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Abstract
Handwritten text recognition (HTR) has enabled many researchers to gather textual evidence from the
human record. One common training paradigm for HTR is to identify an individual manuscript or
coherent collection and to transcribe enough data to achieve acceptable performance on that collection.
To build generalized models for Arabic-script manuscripts, perhaps one of the largest textual traditions
in the pre-modern world, we need an approach that can improve its accuracy on unseen manuscripts
and hands without linear growth in the amount of manually annotated data. We propose Automatic
Collation for Diversifying Corpora (ACDC), taking advantage of the existence of multiple manuscripts
of popular texts. Starting from an initial HTR model, ACDC automatically detects matching passages
of popular texts in noisy HTR output and selects high-quality lines for retraining HTR without any
manually annotated data. We demonstrate the e昀昀ectiveness of this approach to distant supervision by
annotating a test set drawn from a diverse collection of 59 Arabic-script manuscripts and a training
set of 81 manuscripts of popular texts embedded within a larger corpus. A昀琀er a few rounds of ACDC
retraining, character accuracy rates on the test set increased by 19.6% absolute percentage, while a
supervised model trained on manually annotated data from the same collection increased accuracy by
15.9%. We analyze the variation in ACDC’s performance across books and languages and discuss further
applications to collating manuscript families.
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1. Introduction

Within the past decade, widely-available handwritten text recognition (HTR) tools have en-
abled many disciplines to investigate a wide range of handwritten documentary sources from
the human record [11]. Most of the current generation of HTR systems are trained at the line
level to optimize connectionist temporal classi昀椀cation (CTC) loss [6]. This frees users from hav-
ing to annotate individual words or characters to produce training data; instead, they simply
transcribe the plain text of each line. Creating training data still remains a bottleneck for HTR.
Nockels, Gooding, Ames, and Terras [11] describe the community around the Transkribus HTR
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system as “a ‘bottom-up’ mass digitization movement, made up of hundreds of simultaneous
projects driven by motivated researchers” creating their own training data and models. Put an-
other way, an important use case for HTR is to help those “motivated researchers,” who know
which documents they wish to transcribe, annotate enough data so that they can train a model
to transcribe the rest.
We contend that there is room for a complementary training paradigm for HTR. In some

projects, we are confronted with large collections of documents in a diversity of languages,
hands, genres, and time periods. If we do not know a prioriwhich documentswill be interesting,
it may be hard to allocate e昀케ciently the time it takes to produce HTR training data for the
whole collection. Instead, we propose a distant supervision approach to training HTR that takes
advantage of the structure ofmany larger collections. Automatic Collation forDiversifying
Corpora (ACDC) starts by having users assemble digital editions of texts they believe will be
widely copied in the collection. Starting from an initial, imperfect model, ACDC proceeds by:

1. running initial HTR segmentation and transcription models on a diverse manuscript col-
lection (§3);

2. aligning passages in this HTR outputwith passages in the reference digital editions (§4.1);
3. selecting manuscript lines with their page-image coordinate information and their cor-

responding text from the reference editions (§4.2); and
4. retraining the HTR model on the selected lines.

Once a new HTRmodel is trained, it can be used to re-transcribe the manuscript collection and
run this process again (Figure 1).
Distant supervision has been employed at the paragraph level in HTR [2] and, using state-

of-the-art vision transformers, for training joint segmentation and transcription models [3].
These systems, however, still assume that we have a “diplomatic”, ground-truth transcription
of a particular manuscript paragraph or page. ACDC instead infers which matching passages
between a noisy HTR transcript and a reference digital edition are close enough to use for
training and which might contain variant readings.
In this paper, we demonstrate ACDC’s e昀昀ectiveness by applying it to a diverse collection

of Arabic-script manuscripts (§2). We annotate a test set drawn from a diverse collection of
59 Arabic-script manuscripts and a training set of 81 manuscripts of popular texts embedded
within a larger corpus. A昀琀er a few rounds of ACDC retraining, character accuracy rates on the
test set increased by 19.6% absolute percentage, while a supervised model trained on manually
annotated data from the same collection increased accuracy by 15.9% (§5). We analyze the
variation in ACDC’s performance across books and languages and discuss further applications
to collating manuscript families (§6). We have released our code, annotated data, and trained
models under open-source licenses.1

