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Abstract
The task of Style Transfer (ST) in Natural Language Processing (NLP), involves altering the style of a
given sentence to match another target style while preserving its semantics. Currently, the availability
of Hebrew models for NLP, speci昀椀cally generative models, is scarce. The development of such models
is a non-trivial task due to the complex nature of Hebrew. The Hebrew language presents notable chal-
lenges to NLP as a result of its rich morphology, intricate in昀氀ectional structure, and orthography, which
have undergone signi昀椀cant transformations throughout its history1. In this work, we propose a gener-
ative ST model of modern Hebrew language that rewrites sentences to a target style in the absence of
parallel style corpora. Our focus is on the domain of Modern Hebrew literature, which presents unique
challenges for the ST task. To overcome the lack of parallel data, we initially create a pseudo-parallel
corpus using back translation (BT) techniques for the purpose of achieving text simpli昀椀cation. Subse-
quently, we 昀椀ne-tune a pre-trained Hebrew language model (LM) and leverage a zero-shot Learning
(ZSL) approach for ST. Our study demonstrates signi昀椀cant achievements in terms of transfer accuracy,
semantic similarity, and 昀氀uency in the ST of source sentence to a target style using our model. Notably,
to the best of our knowledge, no prior research has focused on the development of ST models specif-
ically for Modern Hebrew literature. As such, our proposed model constitutes a novel and valuable
contribution to the 昀椀eld of Hebrew NLP, Modern Hebrew Literature and more generally computational
literary studies.
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fer, Language Model, Hebrew Language

1Hebrew orthography has evolved over time, and there are di昀昀erences between modern Hebrew, biblical Hebrew,
and other historical forms of the language. This can make it di昀케cult to create models that are robust across
di昀昀erent time periods and genres.
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1. Introduction

Neural ST is a widely used optimization algorithm in computational visual art, which involves
leveraging convolutional neural networks (CNNs) to blend a content image with a style refer-
ence representation, resulting in a novel visual experience. An example of this process can be
observed in the work ”The Face of Art” [22], as shown in Figure 1. In the domain of NLP, ST
is employed as a generation task, wherein input sentences are rephrased into a desired target
style while ensuring the preservation of the original semantics.

Figure 1: 1st row contains the results of the geometric stylization stage. 2nd row contains the results
of using the texture ST algorithm [6] on the input image, without performing geometric stylization.
3rd row contains the stylization results of geometry and texture style transfer application [22].

Our work focuses on applying neural ST to the domain of Hebrew literature, which presents
unique challenges even for domain experts. While ST is commonly applied to text sources with
distinct styles that are easily recognizable by human readers, such as the Biblical text, Twitter
posts, Wikipedia articles, or texts in the style of Shakespeare, literature lacks clear-cut stylistic
boundaries. This poses a complex challenge for ST in the literature domain, as determining the
appropriate style for a given sentence is o昀琀en di昀케cult due to the absence of de昀椀nitive demar-
cations between various authors’ styles. We aim to gain a deeper understanding of the unique
style characteristics exhibited by individual authors in Hebrew literature and the intricate re-
lationships between di昀昀erent writing styles. The 昀椀ndings have the potential to signi昀椀cantly
contribute to the 昀椀eld of literary studies by illuminating the nuances of authorial styles in He-
brew literature. This could lead to a better comprehension of stylistic choices made by di昀昀erent
authors and pave the way for further exploration and analysis of writing styles in Hebrew lit-
erature. Ultimately, our research seeks to enrich the understanding of Hebrew literature and
its distinct stylistic features, advance the 昀椀eld of ST in Hebrew NLP, and open up new avenues
for research at the intersection of literature and computational linguistics.
Previous studies in this area con昀氀ates style transfer with the related tasks such as transla-

tion [10] , learning latent representations to disentangle style and content from sentences [9],
attribute transfer [19] and the relatively simple methodology for controlled paraphrase gener-
ation [13] that has achieved state-of-the-art (SOTA) results. Adopting English language style
transfer solutions to Hebrew is not a trivial task due to the fact that most previous studies have
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relied on proposed solutions based on high-quality pre-trained models [1] [4] and datasets [17]
that are not commonly available for the Hebrew language.
In this work, we propose a text simpli昀椀cation-based approach for performing ST in the He-

brew language. Our method is unsupervised and does not require parallel data between di昀昀er-
ent styles and proceeds in three simple stages:

1. Create a pseudo-parallel corpus using BT as illustrated in Figure 2a.
2. Fine-tune a pre-trained Hebrew LM as illustrated in Figure 2b.
3. Employing a ZSL approach for ST as illustrated in Figure 3.

