 → short name, P2561 → name).

6https://ftfy.readthedocs.io/en/latest/
7https://spacy.io
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The Elasticsearch index identifies candidates, supported by searches using the Wikidata
public API8, if the preliminary results are not sufficient. Given a target cell contained in a
NE-column, a set of relevant candidate entities is retrieved from Wikidata, based on the entities’
names or aliases’ similarity to the cell. We employ 4 lookup strategies, in sequence, to maximize
our system candidate coverage: (1) The Complete Cell Strategy uses the complete cell to
query the Elasticsearch index; (2) the Fuzzy Strategy leverages Elasticsearch fuzzy queries
for noisy cells and cells with spelling mistakes to retrieve candidates similar to the cell, but
different by a small number of characters; (3) the Cell Token Strategy removes stop-words
from the cell, splits it into tokens and queries the index for each token separately (e.g., the
cell ‘The Batman’ represents the entity 𝑄2695156 with label ‘Batman’); and (4) the Cell Token
Combinations Strategy removes stop-words from the cell and splits it into tokens. The index
is queried for all possible combinations of tokens (e.g., the cell ‘Messi Lionel’ represents the
entity 𝑄615 with label ‘Lionel Messi’).

Our lookup step combines the robustness and searching capabilities of the Elasticsearch index
with the relevance ranking algorithms of the Wikidata API to maximize the candidate coverage.
We use the Levenshtein ratio [37] and BM25 metric [38] to keep the 20 best candidates after
empirically observing that in most cases the most adequate entity was amongst the 20 top
candidates. If there are too many or not many candidates, the Wikidata API is also used to
provide additional candidates. For example, if the word ‘Spain’ is the cell value, the lookup will
retrieve more than 20 candidates. However, in most tables, the entity that refers to the word
‘Spain’ is expected to be the country named Spain (𝑄29:Spain). To increase our coverage in
these cases, we also leverage the relevance ranking algorithms that the Wikidata API provides.

Candidate ranking The candidates are ranked based on string similarity, comparing their
labels to the table’s cells, and context similarity, comparing their sub-graphs within the RDF
graph to the cell’s context within the table. Each candidate is assigned a similarity score to
estimate the most probable annotations for entities, column types and relations. The candidates’
scores and properties are used to calculate the most suitable relations between columns, via
majority voting (CPA). The outputs of the CPA and candidate ranking are used to select the
most suitable candidate for each NE-column cell (CEA). The outputs of CEA are then used for
each NE-column to rank candidate types that could represent them and select the best (CTA).

A confidence score is assigned to each candidate which are ranked based on the literal
similarity with the cell and semantic contextual similarity with the table’s context. The literal
score combines the Levenshtein ratio between the candidate entity and the cell with the BM25
retrieval metric of the candidate, calculated by the term frequency (TF) and inverse document
frequency (ITF). For entities represented by multiple names and aliases, the highest Levenshtein
ratio between their representations and the cell is considered.

For the semantic contextual similarity, we retrieve the candidate’s sub-graph (i.e. all
Wikidata triples where the candidate entity appears as subject) using the Wikidata API. We
iteratively compare the candidate’s neighborhood with the context around the corresponding
cell (i.e. cells in the same row with the examined cell). To achieve that, we identify the Wikidata
data types of the objects in the candidate’s sub-graph (Wikidata ID String, Coordinate, Quantity,

8https://www.wikidata.org/wiki/Wikidata:REST_API
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Time, Multilingual text), before applying similarity metrics to compare them to the table’s
context. We use similarity metrics to identify if certain objects of triples whose subjects are
candidate entities appear in the input tables. For string, multilingual text and time datatypes
and Wikidata IDs, we rely on Levenshtein ratio to measure the similarity with the context of
the cell, after extracting all their labels and aliases. For amounts or coordinates, we use a simple
number similarity function, comparing how close the objects are numerically with numerical
values in the row of the examined cell. For each neighboring cell in the row of the cell we
examine, we use these metrics to investigate their similarity with the candidate’s sub-graph and
keep the highest similarity score. The context score of the candidate is calculated by averaging
over the similarity scores obtained for the row. The candidate’s total score is calculated by
multiplying the literal and context score. We used an amplification factor of 4 for the literal
score, after empirically observing it yields better candidate rankings.
CPA The properties in the candidates’ sub-graphs are ranked to select the most suitable