1See repositories of code (https://github.com/OpenITI/acdc_train), test data (https://github.com/OpenITI/aocp_ms
_eval), annotated lines from the training set to compare to unsupervised ACDC (https://github.com/OpenITI/ara
bic_ms_data), and trained models and evaluation data (https://github.com/OpenITI/acdc_results).
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Figure 1: Automatic Collation for Diversifying Corpora (ACDC)

2. Arabic-script Manuscripts

The Islamicate written traditions together form one of the largest—if not the largest—archives
of human cultural production of the pre-modern world. Primarily written in Arabic and Per-
sian, and also encompassing Ottoman Turkish, Urdu, and other languages, these textual tradi-
tions stretch through more than twelve hundred years of history and extend from Iberia and
North Africa in the west, the upper reaches of the Volga in the north, Sub-Saharan Africa in the
south, and China, the Indian subcontinent, and the Philippines and Indonesia in the east. The
exact number of extant manuscript volumes has yet to be determined with precision, but rough
estimates suggest at least several million volumes exist today in collections that range in di-
versity fromWest African madrasas and the Turkish state archives to European and American
museums and libraries [1, pp. 34–35]. We know from modern printed editions of pre-modern
texts in these languages that the total number of discrete texts certainly eclipses the Latinate
and European vernacular traditions—perhaps rivaled only by pre-modern Chinese cultural out-
put. These estimates, however, are only based on modern print production, which is but the
tip of the proverbial iceberg. One prominent scholar, Carl W. Ernst, estimates that only 5-10%
percent of the Persian and Arabic written tradition has been published in any print format—a
number broadly consonant with the 昀椀ndings of Maxim Romanov as well [4, 13]. Whatever the
exact numbers, it is certain that a signi昀椀cant portion of the Persian and Arabic written tradi-
tion remains exclusively in manuscript form in thousands of libraries and archives across the
world. The sheer number of these manuscripts makes it di昀케cult for scholars, librarians, and
students to focus their energies on more than the most important samples in each collection.
To evaluate HTR models on a wide range of script types, languages, and time periods, we

collected sets of public-domain digital images digitized by 17 libraries (Table 1). From the
resulting 59 manuscripts, dating from 900 to 1869 ce, we transcribed 1704 lines. An average
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Table 1
Manuscript test data by language

language Arabic Ottoman Turkish Persian mixed total

manuscripts 41 8 4 6 59
transcribed lines 1088 337 126 153 1704

Table 2
Manuscript families for training

author title language MSS transcribed lines

al-Jazūlī Dalā’il al-khayrāt Arabic 28 1602
Fīrūzābādī al-Qāmūs al-muḥīṭ Arabic 13 1254
Ḥāfiẓ Divān Persian 11 981
Sa’dī Gulistān Persian 17 1865
Ta昀琀āzānī Sharḥ al-‘Aqā’id al-Nasafīya Arabic 12 1140

81 6842

of 29 lines per book is not usually enough to train book-speci昀椀c model with acceptably high
accuracy. Unlike some other evaluations [7] on Arabic-script manuscripts, however, this paper
focuses on the use-case where the training set and test sets come from di昀昀erent manuscripts
and di昀昀erent hands.
To test the ACDC method’s e昀昀ectiveness at producing HTR training data, we selected 昀椀ve

texts, three in Arabic and two in Persian, for which we could 昀椀nd digital transcriptions and a
reasonable number of digital editions (Table 2). We downloaded 81 sets of page images of these
昀椀ve texts. To perform error analysis and to be able to compare ACDC to supervised training,
we transcribed 6842 lines in total from these 81 manuscripts. None of these manual transcrip-
tions were used for training ACDC. During training, we also added 50 additional “distractor”
manuscripts to evaluate the alignment process. None of these 131 manuscripts overlap with
the 59 manuscripts used for testing. Furthermore, none of the 59 test manuscripts are copies
of the 昀椀ve widely-copied works we use for training.
All of the manuscript images used here have been released by the libraries digitizing them

into the public domain. We release the layout analysis and transcribed lines under an open-
source license.