The remainder of this paper is structured as follows: Section 2 describes our proposed ST
model, outlining its key components and architecture. In Section 3, the evaluationmethod used
for assessing the performance of our model is detailed. Section 4 presents the experimental
setup and results, including a comprehensive analysis of the 昀椀ndings. Finally, in Section 5, we
present the conclusions drawn from our research, summarizing the key 昀椀ndings, discussing
their implications, and suggesting potential avenues for future research.

2. Style Transfer via Text Simplification

It is natural to consider the task of ST as a translation problem that could potentially be ad-
dressed using a sequence-to-sequence (Seq2Seq) neural machine translation (MT) model. How-
ever, to train such a model for the ST task, it is necessary to collect parallel corpora that are
aligned at the sentence level. Given the large number of stylistic categories involved, collect-
ing parallel texts for all or even a substantial number of style pairs is infeasible. Thus, directly
casting ST as an MT problem in a standard supervised setting is not viable.
To overcome the lack of parallel texts for ST, we propose creating pseudo-parallel sentence

pairs (as illustrated in Figure 2a) using BT. BT is a frequently used technique in NLP for quality
assurance in MT and data augmentation1. By utilizing BT, we acquire a drier and more collo-
quial text that preserves semantics but is stripped of speci昀椀c styles. Subsequently, we 昀椀ne-tune
a pre-trained Hebrew GPT-Neo-small2 LM [4] to implement our ST model.
The corpus used in this study consists of 35 novels written by four authors from the mid

nineteenth century to the present day. These authors were chosen thank to their distinct lit-
erary and linguistic styles. The data was gathered from the Ben-Yehuda Project3, which is
a repository of Hebrew literary texts in the public domain. Further details about the corpus,
including its construction and 昀椀ltering operations, can be found in Appendix A.

2.1. ST Model Implementation with GPT-Neo

We昀椀ne-tune the pre-trained GPT-Neo-small LM [4] to implement our STmodel. Utilizing a pre-
trained LM as the starting point for our STmodel o昀昀ers several advantages, including improved

1Data augmentation is a collection of techniques that manage the process of automatically generating high-quality
data on top of existing data.

2https://huggingface.co/Norod78/hebrew-gpt_neo-small
3https://benyehuda.org/
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(a) Back translated sentence pairs are gener-
ated by translating a source sentence to a
target language and then back to the orig-
inal language.

(b) The sentence pairs generated by the BT process were
utilized in the model training process.

Figure 2: The training corpus was constructed by creating pairs of original text and their simplified
versions, and utilizing them in the training process.

output 昀氀uency and enhanced generalization to small domain-speci昀椀c corpus. In our approach,
the text and it simpli昀椀ed version sequences are concatenated together using a separator token,
as depicted in Figure 2b. To implement our model, we utilize HuggingFace’s Transformers
library [HuggingFace’s], further details regarding the architecture and hyperparameters can
be found in Appendix C.1.
Following the training process, the trainedmodel is capable of generating simpli昀椀ed versions

of literary texts (from one style to back translated text) or vice versa. To achieve ST from style
A to style B, we adopt a ZSL approach4. ZSL is a machine learning (ML) technique that is
commonly employed in the 昀椀elds of CV and NLP to prompt a model to perform tasks for which
it was not explicitly trained. In NLP, ZSL has been applied to tasks such as MT [11] and text
summarization [14]. In our case, our model has not undergone explicit training for ST from
style A to style B. To achieve ST, we employ prompt engineering, which is a novel approach
for leveraging pre-trained LMs to perform tasks without 昀椀ne-tuning. In this approach, the
target task is directly conveyed to the model through a natural language task description that
is integrated into the actual input sentence in a speci昀椀c manner [20]. This task description
is referred to as the ”prompt” as it prompts the model to perform the desired task of ST from
style A to style B, as illustrated in Figure 3. The prompt for ST consists of the source style,
followed by a colon, the source style text, the target style, followed by another colon (Figure
4a). An example of the prompt is provided in Figure 4b, and our expectation from the model is
to generate rewritten text in the target style, based on the source text.