among the subject column and each other column. We use majority voting to find the most
fitting relationship between two columns. We combine the frequency that candidate properties
appear and the context score of the candidate subjects or objects associated with this property.
If a property exists in the RDF graph associating a candidate entity of a cell from the subject
column with a candidate entity of a cell from an (NE-column) or a value similar to an (L-column)
cell, and the cells are in the same row, the property is a candidate property. For a candidate
property, we define property frequency as the number of triples in the RDF graph that contain
a candidate entity of the subject column cell as their subject, the candidate property as their
property, and a candidate entity of an NE-column cell or a value similar to the cell of an L-column
as their object, with the corresponding cells being in the same row. The candidate property
with the highest property frequency is selected. If multiple properties are tied, the one whose
associated candidates have a higher combined context score is chosen.
CEA The candidate entities for each NE-column cell are ranked to distinguish the most

suitable and are compared based on the total ranking score they accumulated in the candidate
ranking step. The results of the CPA task are used to raise the score of candidates associated
with the selected properties. When analyzing the subject column or a non-subject NE-column,
the candidate entities that appear in the RDF graph as subjects or objects, respectively, in triples
whose predicate is one of the properties selected in the previous step, get a bonus score. For
each cell, the entity with the highest combination of total and CPA bonus score is chosen.
CTA The entity that best describes the CEA outputs of a NE-column is selected as the

column’s entity type. For each NE-column, we use its CEA outputs and employ majority voting
to find the most suitable type. We identify candidate types in the RDF graph from entities
connected with the CEA entities found with the 𝑃31 (‘instance of’) relationship. We include
super-classes of these candidate types, linked with 𝑃279 (‘subclass of’) relationship, and their
ancestors, for a broader range of candidate types, in case majority voting does not yield results
by only investigating direct candidates. We define as type frequency the number of CEA output
entities connected to the candidate type directly (𝑃31), or indirectly (super-classes of the directly
connected entities) and as type distance the number of entities in the shortest path between
a CEA output entity and a candidate type. We find the candidate type with the highest type
frequency and lowest type distance that represents most cell entities, in order for the column
type to represent the semantic meaning of the column as specifically as possible. We want to



Figure 3: TorchicTab semantic table interpretation for Column-Qualifier Annotation.

have a low type distance in order for the column type to represent the semantic meaning of the
column as specifically as possible. If multiple type candidates share the best score, we select
amongst them using type frequency alone. If there is still no winner, we isolate the top scoring
type candidates from the last step and select the one with the lowest type distance, and, if there
are still ties, we investigate if there is a hierarchy in the RDF graph between the top candidate
types (𝑃279) and select the most specific type, according to their hierarchy. If they are not
connected, we randomly select one of the top scoring candidate types as our CTA output.

4.1.2. Semantic Annotation for Subject-less Tables

To analyze and annotate the tFood4 [14] that lack a subject column, the workflow we follow is
similar to the one depicted in Figure 2, adjusting the candidate selection step to account for the
lack of a subject column, which does not allow the retrieval of candidate entities. We extend
our Elasticsearch, adding an index containing all Wikidata triples, as we can no longer rely on
extracting candidates using only entities’ names and aliases.

For tFood Entity Tables, after pre-processing and identifying the structural annotations, we
proceed to retrieve the NE-columns’ entity candidates. For the subject column, we use the
type description to retrieve topic candidates, which are instances (𝑃31) or sub-classes (𝑃279)
of classes described by the provided description. We rank the retrieved topic candidates using
the context score module, comparing them with the row’s content and the retrieved entity
candidates for NE-column cells. The labels of the topic candidates are not considered during
the ranking process since there is no indication about them in the table. The topic candidate
with the highest context score is selected as the Topic Detection (TD) output for the system.
For the CEA task, we scan the RDF graph for triples containing the TD output as subject. For
each NE-column, the candidate that appears as object in one of the triples is selected.

4.1.3. Column-Qualifier Annotation

The Column-Qualifier Annotation predicts properties and qualifiers from Wikidata in a table9

sourced for n-ary relations given by a set of property labels and qualifier labels. The workflow
(Figure 3) mainly involves the Subject Calculation (steps 2 and 3)and the Property and Qualifier
Calculation (steps 4, 5, 6, and 7).