3. HTR Training and Testing

We employ the Kraken HTR system [8] for training and testing layout analysis and transcrip-
tion models due to its support for right-to-le昀琀 scripts and the curved baselines common in
manuscripts. As with other current HTR systems, Kraken 昀椀rst uses a segmentation model to
detect regions and lines in a page image; it then separately passes each extracted line image to
a transcription model to produce text output. The ACDCmethod described here could be easily
adapted to other line-oriented OCR systems.
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The experiments in this paper start with segmentation and transcription models trained
on annotations produced for Arabic and Persian printed books by the Open Islamicate Texts
Initiative [14, 9]. While the layout of books andmanuscripts is of course very di昀昀erent, we keep
this print-trained segmentation model 昀椀xed for all experiments to focus on improvements in
text alignment and transcription models. (See §6 for further discussion of layout analysis.)
We use character accuracy rate (CAR) to evaluate the e昀昀ectiveness of transcription mod-

els. This metric computes the (Levenshtein) edit distance between the reference tran-
scription and the model output and divides by the number of characters in the refer-
ence. The resulting character error rate is then subtracted from one, i.e. 𝐶𝐴𝑅 = 1 −𝑒𝑑𝑖𝑡(reference, hypothesis)/#(reference chars). We remove Arabic short vowel marks and
merge variant forms of the letters kaf and yah in both the reference and hypothesis before
comparing them. In addition to CAR, we also measure the Arabic character accuracy rate by
removing spaces, punctuation, and other non-Arabic characters from the reference and hypoth-
esis before comparing them. Aswe discuss in §4, we ignore non-letter characters when aligning
noisy HTR output with digital editions. Arabic CAR is thus a helpful diagnostic for relating
transcription accuracy on these letters to the amount of training data the ACDCmethod is able
to extract. When summarizing these evaluation metrics across a test set, we take the average
of the CAR for each book. This “macro averaging” ensures that books with more transcribed
lines do not receive undue weight in the 昀椀nal evaluation.
We train transcription models with Kraken on pairs of manuscript line images and reference

transcriptions. As with similar line-level HTR systems, Kraken minimizes connectionist tem-
poral classi昀椀cation (CTC) loss [6] with respect to the weights of a convolutional plus recurrent
neural network. For supervised training, both the boundaries of the lines within the page image
and the transcriptions were produced manually as discussed above (Table 2). For ACDC train-
ing with distant supervision, the boundaries of the lines were produced by the print-trained
segmentation model and the reference transcriptions were inferred by the collation process
(§4). We trained transcription models both from scratch, i.e., with random initialization of all
weights, and by 昀椀ne tuning the existing print-trained model. In our experiments, 昀椀ne-tuning
always proved more e昀昀ective on both validation and test data. For each training set, we ran-
domly hold out 10% of the lines as validation data to perform early stopping and model selec-
tion. We use a constant learning rate of 10−4 recommended by Kraken for manuscript training
and perform early stopping when the best CAR on validation data has not improved for ten
iterations.
The print-trained model we use as a starting point for our experiments achieves a (macro-

averaged) 60.5% CAR on the test set. As shown in Figure 2, this average combines clusters of
books with CAR in the high 60s and above and books with CAR in the mid 50s and below. Fine-
tuning this print model on the 6842 manually transcribed lines from our training set achieves
an average CAR of 76.4%. While the print model transcribed 35 test books with CAR less than
60%, the supervised model performs below 60% on only six test books. Even the supervised
model is trained with no overlap between the training books and test books. Its accuracy is
therefore below what we would expect from the common HTR paradigm where training pages
are drawn from the same book as test pages.
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4. Collating Noisy HTR with Digital Editions

Figure 2: Distribution of CAR of the model
trained on printed text compared to
fully supervised training and to the
昀椀rst three iterations of ACDC train-
ing with distant supervision.

The ACDCmethod starts with the output from
an initial HTR model—here, the print-trained
model. It then aligns this HTR output with a
collection of reference texts to see if any parts
of theHTR output are su昀케ciently close to some
passage in a reference text. In this section,
we describe the inference process for collating
noisy HTR output with reference texts or the
HTR output on other manuscripts. We then
analyze this collation output to select lines for
retraining HTR models.
The proposed approach is another step in

increasingly distant supervision for training
HTR. Kraken, like other HTR systems that are
trained tominimize the CTC loss between a ref-
erence transcription of a line and model pre-
dictions, already performs a character align-
ment for each line [6]. This process enables us
to forgo annotating each character’s position
on the page image and instead simply anno-
tate a whole line with the desired sequence of
characters. Chammas, Mokbel, and Likforman-
Sulem [2] proposed collecting reference tran-
scriptions at the paragraph level and using the
best Levenshtein alignment with HTR output
to split this reference into lines. Coquenet, Chatelain, and Paquet [3] proposed collecting full-
page transcriptions and learning a page-level reading order. In this paper, we propose a corpus-
level approach to alignment: rather than deciding ahead of time which lines or paragraphs or
pages we should transcribe, we collect reference texts that we believe will overlap with signif-
icant number of manuscripts in our corpus (Table 2). When preparing input for ACDC, we do
not need to specify which reference texts correspond to which manuscripts—let alone to which
pages or lines.
This corpus-level approach, however, makes the alignment problem more di昀케cult in two

ways. First, there is the search problem of matching lines in HTR output with passages in
arbitrarily long reference texts (§4.1). Second, we need to infer which line-level alignments are
of high enough quality to use as training data (§4.2).