4ZSL approach demonstrates superior performance compared to a much simpler and more straightforward ap-
proach, as shown in Appendices B.2, which involves transition through the BT text.
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Figure 3: We provide a visual representation of the ZSL process utilized to achieve ST fromWikipedia
to Yosef Haim Brenner’s style, leveraging a pre-trained LM. The prompt description, integrated into the
input sentence, enables the model to perform the task without the need for explicit training, thereby
generating the desired output.

(a) Prompt structure (b) Prompt example. Translated version:
Wikipedia: Education is what remains a昀琀er one has
forgotten what one has learned in school.
Yosef Haim Brenner:

Figure 4: Zero-shot ST prompt.

3. Evaluating ST Model

The evaluation of our ST model is based on the methodology proposed by [13]. In their study,
the authors conducted a survey of 23 previously-published ST papers, identifying three com-
mon properties on which ST models are typically evaluated.
Given a styles set 𝑆𝑆, a target style 𝑗 ∈ 𝑆𝑆 and an output 𝑠𝑗 sentence:

1. Semantic similarity (SIM) - This property measures the extent to which the semantics
of the input sentence 𝑠 are preserved in 𝑠𝑗 . In previous studies it usually done by using
metrics like BLEU [16], since BLEU is based on n-gram precision, it aggressively penal-
izes lexical di昀昀erences even when candidates might be synonymous with or similar to
the reference: if an n-gram does not exactly match a sub-sequence of the reference, it
receives no credit. An alternative metric to measure semantic similarity is SIMILE [21].
The similarity between 𝑠 and 𝑠𝑗 is obtained by encoding both sentences into vector rep-
resentations and then calculating their cosine similarity. For this purpose, we trained an
unsupervised Hebrew version of SimCSE [5]. Refer to Appendix C.2 for more details.

2. Transfer accuracy (ACC) - This property involves identifying the target style 𝑗 ∈ 𝑆𝑆 in
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𝑠𝑗 , and requires a classi昀椀er for each ∀𝑖 ∈ 𝑆𝑆 to identify 𝑖 in 𝑠𝑖 and report its accuracy on𝑠𝑗 . We 昀椀ne-tuned a pre-trained LM, AlephBERT [18], for the classi昀椀cation task. Further
details about the architecture and hyperparameters can be found in Appendix C.3.

3. Fluency (FL) - This property measures the 昀氀uency of the output sentence 𝑠𝑗 , as ungram-
matical outputs can still achieve high scores on both ACC and SIM, motivating the need
for a separate measure. To measure 昀氀uency, we used LM perplexity5 (PPL). For this pur-
pose, we 昀椀ne-tuned a pre-trained GPT-Neo LM [4]. The decision about the 昀氀uency of the
output sentence is made based on a PPL threshold derived from PPL calculated on our
corpus, where sentences below the threshold are considered 昀氀uent, and sentences above
the threshold are considered non-昀氀uent. Refer to Appendices C.4 for more details.

Aggregation of Metrics - So far, we have focused on individual implementations of ACC,
SIM, and FL. A昀琀er computing these metrics, it is useful to aggregate them into a single number
to compare the overall ST quality across multiple ST model con昀椀gurations. A good model
should jointly optimize all metrics:𝐽 (𝐴𝐶𝐶, 𝑆𝐼𝑀, 𝐹𝐿) = ∑𝑥∈𝑋 𝐴𝐶𝐶(𝑥) ∗ 𝑆𝐼𝑀(𝑥) ∗ 𝐹𝐿(𝑥)|𝑋 |
Where 𝑥 is a sentence from a test corpus𝑋 . We treat ACC and FL at a sentence level as a binary
judgement, ensuring incorrectly classi昀椀ed or dis昀氀uent sentences are automatically assigned a
score of 0.

4. Experiment

We evaluate our model using methodology proposed by [13], which is described in detail in
Section 3.