Subject Calculation The calculation of the cell entities in the subject column is achieved
by leveraging the Wikidata item link provided by the identified Wikipedia page. Specifically,

9https://github.com/bennokr/semtab2023-CQA/



we first employ the relevance ranking algorithms that the query action of the Wikipedia API10

provides to get 𝑛 (𝑛 defaults to 3) page title candidates based on a given cell value in the subject
column (e.g., Silver Logie Award for Most Popular TV Presenter → [‘Logie Award for Most
Popular Presenter’, ‘Logie Awards’, ‘Logie Awards of 2022’]).

Subsequently, we crawl the entire Wikipedia page contents of page title candidates using
Beautiful Soup11. We determine the optimal page title by calculating the overlap rate between the
content of each candidate page and the corresponding object cells and qualifier cells associated
with the subject cell, where the candidate with the highest overlap rate is considered the
best match. From the optimal Wikipedia page, we can obtain and access its QID through the
‘Wikidata item’ link in the ‘Tools’ side panel. Thus, we identify the subject cell entity from the
hyperlink of the HTML element which has a title attribute containing the string ‘Structured
data on this page hosted by Wikidata’ in the optimal page (e.g., Logie Award for Most Popular
Presenter → https://www.wikidata.org/wiki/Special:EntityPage/Q6667534 → Q6667534).

Property and Qualifier Calculation We use Wikidata’s SPARQL endpoint12 to obtain
candidate labels and then determine the optimal property and qualifier labels. We initiate
a query to retrieve the properties and qualifiers associated with the identified subject QID,
focusing on those that are present in the provided labels list as candidates, along with their
corresponding object and qualifier values. We sort the property candidates by calculating the
text similarity score between the value of each candidate’s object and the value of the object
cells in the table using the 𝑡𝑜𝑘𝑒𝑛_𝑠𝑒𝑡_𝑟𝑎𝑡𝑖𝑜 function from FuzzyWuzzy13 library (e.g., Q6667534’s
property P1346 (winner) appeared in the given labels list and obtains the highest score).

Then we employ the same text similarity method with extra weights obtained from the
previous step to calculate the optimal qualifier and treat the corresponding property associated
with the optimal qualifier as the optimal property. Specifically, we introduce aweighting factor to
sum the obtained scores of property candidates and the text similarity score of the corresponding
qualifier as the final score (e.g., Q6667534’s property P1346 (winner) and qualifier P1686 (for
work) obtain the final highest score). This weighting ensures that the final decision regarding
the qualifier considers both the relevance and importance of the associated property. Given
the potential variability in values within the subject column of the table, we adopt a grouping
approach (Figure 3, step 1) where each unique value and its associated object and qualifier cells
are treated as input for the Subject Calculation and Property and Qualifier Calculation to obtain
the optimal property(s) and optimal qualifier(s). We use majority voting (Figure 3, step 8) to
decide the final outcome.

4.2. TorchicTab-Classification

The CTA and CPA tasks for the SOTAB tables involve annotating table columns and relationships
between the main column and other columns. TorchicTab-Classification, considers pre-defined
terms from vocabularies like Schema.org [13] and DBpedia[12], unlike the previous subsystem

10http://en.wikipedia.org/w/api.php
11http://www.crummy.com/software/BeautifulSoup/
12https://query.wikidata.org/sparql
13https://pypi.org/project/fuzzywuzzy/



Figure 4: Sub-table sampling strategy (reworked figure from the DODUO architecture [10] )

which focused on entity discovery in the RDF graph. We formulate both as multi-class classi-
fications where each column or column pair can be annotated with only one label and apply
DODUO [10], a multi-task learning framework based on pre-trained language models.

Given the complexity of SOTAB tables, we needed to balance performance and efficiency
when applying DODUO to deal with these large tables containing numerous rows and columns.
Due to the limitations imposed by the maximum length of token inputs (typically 512 tokens)
in most language models, it becomes challenging to analyze the entire table within the DODUO

architecture. Besides that, DODUO only models the information contained in labeled columns,
disregarding the extensive context from the unlabeled columns, and it only captures information
within those columns for upcoming predictions. For example, in certain cases, only one or two
columns serve as labels or predicted targets, while many more unlabeled columns are ignored.