4.1. HMM Alignment Models

Unlike previous approaches to distant supervision for HTR, we cannot use Levenshtein align-
ment (i.e., Needleman-Wunsch) [2] since the page or other portion of a MS we happen to have
may not cover the whole texts of the reference edition we are trying to align it to; moreover,
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a given MS page may contain material, such as commentary or other notes, extraneous to the
main text (Figure 7). Previous work on HTR, by contrast, has employed “diplomatic” tran-
scriptions those manuscripts selected for the training set. Unlike previous work on text reuse
detection [15, 5], we do not use Smith-Waterman alignment due to the problem of di昀昀erences
in reading order among di昀昀erent manuscripts and editions. Due to either di昀昀erences in layout
or errors in layout analysis, two versions of a text with the same material might present the
same material in di昀昀erent sequence.
We propose, therefore, to use a more generalized 昀椀nite-state approach to alignment based on

hidden Markov models (HMMs) [16]. The observations are characters of (the HTR transcript
of) the manuscript we are trying to align to a digital edition or another manuscript, and the
hidden states are positions in these other witnesses. For any position in the target manuscript,
the hidden state is a “read head” that speci昀椀es what source we might be copying from. Unlike
Levenshtein or Smith-Waterman alignments, it is possible to move this read head backwards
or forwards an arbitrary distance in the source. That does not mean that all jumps in position
are equally likely, however.
As in other HMMs, we need to specify a transition distribution that assigns probabilities to

shi昀琀s in position of the read head and an [emission] distribution that speci昀椀es what characters
we are likely to observe in the target text when reading from a given location in the source. To
compute 𝑝(𝑡𝑖|𝑠𝑖)𝑝(𝑠𝑖|𝑠𝑖−1), the probability of generating the 𝑖th target character given the source
position that generated the 𝑖−1st, we consider that the source state can continue generating text
in its current position with probability 𝛾 or it can move the read head anywhere in the source
text with probability 1 − 𝛾 . We then compute a probabilistic version of Levenshtein distance
with parameter 𝛼 , the probability that a character will be copied unchanged from the source
to the target. The remaining 1 − 𝛼 probability is divided uniformly among all other possible
edits, i.e., substitutions, insertions, and deletions. The probability that we will stop generating
target text is (𝛼 + 1)/2. We also include a pruning parameter 𝑔, the length of the allowable
gap between target characters that are copied unchanged from the source. For the experiments
in this paper, we let 𝛼 = 0.8, the average character accuracy rate in previous experiments on
Arabic-script HTR. We let 𝛾 = 0.998 and 𝑔 = 600. Since this HMM is a generative model
of the target text, it is possible to reestimate 𝛼 and 𝛾 from unlabeled data using expectation
maximization. We leave that for future work since, as we shall see, we are able to recover
su昀케cient high-quality aligned data at these parameter settings.
As with other edit-distance computations, the time and space complexity of inference with

this HMM grows as the product of the lengths of the source and target texts. In common with
other approaches to text-reuse analysis, therefore, we prune the search space by constraining
the alignment at positions where we 昀椀nd su昀케ciently long matches between source and target.
Unlike other text-reuse approaches that tokenize the input into words [15, 5], possibly lemma-
tizing or taking advantage of thesauri and other lexical resources [10], our alignment operates
at the character level. The lower character accuracy rate for Arabic-script HTRmakesmatching
even single words between two documents. Even more seriously, word-segmentation errors
are especially common Arabic-script manuscripts: the space character is one of the most com-
monly inserted or deleted characters in our experiments. Instead of word n-gram features for
pruning, therefore, we use subsequences of 𝑛 characters in the alphanumeric Unicode class,
thus ignoring both combining diacritics (e.g., short vowel marks in Arabic), whitespace, and
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punctuation. In preliminary experiments measuring the match rate between HTR output and
digital editions (see §4.2) without access to manual manuscript transcriptions, we set 𝑛 = 7
and required 𝑚 = 5 such subsequences to match before aligning a source and target passage.
When performing a full collation of all manuscript pages against all other pages, this pruning
results in running the HMM alignment on only 2% of possible pairs of pages. Other character-
based methods instead apply alignment algorithms on all possible pairs, resulting in orders of
magnitude more computational cost in order to maximize recall [12].2