4.1. Evaluation Setup

The test corpus consists of 500 sentences of each style, this corpus was concealed from the
model training process. Given a styles set 𝑆𝑆 and a source style 𝑗 ∈ 𝑆𝑆, we utilized our model
to perform ST from 𝑗 ∈ 𝑆𝑆 to ∀𝑖 ∈ 𝑆𝑆 − {𝑗}.
For each sentence pair comprising a sentence in the source style and a sentence in the target
style, we calculated the three individual metrics, SIM, ACC and FL, as described in Section 3.
Additionally, we calculated themain aggregatedmetric 𝐽 (𝐴𝐶𝐶, 𝑆𝐼𝑀, 𝐹𝐿) to evaluate the overall
performance of the ST model.

4.2. Results

The results for each of the individual metrics, as well as the aggregated metric, are presented
in Table 1.

The presented Figure 5 illustrates an error analysis that reveals a signi昀椀cant misclassi昀椀ca-
tion of samples generated by the ST model. These misclassi昀椀cations occur when the classi昀椀er,
5Perplexity is a measure of how well a model 昀椀ts the test data, low perplexity means better 昀椀t.
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Table 1
The transfer accuracy (ACC) is determined as the accuracy of the classifier model, as explained in
Appendix C.3. The semantic similarity (SIM) is calculated as the average score of the output from the
Hebrew SimCSE model, as described in Appendix C.2. The fluency (FL) is calculated as the number of
test samples with PPL score below a predefined threshold, using the Hebrew GPT-Neo LM, as detailed
in Appendix C.4.

ACC SIM FL 𝐽 (𝐴𝐶𝐶, 𝑆𝐼𝑀, 𝐹𝐿)
0.63 0.53 0.91 0.27

Figure 5: The classifier confusion matrix a昀琀er ST displays the distribution of classifier labels for sen-
tences that have been transferred to the target style. Each row represents the label distribution for a
particular target style (as indicated by the row label). The o昀昀-diagonal elements in the matrix reflect
mis-classifications, which o昀琀en occur due to intuitive domain similarities.

using a binary classi昀椀cation approach, identi昀椀es styles that share characteristics with the tar-
get style but are not actually the target style. This issue arises due to the calculation of the
aggregated metric, 𝐽 (𝐴𝐶𝐶, 𝑆𝐼𝑀, 𝐹𝐿), which zeros out many sample scores despite their high
SIM and FL scores. To address this issue, we propose a hierarchical classi昀椀cation approach.
A class-hierarchy tree is constructed based on our domain knowledge, as shown in Figure 6
where the classi昀椀cation decision is made based on di昀昀erent levels of classi昀椀cation resolution.

Table 2
The results for each area in the class-hierarchy tree, as depicted in Figure 6, are as follows.

Number of classes ACC F1 𝐽 (𝐴𝐶𝐶, 𝑆𝐼𝑀, 𝐹𝐿)
6 (green area) 0.63 0.62 0.27
3 (blue area) 0.75 0.75 0.33
2 (red area) 0.81 0.78 0.35

The 昀椀ne-grained resolution is the current classi昀椀cation approach, where the classes are very
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Figure 6: Class labels within the green area are classified using a straightforward flat classification
approach, where each example is assigned to its final, leaf-level label. The error analysis of the leaf-level
label classification is shown in Figure 5. The red area comprises a Hebrew literature class and a non-
Hebrew literature class. The distinction between labels in the red and blue areas is that the blue area
further di昀昀erentiates between early and late Hebrew literature. The error analysis for this distinction
is shown in Figures 7a and 7b. The classification results and aggregated metrics are presented in Table
2.

(a) Error analysis of levels 2 in the class-hierarchy
tree.

(b) Error analysis of levels 1 in the class-hierarchy
tree.

Figure 7: The classifier confusion matrix a昀琀er applying ST (similar to Figure 5) shows an error analysis
of levels 1 and 2 in the class-hierarchy tree, as depicted in Figure 6.

speci昀椀c and detailed, denoted in the green area in Figure 6. The medium-grained resolution
de昀椀nes three classes that are broader than the 昀椀ne-grained classes but still fairly detailed, de-
noted in the blue area in Figure 6. The classi昀椀cation results show an improvement in transfer
accuracy, with 75% accuracy, as shown in Figure 7a. The coarse-grained resolution de昀椀nes very
broad and general classes, denoted in the red area in Figure 6. All the authors are gathered into
a single class - Hebrew literature, and the reference styles are grouped into a non-Hebrew liter-
ature class. The classi昀椀cation results demonstrate a further improvement in transfer accuracy,
with 81% accuracy, as shown in Figure 7b.
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4.2.1. ST Examples