Sub-table Sampling Strategy We followed a sub-table sampling strategy, shown in Figure
3, to split the large tables and incorporate richer context within the original DODUO to tackle
the challenges. We perform several steps before and after applying DODUO, including:
(1) Row selection A specific number of rows (e.g., 40 out of 56 rows of a table) was randomly
selected; these rows are randomly divided into smaller equal sub-tables (e.g., 8 sub-tables with
5 rows each); each sub-table serves as a single unit as training sample after further processing.
(2) Column selection Each sub-table will be reduced to a maximum of 10 columns; the selection
of these columns is random (e.g., 10 out of 14 columns). While some columns may be shared
among sub-tables from the same large table, they may also have different columns.
(3) Token construction For each sub-table, we have 50 tabular cells to represent as an individual



Table 1
Semantic Annotation with KG Analysis Performance

Task val test
P R F1 P R F1

R1-WD-CEA 88.74 89.32 89.03 83.90 82.10 83.00
R1-WD-CTA 78.34 93.46 85.23 74.90 89.90 81.70
R1-WD-CPA 94.55 94.55 94.55 93.40 93.40 93.40
R1-TFOOD-ENT-CEA 97.44 87.50 92.20 - - -
R1-TFOOD-ENT-TD 75.20 74.67 74.94 - - -
R2-CQA - - - 82.20 - -

sample for training and predicting, thus the maximum tabular cell length is 10 sub-word level
tokens to fulfill the limitation by the maximum length of token inputs (512) in language models.
4) Majority voting Once the column’s type or relation predictions within sub-tables were done
by DODUO, we employed a majority voting strategy to consolidate the final predicted outcome
of the column or column pair, which involved aggregating the individual predictions based on
sub-tables (8) and selecting the most frequent predicted type or relation as the final result.

Language detection was used to identify each table’s language based on the 1st row, as 10%
to 20% of the tables in SOTAB are not in English but rather in German, French, etc. This adds
additional complexity to the annotation task and emphasizes the importance of applying a
multilingual language model. We chose the pre-trained language model based on the top 104
languages with the largest Wikipedia using a masked language modeling (MLM) objective.

5. Experiments and Results

We present our results and experimental settings for Round 1 (R1) and 2 (R2) of SemTab 2023,
elucidating the capabilities of TorchicTab. Our results include the f1-score (F1), precision (P)
and recall (R) for the validation and test sets provided by the competition in each round.

TorchicTab-Heuristic TorhicTab-Heuristic was used for R1’s Wikidata tables (R1-WD), tFood
entity tables (R1-TFOOD-ENT), and R2’s Column-Qualifier (R1-CQA) annotation. The experi-
ments were run on Ubuntu 18.04 LTS server with a 12-threaded Intel(R) Xeon(R) CPU E5-2620.
Multi-processing was used to accelerate the annotation by splitting the datasets into batches.

Our system efficiently annotates the CPA task of the R1-WD datasets but its score drops for
CEA and CTA (Table 1). It produces high-quality annotations for the CEA task of the subject-less
R1-TFOOD-ENT datasets. The TD results are lower because different entities may share the
context presented in the table, making it difficult to select a single topic, given some context
about it. The less context is available, the more probable is that multiple topics can be described
by it. The CQA results also demonstrate the capability of our system to annotate qualifiers.

TorchicTab-Classification To determine the optimal thresholds for language model input,
we evaluated the coverage percentages by examining different thresholds for the number
of columns and rows, and cells’ length across the entire dataset (Table 2). Furthermore, we



Table 2
SOTAB Dataset Statistics: Lbl refers to the label space in classification; lng to the percentage of non-
Enligsh tables; Row/Column Cov. to the coverage percentage, e.g., 58.6% of tables within R1-SCH CTA
dataset contain no more than 40 rows; Length Cov. to the coverage percentage of cell’s length.

SOTAB Task Lbl Tables Lng Row Cov. Column Cov. Length Cov.
40 80 120 5 10 15 5 10 15

R1-SCH
CTA 40 56,547 15.2 58.6 73.1 78.9 42.2 78.8 92.5 31.5 67.7 80.0
CPA 50 53,722 15.5 54.5 70.2 77.3 26.0 76.0 92.50 40.6 67.2 78.7

R2-SCH
CTA 80 117,846 13.3 56.4 72.0 78.8 32.4 69.3 98.0 44.2 68.6 78.3
CPA 105 101,394 16.9 52.1 67.9 75.5 23.5 69.4 90.3 49.6 72.4 84.3

R2-DBP
CTA 46 86,973 13.1 57.2 72.8 79.6 35.9 71.3 84.5 45.2 69.8 78.3
CPA 49 64,052 18.1 53.2 68.9 76.1 27.5 74.9 94.3 46.5 70.9 80.4

examined the proportion of non-Enlgish tables through language detection across the dataset
to determine if it is necessary to employ a multilingual version of language model.