4.2. Scoring Candidate Lines for Training

Once HTR transcripts have been aligned with a collection of digital editions or with the HTR of
other manuscripts, the output is organized with each manuscript being treated as the “target”
text in turn. For each line of the target text, the alignment shows zero or more passages from
other texts as witnesses. In the fragment of JSON output in Figure 3b, for example, one line
of a Berlin manuscript is shown as the target text with one passage spanning two lines from a
digital edition of Fīrūzābādī al-Qāmūs al-muḥīṭ and another passage from a Leipzig manuscript
as witnesses. The digital edition matches the target Berlin manuscript perfectly, and so we can
with high con昀椀dence use this transcription, along with a line image extracted by the print-
trained segmentation model, as additional training data for HTR.
Not all lines, of course, match perfectly; moreover, it seems likely that manuscripts with

mistakes in their transcription by the current HTR model might bene昀椀t more from additional
training data. Di昀昀erences between texts, however, can arise for two di昀昀erent reasons. First, as
we saw above (§3), the output of the initial print-trained HTR model will match the diplomatic
transcription in our evaluation set only 60.5% of the time. Second, the manuscripts we are tran-
scribing with HTR, and the digital editions we are aligning to, may include variants included by
their writers or editors. In the Figure 3b example, we can see that the Leipzig manuscript omits
a word included in both the Berlin manuscript and the digital edition. It would therefore be
dangerous to use the digital edition as ground truth for the image of the Leipzig manuscript.
To separate these two sources of variation, we analyze both thematch rate (the proportion of

characters in the digital edition that are exactly copied in the HTR transcript) and the pattern of
gaps (insertions or deletions) in the alignment between them. Due to errors in the print-trained
segmentation model, many lines are not fully or correctly identi昀椀ed (§6). We therefore exclude
lines under 昀椀ve characters long (about one word, to exclude fragmentary lines) and those with
a gap at the initial or 昀椀nal position in the alignment. We analyze the remaining lines by their
match rate and theirmax gap, i.e., the length of the maximum number of contiguous insertions
or deletions. Figure 3a shows that lines with amax gap≥ 4mostly have amatch rate below 50%.
A signi昀椀cant cluster of these lines with longer gaps still has a match rate above 50%, as with
the Leipzig MS example in Figure 3b. Perhaps surprisingly, lines with a max gap of zero, i.e.,
no insertions or deletions at all, tend to have a much lower match rate. Upon inspection, these
tend to be lines with low accuracy in between other lines with much better accuracy where the
HMM found a higher probability alignment by substituting a series of non-matching characters.
There are a small number, as in the Berlin MS example, with zero gaps and high match rate.

2Version 2 of passim (https://github.com/dasmiq/passim) implements this model as seriatim.
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(a) Match rate between HTR and edition

Staatsbibliothek zu Berlin, Glaser 33

Leipzig Ms. Gabelentz 60

Collation output

(b) Collating aMSwith an edition and anotherMS

Figure 3: Analyzing HTR collations: (a) Even with the baseline print HTR, a significant number of
lines have more than 50% characters matching between HTR and a digital edition. (b) The collation
between two manuscripts and a digital edition shows that one word present in the Berlin MS and the
digital edition (highlighted in red) not present in the Leipzig MS (indicated by hyphens in the collation
output).

Finally, lines with a max gap between 1 and 3 inclusive had a match rate of mostly more than
50%. For our experiments, therefore, we selected those lines with a max gap less than 4 and
a match rate greater than 50%. In experiments with a 昀椀xed number of lines for training, we
selected them in descending order of match rate.

5. Experiments with ACDC Training

We have now described the components of the ACDC method:

1. compiling a corpus of manuscript page images that we believe to have some overlap with
a collection of reference editions (§2);

2. running initial HTR segmentation and transcription models (§3) on this corpus;
3. aligning passages in this HTR output with passages in the reference texts (§4.1);
4. selecting manuscript lines with their page-image coordinate information and their cor-

responding text from the reference editions (§4.2); and
5. retraining the HTR model on the selected lines.