In the analysis of randomly selected test samples, it is o昀琀en di昀케cult for human readers to deter-
mine if the target style has been successfully incorporated into the generated output sentence.
This di昀케culty may persist even when the samples achieve high evaluation metric scores. To
provide a clearer illustration of the performance of our ST model, we present several outputs
in Figure 8. In these examples, the input text was derived fromWikipedia and assigned a ”neu-
tral” style, while the generated output was created in the style of each of the four authors. The
output was examined by a domain-expert (i.e., literary scholar) who validated the results and
determined whether they represent accurately the speci昀椀c style of each author. Unfortunately,
it is virtually impossible to provide an English translation of generated results (”poetry is what
gets lost in translation”, as the poet Robert Frost wrote and the same holds true for literary
style) yet the Hebrew results are striking and help us to better understand and describe the in-
tricacies of each author’s unique style. These examples serve as concrete illustrations of the ST
model’s capabilities, allowing literary scholars to gain insight into the unique characteristics
and distinctions between various styles. Additional examples are available in Appendix D.

Figure 8: The input text to the ST model is denoted by the blue color, while the green color represents
the corresponding output text generated by the model, each reflecting a possible style. Additional
instances of generated text can be found in Appendix D.
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5. Conclusion

The development of Hebrew NLP models is di昀케cult due to the language’s unique character-
istics. Hebrew is a Semitic language with complex morphology and a rich lexicon that has
evolved over centuries of usage. We o昀昀er a novel generative ST model for modern Hebrew lit-
erary texts, employing a straightforward methodology. Firstly, we generate a pseudo-parallel
corpus for text simpli昀椀cation, which serves as the basis for training the model. Secondly, we
昀椀ne-tune a pre-existing Hebrew LM. Finally, we utilize a ZSL approach to enable the model to
perform ST. In addition, our methodology yields a solution for the Hebrew paraphrase gener-
ation task, which is a sub-task of the ST process. This approach presents a promising avenue
for future research in the 昀椀eld of ST in languages with limited resources. Furthermore, the
ability to generate new texts based on their literary and linguistic styles provides a powerful
tool for literary scholars. Applying these methods, whether on existing ”neutral” texts or on a
”prompt”, provides an unusual perspective on individual author’s style and more generally on
the very notion of style, its characteristics and building blocks.
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Appendices
A. Dataset

The present corpus is composed of 35 novels (as shown in Figure 9) authored by four authors:
Aharon Megged (1920-2016),6 Ehud Ben-Ezer (1936- ),7 Mendele Mocher Sforim (1836-1917) 8

and Yosef Haim Brenner (1881-1921), 9 who exhibit unique literary and linguistic styles. More-
over, these authors represent di昀昀erent stages in the development of Modern Hebrew literature
from the mid nineteenth century onward, hence the development of their style is a key compo-
nent in the development of Modern Hebrew literature. The purpose of including two additional
reference styles, namelyWikipedia articles and the Biblical text, was twofold: 昀椀rst, to establish
a hierarchy of writing styles (depicted in Figure 6), and second, to introduce a ”neutral” style
based on the Wikipedia articles, which can be 昀氀exibly adapted to each of the authors’ styles.
To achieve this aim, the Wikipedia stylistic references were leveraged to facilitate a seamless
transition from the modern Hebrew ”neutral” style to each author’s unique style, as outlined
in Table 8.

6https://en.wikipedia.org/wiki/Aharon_Megged
7https://www.ithl.org.il/page_13417
8https://en.wikipedia.org/wiki/Mendele_Mocher_Sforim
9https://en.wikipedia.org/wiki/Yosef_Haim_Brenner
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Figure 9: The literary works that comprise the corpus.