Considering the input data efficiency and limitation of token inputs (typically 512 tokens) in
language models, we decide how to efficiently fill in the 512 token inputs without high cost in
computation from this analysis. We found that 73% of the tables in R1-SOTAB-SCH-CTA have a
total of 80 rows or fewer, 79% have no more than 10 columns, and 68% of the cells have no more
than 10 sub-word level tokens (Table 2). Based on these, we performed sub-table construction
for large tables. The sampling settings within each table were configured to maximally 40 rows
and 10 columns per epoch, and each sample (sub-table) was randomly selected to 5 rows and 10
columns at most. The maximum length of each cell was limited to 10 tokens at the sub-word
level, aligning with the pre-trained language model’s constraints, which resulted in 502 tokens as
the maximum input length. This ensures that the generated sub-tables capture a representative
portion of the table while maintaining a manageable size for training efficiency. Ablation studies
were also performed to validate the effectiveness and efficiencies of our method towards large
tables, including random selection, context column addition, and sub-table sampling.

We applied the Adam optimizer [39] with a learning rate of 2×10−5 for SOTAB-SCH (5×10−5
for SOTAB-DBP), with no warm-up but a linear decay schedule. The batch size was configured
to be 30, all models were trained for 30 epochs using the training set only. The best models
were selected based on the Macro F1-score of the validation set from the training iterations.
DODUO refers to models co-trained with another task as a combination (CTA & CPA), where all
labels are sourced from the same domain. DOSOLO refers to those trained with a single task. All
classification-based experiments were conducted on a CentOS 7 server with Intel Xeon Gold
6240 CPUs and an NVIDIA TESLA V100 GPU (32GB GDDR). The models were fine-tuned using
the pre-trained weights of the “bert-base-multilingual-cased” version14.

DODUO outperformed DOSOLO by at least 2 percentage points in terms of performance across
all tasks with different pre-defined labels, benefiting from the multitask learning (Table 3). These
improvements were particularly evident in CPA prediction across different datasets, which
was expected as it involves columns’ types as the primary factor followed by the relationships
among these columns. As the number of pre-defined terms for the label space increased, the

14https://huggingface.co/bert-base-multilingual-cased

https://huggingface.co/bert-base-multilingual-cased


Table 3
SOTAB CTA & CPA Peformance

Task SOTAB Method val test
P R Macro F1 Micro F1 P Micro F1

CTA

R1-SCH
DODUO 93.28 94.83 92.76 94.14 - -
DOSOLO 92.08 93.18 91.33 92.80 - -

R2-SCH
DODUO 90.68 91.27 89.78 91.21 89.80 89.66
DOSOLO 89.30 89.96 88.47 89.59 - -

R2-DBP
DODUO 91.97 93.77 91.25 92.34 90.93 89.72
DOSOLO 88.95 90.15 88.14 89.47 - -

CPA

R1-SCH
DODUO 94.66 94.87 94.51 94.96 - -
DOSOLO 91.99 92.03 91.62 92.06 - -

R2-SCH
DODUO 87.56 87.25 86.54 86.58 88.00 87.11
DOSOLO 85.32 85.71 84.51 84.47 - -

R2-DBP
DODUO 91.05 93.31 91.69 92.72 90.68 90.49
DOSOLO 86.01 88.88 86.49 88.58 - -

model’s inference ability decreased; we suspect this occured because R2-SOTAB-SCH contains
twice as many labels in both CTA & CPA tasks (Table 2). Despite having a similar size of label
space and fewer training tables, R1-SOTAB-SCH managed to outperform R2-SOTAB-DBP. This
suggests that the labeling scheme plays a crucial role in determining the model’s performance.

6. Conclusions and Future Work

We presented TorchicTab a table annotation system, with two complementary subsystems,
TorchicTab-Heuristic and TorchicTab-Classification, to semantically interpret tables. Its heuristic
data mining and ability to annotate tables lacking a subject column, infer complex n-ary relations,
and train on existing annotated tables, showcase its adaptability and effectiveness, while its
sub-table sampling strategy tackles the challenges of extra-large tables regarding classification.
The results for all SemTab tasks are promising, ranking TorchicTab amongst the top systems in
SemTab 2023 challenge and laying strong foundations for further advancements. In future work,
we will apply optimizations to its heuristics to improve its efficiency, e.g., candidate scoring
factors and alternative candidate ranking methods, and enhance its classification efficiency.
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