A昀琀er executing these steps, we can iterate the process, returning to step 2 and using the re-
trained HTR model to re-transcribe the training manuscripts. As noted above, this paper fo-
cuses on HTR transcription and does not retrain the segmentation model. When training HTR
models, we can choose to train from scratch, i.e., from a random initialization of model pa-
rameters, or to start training from an existing model. As noted in §3, the latter always led to
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Table 3
Mean character accuracy rate of the initial print-trained models compared to fully supervised training
and to the first three iterations of ACDC training with distant supervision. Also shown are the CAR
on manually transcribed lines of the training manuscripts and CAR when trained on a set of matched
lines from each manuscript.

model MS training lines training CAR% test CAR%

print 0 56.6 60.5

ACDC retrained 1 40,983 73.6 76.7
ACDC retrained 2 105,004 77.4 78.8
ACDC retrained 3 177,383 79.1 80.1

supervised 6,842 95.2 76.4

matched lines: ACDC retrained 1 2,786 68.8 72.2
matched lines: supervised 2,786 82.6 73.8

better validation and test accuracy in our experiments. Further search of the space of training
hyperparameters might lead to gains, but we did not pursue the investigation.
Table 3 shows the average accuracy on the annotated lines of the training set and the test

set of the initial print-trained model, the fully supervised model, and the 昀椀rst three iterations
of using ACDC to retrain the HTR model without any access to transcribed manuscript data.
On average, three iterations of ACDC training improved over the initial model’s CAR by 19.6%
absolute, more than 3 percentage points above the performance of the supervised model.
Figure 2 shows the distribution of CAR over di昀昀erent books in the test set for each of these

models. As noted above, the initial print-trained model exhibits two discernible clusters of
books that perform above and below 60% CAR. Both ACDC and supervised training greatly
reduce the number of poorly performing books and concentrate CAR more tightly at a higher
level.
The range of accuracies achieved by the initial model across di昀昀erent books means that

not all books are equally well represented in the training data ACDC extracts on this 昀椀rst (or
later) iterations. As discussed in §4.2, we select lines with a short maximum gap length and
match rate above 50%. In Figure 4a, we observe that higher Arabic CAR on training data for
books, particularly when above 50%, leads to higher yields, i.e., a high proportion of a book’s
lines extracted for training. We compute CAR on Arabic characters alone, excluding spaces
and punctuation, because spaces and punctuation are also excluded when 昀椀nding matching
passages during the alignment process. Note that these evaluations on training data are not
used during ACDC training or for model selection. The observations for the same book’s
accuracy under the initial print-trained model and the 昀椀rst ACDC-trained model are linked
by lines to show the direction of change. Figure 4b shows the next step in the process: higher
numbers of training lines extracted for a book unsurprisingly lead to higher Arabic CAR when
evaluated on that book.
We also examine the variation in accuracy at the level of individual test books. In Figure 5a,

we see that almost all test books have higher accuracy a昀琀er ACDC training than with the initial
print-trained model, i.e., their points are above the diagonal. Each point is coded with the 昀椀rst
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(a) Yield by Arabic CAR (b) Book-level Arabic CAR by training lines

Figure 4: Relationship between Arabic character accuracy rate on training data and the amount of
training data extracted for each book. In (a), the initial print-trained and first ACDC-trained models
drive higher yields in extracting new training lines. Although these are book-level measurements, we
see much higher yields with Arabic CAR above 50%, which is the line-level match rate threshold. In (b),
we see the relationship at the book level between lines used for retraining the final ACDC model and
Arabic CAR on the training set. Each book is marked with the first letter of the author’s name: Jazūlī,
Fīrūzābādī, Ḥāfiẓ, Sa’dī, or Ta昀琀āzānī (Table 2).