The creation of the corpus involved three main steps: (1) Sentence Splitting - the problem of
properly locating sentence boundaries inHebrew text is inmanyways less severe than the same
problem in English. Properties of Hebrew sentences [15] given by the ’Academy of the Hebrew
Language’ makes it relatively easy to identify end of sentence. Each book was decomposed
into a sequence of sentences, with an average length of 39 tokens. (2) BT - For the BT task, we
employed M2M100 [2], a multilingual seq-to-seq model speci昀椀cally trained for Many-to-Many
multilingual translation. Initially, we selected Arabic as an intermediate language due to its
syntactic similarity with Hebrew; however, the BT performance was subpar, prompting us to
switch to English as the intermediate language. (3) Semantic Similarity - To assess the quality
of the BT process, we utilized an unsupervised Hebrew version of SimCSE [5]. The technical
information of this model is provided in Appendix C.2.
The 昀椀ltering process consisted of several steps. Firstly, we removed sentences that were too

short or too long, only retaining sentence pairs with an average token length of 54 tokens,
with a range between 20 and 120 tokens. Secondly, given that it is not uncommon to 昀椀nd non-
Hebrew text embedded in Hebrew literature, particularly due to the European roots of some
authors, we 昀椀ltered out all such sentences from the corpus. Thirdly, to enhance diversity and
prevent copying, we removed back translated sentence pairs with semantic similarity scores
lower than 0.4 or higher than 0.95, as described in Figure 10. Fourthly, we removed diacritical
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(a) Novels per authors. (b) The distribution of examples (sentences) across the
classes (authors).

Figure 10: Sim score.

marks (niqqud) from sentences in the corpus to ensure corpus uniformity. Ultimately, The
昀椀nal training corpus was composed of 37,000 sentence pairs. The distribution of examples, or
sentences, across the di昀昀erent classes is presented in Figure 11.

B. Additional Experiments

B.1. Stylistic Prompts for Controlled Text Generation

The initial stage of our research involved developing a framework for style identi昀椀cation and
consistent text generation based on speci昀椀c stylistic prompts. To accomplish this, we utilized
a classi昀椀er model as outlined in Appendix C.3 to accurately identify and distinguish between
di昀昀erent writing styles. Subsequently, we 昀椀ne-tuned a Hebrew-based GPT-Neo-small10 model
for 2 epochs with a minibatch size of 4 and a learning rate of 5e-2 to generate text according
to a prompted style.
During the training process, the style label (represented by the author name) and correspond-

ing text sequence were concatenated together using a separator token, as illustrated in Figure
13a. For text generation, the model was prompted to generate text in a speci昀椀c style by pro-
viding the model with the style (author name) separator token and a random seed token, as
shown in Figure 13b. The generated text (examples of which are presented in Figure 12) was
then evaluated by our classi昀椀er, which yielded an F1 score of 0.94, indicating a high degree of
similarity with the classi昀椀cation of real data (corpus text).
In order to ensure the originality and novelty of the generated literary text, we conducted

an analysis of n-gram intersections between the training corpus and a corpus of generated
literary text, as presented in Table 3. The purpose of this analysis was to ascertain whether the
generated text contained any copied content from the training corpus. Our 昀椀ndings indicate a

10https://huggingface.co/Norod78/hebrew-gpt_neo-small
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Table 3
The results of the n-gram intersection analysis between the training corpus and a generated literature
text corpus assess the novelty and originality of the generated text. The table presents the number
of intersecting n-grams for various n sizes and the percentage of the generated n-grams found in the
training corpus ( #𝑜𝑓 _𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 𝑖𝑜𝑛_𝑛−𝑔𝑟𝑎𝑚#𝑜𝑓 _𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑_𝑛−𝑔𝑟𝑎𝑚 ).

n intersection n-grams number intersection percentage

2 6,663 46%
3 3,515 17%
4 966 4.4%
5 232 1%
6 55 0.26%
7 13 0.06%
8 2 0.02%
9 0 0%

negative linear relationship between n and n-gram intersection, which serves as an indicator of
the novelty of the generated text. Speci昀椀cally, the results demonstrate that the generated text
is indeed novel, and does not contain any copied content from the training corpus. Moreover,
our attempts to perform ST using a similar method to that described in Section 2.1 were met
with unsatisfactory results, indicating limitations in the model’s ability to perform this task.

B.2. Transition Through the Back Translated Text

The employment of an intermediary style, such as the back translated text, manifests itself as
themost instinctive and straightforward strategy for performing ST in our case. We seek to per-
form ST from style A to style B through a two-step process, which involves transitioning from
style A to the back translated text and subsequently to style B, as visually represented in Figure
14. Unfortunately, the results obtained from this methodology were markedly unsatisfactory.

C. Model Details

All the models were trained on a single NVIDIA V100 tensor core GPU on the Google Co-
lab11 platform using HuggingFace’s [HuggingFace’s] programming API and a transfer learn-
ing method. Transfer learning is a technique in which a pre-trained model is used to enhance
the performance of a new model on a related task. This approach saves time and resources, as
the pre-trained model serves as a starting point for the new model, enabling it to learn from
the pre-existing knowledge. In NLP, transfer learning is implemented via Transformers.

11Google colab allows anybody to write and execute arbitrary python code through the browser, and is especially
well suited to ML, data analysis and education. More technically, Colab is a hosted Jupyter notebook service that
requires no setup to use, while providing access free of charge to computing resources including GPUs.
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C.1. ST Model

This section provides a detailed description of the ST model used in our study. We 昀椀ne-tune a
pre-trained Hebrew GPT-Neo-small12 LM for 2 epochs. GPT-Neo is an open-source version of
the SOTA GPT-3 LM model developed by OpenAI. However, as GPT-3 has not yet been open-
sourced, the open-source community has attempted to reproduce its weights and results. One
such attempt is the GPT-Neo model developed by eleuther.ai, which has a similar architecture
to GPT-3. Hugging Face [HuggingFace’s] further extended this e昀昀ort by integrating GPT-Neo
into their transformers infrastructure, making it accessible to the NLP community.
In the case of the Hebrew language, two GPT-Neo models are available - GPT-Neo-small and

GPT-Neo-xl13. Due to limited computational resources, we used the GPT-Neo-small version.
We employed the Adam [12] optimizer with a polynomial schedule14 that includes a warmup
period, during which the learning rate increases linearly from 0 to the initial learning rate set
in the optimizer, which is 5e-2 in our case. The learning rate then decays as a polynomial
function to the end learning rate of 5e-4. We used a mini-batch size of 4 sentences.
For text generation, we employed the top-k [3] and top-p [8] sampling strategies. More

speci昀椀cally, we sampled from the top K tokens, where K refers to the most likely tokens (in
our case, we set K to be 50), with a cumulative probability that exceeds P (in our case, we set
P to be 0.95).

C.2. SIM Model Details

SimCSE, Figure 15, is a SOTA unsupervised model for learning sentence embeddings. The
idea is to encode the same sentence twice with pre-trained transformer based encoder model,
AlephBERT [18] model in our case. Due to the used dropout in transformer based models, both
sentence embeddings will be at slightly di昀昀erent positions. The distance between these two
embeddings will be minized, while the distance to other embeddings of the other sentences in
the same batch will be maximized (they serve as negative examples)15. The model was trained
on our corpus (Appendix A), employingMean-pooling and cosine-similarity 16 as the similarity
metric.

C.3. Classifier Model Details

We employed the AlephBERT [18] model for the task of stylistic classi昀椀cation. AlephBERT
is a pre-trained, Transformer-based, large language model speci昀椀cally designed for Modern
Hebrew. This model is trained on a larger corpus with a larger vocabulary and is based on

12https://huggingface.co/Norod78/hebrew-gpt_neo-small
13https://huggingface.co/Norod78/hebrew-gpt_neo-xl
14huggingface - polynomial decay schedule with warmup
15from https://www.sbert.net/examples/unsupervised_learning/SimCSE/README.html
16Cosine similarity measures the similarity between two vectors of an inner product space. It is measured by the
cosine of the angle between two vectors and determines whether two vectors are pointing in roughly the same
direction [7] 𝐶𝑜𝑠𝑖𝑛𝑒𝑆𝑖𝑚𝑖𝑙𝑎𝑟 𝑖𝑡𝑦(𝑥, 𝑦) = |𝑥 ⋅ 𝑦 |||𝑥||||𝑦 ||
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the Bidirectional Encoder Representations for Transformers (BERT) architecture introduced
by [1]. The results obtained by [18] demonstrate that AlephBERT outperforms previous SOTA
models on various Hebrew NLP tasks, including Segmentation, Part of Speech Tagging, full
Morphological Tagging, Named-Entity Recognition, and Sentiment Analysis.
To 昀椀ne-tune17 AlephBERT for the task of stylistic classi昀椀cation, we followed the BERT au-

thors’ recommendations and trained the model for 2 epochs with a learning rate of 2e-5 and a
batch size of 4. We employed the Adam [12] optimizer with a linear schedule and a warm-up
phase. Speci昀椀cally, we gradually increased the learning rate from 0 to the initial learning rate
set in the optimizer during the warm-up18 phase and then linearly decreased it to 5e-4. The
results of our experiment demonstrate the e昀昀ectiveness of AlephBERT for the task of stylistic
classi昀椀cation.