letter of the book’s language. Books whose accuracy increased the most were in Arabic. This
is less surprising considering the results in Figure 4b, where much more training data was
extracted by ACDC for Arabic books. The exceptions to this consistent improvement were
one Persian book and two Arabic documentary texts with hands very di昀昀erent from the book
hands in the training set. Considering this result from another angle, Figure 5b shows that
ACDC achieved better results than supervised training for most books, with the exception of
the aforementioned documentary texts and a cluster of some of the Persian, Ottoman Turkish,
and mixed-language books.
We ran an additional experiment to remove the di昀昀erence in language coverage between

the supervised and ACDC training sets. Selecting the same number of lines from each train-
ing book from among both the manually transcribed data and the lines extracted by the 昀椀rst
iteration of ACDC leaves us with 2786 training lines. The bottom of Table 3 shows that the dif-
ferences between the digital editions used by ACDC and the transcriptions produced manually
for these manuscripts still results in a di昀昀erence in performance between these models even
when training data in exactly the same proportions is used, albeit smaller than the di昀昀erence
between the full training runs. The remaining di昀昀erences between the learning curves of these
training methods may be the result of ACDC training using the print-trained layout model to
identify line images, while supervised training uses manually corrected line images. Even if
ACDC could exactly recover the transcription of a line, a layout model’s cutting o昀昀 some letters
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(a) ACDC CAR given initial CAR (b) ACDC CAR given supervised CAR

Figure 5: Arabic CAR on test data. In (a), we see that almost all books achieve gains over the initial
print model in ACDC training, with the exception of two Arabic documentary texts in a very di昀昀erent
hand and one Persian text. In (b), we see that ACDC achieves better results than supervised training
for most books, with the exception of the Arabic documentary texts and a cluster of Persian, Ottoman
Turkish, and mixed-language books.

in that line or erroneously including others would inhibit accurate training. Future work could
aim both to evaluate the e昀昀ectiveness of training on line images with erroneous boundaries
and to bootstrap better layout models.

6. Discussion

The experiments in §5 show that Automatic Collation for Diversifying Corpora (ACDC) is a
promising approach to improving HTR systems on diverse manuscript collections without ad-
ditional annotated data. All that is required is that the manuscript collection have a su昀케cient
number of widely-copied texts so that we can align their noisy HTR transcripts with clean digi-
tal editions. This may not be the case for many documentary archives with unique manuscript
letters, for instance. Some archives of o昀케cial documents, however, may include enough dupli-
cated material for ACDC to work. Distant supervision will not in the near future, we expect,
replace supervised training for projects where a researcher can identify ahead of time those
documents or hands of interest and curate a training set for them. In any case, we reiterate
that ACDC does not assume that the test set will have manuscripts that overlap with existing
digital editions.
We also note that the impressive gains shown by ACDC were made despite working with

a page segmentation model trained on printed texts. This model can o昀琀en fail spectacularly
(Figure 7). Even on that page, with a large amount of unrecognized marginalia, ACDC was
able to extract one line. The majority of the training data extracted by ACDC from the training
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manuscripts was from pages where the print layout model worked surprisingly well (Figure 6),
despite some errors with features like rubrication or words written larger than others on the
same line. We are hopeful, therefore, that a similar distant supervision approach can be em-
ployed to improve segmentation models by identifying and perhaps normalizing outputs on
pages like these.
As the number of manuscripts with digitized page images grows, we expect that broad-

coverage methods like ACDC will complement task-speci昀椀c training sets. Beyond training
HTR, we also expect that the collation methods developed here will be useful in producing
multi-text editions (Figure 3b), as well as using evidence from multiple manuscripts to model
the text-transmission process.
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(a) Staatsbibliothek zu Berlin, Glaser 33 (b) Staatsbibliothek zu Berlin, Glaser 133

Figure 6: These two manuscripts from Berlin contain copies of (6a) Fīrūzābādī al-Qāmūs al-muḥīṭ and
(6b) al-Jazūlī Dalā’il al-khayrāt. The output of the line-extraction model trained on printed books is
displayed using alternating bands of color overlayed on the page images. The le昀琀-hand image is close
to perfect; on the right-hand page, the rubricated text has confused the model, although the catchword
in the lower le昀琀 has been caught. [Public domain, Staatsbibliothek zu Berlin – PK]
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(a) Print-trained line detection (b) Selected well-aligned line

Figure 7: Library of Congress PK6450 .G2 1593, one of the manuscripts used for alignment, contains
Sa’dī’sGulistān, along with extensive marginalia. Applying the print-trained line extraction model used
throughout this paper fails to detect much of the text in both the body and the margins of the page (a).
The output of the line-extraction model is displayed with alternating color overlays to increase contrast.
On this page, the ACDC process extracts a single line from the body of the text (b). The marginalia
from this copy are not found in our electronic edition and so would not be aligned in any case. [Public
domain. Library of Congress, African and Middle East Division, Near East Section Persian Manuscript
Collection]
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