C.4. Fluency Model Details

We utilized the GPT-Neo-small LM developed by [4] and 昀椀ne-tuned it for grammatical accept-
ability judgments task using the LM PPLmetric. PPL is a measure of the exponentiated average
negative log-likelihood (NLL) of a given sequence:𝑃𝑃𝐿(𝑊 ) = 𝑒𝑥𝑝 ( 1𝑁 Σ𝑁𝑖 𝑁𝐿𝐿(𝑊𝑖)) = 𝑒𝑥𝑝 (− 1𝑁 Σ𝑁𝑖 𝑙𝑜𝑔(𝑃(𝑤𝑖|𝑤<𝑖))
W is a tokenized sentence,W contains sequence of tokens (W = 𝑤1, ..., 𝑤𝑁 ) and P is the condi-
tional probability constructed by the LM. To ensure that the model has access to a maximum
amount of contextual information, we evaluated PPL using a sliding-window approach, as de-
picted in Figure 16. This methodology entails repeatedly shi昀琀ing the context window so that
the model can have su昀케cient contextual information when generating each prediction.
We trained the model for 3 epochs with a learning rate of 5e-2, using a linear schedule with

warmup19 that gradually decreases the learning rate from the initial value set in the optimizer
to 5e-5 a昀琀er a warmup period during which it increases linearly from 0 to the initial learning
rate.
The distribution of the PPL values is shown in Figure 17, and the statistical properties of

these values are presented in Table 4. We established a threshold of 100 to distinguish between
昀氀uent and dis昀氀uent sentences, as the majority of PPL values in our corpus corresponded to
昀氀uent sentences. Sentences with PPL values lower than 100 were considered 昀氀uent, while
those with higher values were deemed dis昀氀uent.

D. More Example Generations

Additional examples are provided in Figure 18.

17In NLP, 昀椀ne-tuning is the process of adapting a pre-trained LM to a speci昀椀c task by updating its weights with new
data related to the task. This process involves training the model on a smaller dataset to re昀椀ne its parameters and
incorporate the characteristics of the domain data. By doing so, the model can leverage its pre-existing knowledge
and achieve better performance on the given task.

18huggingface - linear schedule with warmup
19huggingface - linear schedule with warmup
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Table 4
Statistical information regarding the PPL values that were calculated for the sentences in our corpus.

Mean Std Min Max 75%

31.5 18.4 1.7 680.8 39.2
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(a) The corpus classes, or styles, distribution.

(b) Each bar in the chart corresponds to a di昀昀erent style, and the internal structure of each bar portrays the relative
proportion of each book associated with the particular author style.

Figure 11: Corpus description.
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Figure 12: The initial component (text in green) of the sentence presented to the model serves as the
prompt for the text generation process, along with the corresponding author name. The subsequent
component (text in blue) represents the text generated by the model.

(a) This figure illustrates the concatenation process
used during the training phase of our model.
The process involves combining a style label and
a text sequence with a separator token. This con-
catenated sequence is then utilized to train the
model to generate text in a specific style.

(b) This figure illustrates the text generation pro-
cess in our model, which utilizes a style label
and a random seed token. The figure shows the
concatenation of the style label and a separator
token, followed by the random seed token. This
concatenated sequence serves as a prompt for
the model to generate text in the desired style.

Figure 13: Here, we describe the training process, which involves assigning a style label to each sen-
tence in the corpus and utilizing a style label and random seed token during the text generation process.
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Figure 14: ST in two steps.

Figure 15: This figure, taken from the work of [5], describes the unsupervised SimCSE. Specifically,
the unsupervised SimCSE approach predicts the input sentence itself from in-batch negatives while
employing di昀昀erent hidden dropout masks.

Figure 16: Sliding window strategy for calculating the PPL metric.
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Figure 17: The distribution of PPL values for sentences in our corpus.

Figure 18: Here, we present additional example outputs generated by our model.
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