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Abstract
The German language exhibits a range of question tags that can typically, but not always, be substituted
for one another. Moreover, the same words can have other meanings while occurring in the sentence-
昀椀nal position. The tags’ felicity conditions were addressed in previous corpus-based and experimental
work and attributed to semantic and pragmatic properties of tag questions. This paper addresses the
question of whether and to what extent the di昀昀erences among German tags can be determined au-
tomatically. We assess the performance of three pretrained German BERT models on a tag question
dataset and 昀椀ne-tune one of these models on the tag word prediction task. A close examination of this
model’s output indicates that BERT can identify properties relevant for the tags’ felicity conditions and
interchangeability consistent with previous studies.
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1. Introduction

This study provides a computational analysis of German question tags. A (question) tag is a
昀椀xed expression that attaches to an utterance (anchor) and is used to elicit a con昀椀rmational
response from the addressee regarding the anchor proposition. The whole construction is
referred to as a tag question (TQ). TQs are a widely studied phenomenon, however, a com-
prehensive analysis of German tags has been proposed only in recent studies [5, 3, 4]. The
German language o昀昀ers a large variety of invariable tags that can be used interchangeably in
some contexts (1), but not in others (2).1

(1) Lina says to her sister as they go out of the cinema:
Der Film war gut, ne?/nicht?/oder?
‘The 昀椀lm was good, wasn’t it?’

(2) Lina comes back from the movies and says to her sister (who did not want to come):
Der Film war gut, ne!/nicht!/*oder!
‘The 昀椀lm was good, you know!’
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1We focus on the use of tags within Germany and do not consider the regional/country-speci昀椀c di昀昀erences or
individual preferences in tag usage. We work with the existing corpus data to study the general interchangeability
potential of tags. In view of this, we assume that if di昀昀erent individuals use di昀昀erent tags in the same sentence to
convey the same meaning, these tags are interchangeable in this particular context.
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In (1), di昀昀erent tags are equally suitable for requesting con昀椀rmation of whether Lina’s sister
also liked the 昀椀lm. In (2), however, Lina’s sister is requested to con昀椀rm her acknowledgment
of the provided information, in which case oder is infelicitous [cf. 4].

Felicity conditions of German tags were addressed in previous experimental and
corpus-based studies, and several factors were identi昀椀ed as crucial for the tags’
(non-)interchangeability. Among those are syntactic and semantic properties of TQs, as well
as pragmatic inferences arising from various contextual aspects (see Section 2 for details). In
this study, we pursue the question of whether the similarities and/or di昀昀erences among tags,
and hence cases of their potential interchangeability, can be modeled automatically. Language
models, such as BERT [6], are known for their capacity to leverage semantic and other types
of linguistic information from the context around a given word (see e.g., [17] for an overview).
Therefore, we test whether and how well BERT can identify the properties of German tags,
such as those de昀椀ned in previous work, and whether we can gain new insights from this into
the tags’ felicity conditions.

It is worth noting that there exists another TQ-relevant distinction in German: Words func-
tioning as tags can have other meanings while occurring in the tag position (i.e., end of a
sentence). For example, nicht is also a negation particle (e.g., Kennst du das nicht? ‘Don’t you
know that?’). This is a di昀昀erent kind of distinction, since semantically TQs di昀昀er considerably
from other sentence types ending with the same word. We thus include both types of sentences
in our analysis. We expect the sentence type distinction to be easier for BERT than determining
the di昀昀erences among individual tags. The latter, however, is of primary interest to us.

Our paper makes the following contributions. We test the capacities of three existing pre-
trained German BERT models to di昀昀erentiate among question tags as well as between TQs
and other sentence types. We 昀椀nd that while most models capture the sentence type distinc-
tion quite well, they struggle with semantic/pragmatic di昀昀erences within the tag class. Instead,
BERT demonstrates a strong dependence on structural features, such as punctuation. We apply
K-Means clustering to the embeddings produced by one of these models and test the overlap
of the generated clusters with the linguistic properties of TQs de昀椀ned in previous work. We
昀椀nd indications as to which of those properties are relevant for the tags’ felicity conditions in
accordance with previous 昀椀ndings. Finally, we 昀椀ne-tune the selected model on the next word
prediction task with respect to two aspects: prediction of the word class (tag vs. no-tag) and
form (e.g., oder vs. ne). Our experiments show that the 昀椀ne-tuned model outperforms the orig-
inal one in both tasks, while at the same time revealing the importance of the dataset size for
meaningful prediction.

2. Related work

2.1. German question tags

Themeaning and felicity conditions of German tags were addressed in recent corpus-based and
experimental studies [5, 3, 4, 9]. Several semantic/pragmatic as well as syntactic factors were
found crucial for the tags’ felicity conditions and their interchangeability potential. Anchor
clause type and speech act provide certain indications regarding the tags’ felicity, such that,
e.g., imperative directives as in (3) are compatible only with ja [cf. 4].
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(3) Max wants to play football with his friends, but his father says:
Mach erst deine Hausaufgaben, ja!/*ne!/*nicht!/*oder!
‘Do your homework 昀椀rst!’2

O昀琀entimes, additional context is required, though. For example, the TQ anchors in (1) and
(2) in Section 1 are both declarative assertions, but oder is felicitous only in the former. In such
cases, information about the interlocutors’ epistemic authority provides additional clues, e.g.,
whether the speaker is informing the addressee or asking for a con昀椀rmation (cf. statements
vs. questions as functions of TQs in [12]). If the speaker is the source of information, the
use of oder is typically ruled out. Further constraints are provided by the type of requested
con昀椀rmation, i.e., the aspect of the anchor proposition the addressee is requested to con昀椀rm
(target of con昀椀rmation in [4, 20]). An example would be agreement with the speaker’s opinion
vs. acknowledgment of the provided information in (1) vs. (2) in Section 1.

These linguistic properties have been found to correlate with di昀昀erent tags as well as with
each other to varying degrees ([4], p. 26), and while some of them are straightforward (e.g.,
anchor clause type), other are more complex and need to be inferred from the context (e.g.,
target of con昀椀rmation).

2.2. Language modeling

Among the growing amount of work on the next word prediction with language models, sev-
eral studies have focused on linguistic elements in the sentence-昀椀nal position. Kato, Miy-
ata, and Sato [11] use BERT to generate simpli昀椀ed substitutions for Japanese sentence-ending
predicates. Li, Grissom II, and Boyd-Graber [13] predict sentence-昀椀nal verbs for German and
Japanese with neural models for two tasks: predicting the exact verb and a semantically simi-
lar one. Mandokoro, Oka, Matsushima, Fukada, Yoshimura, Kawahara, and Tanaka [15] train
a BERT model on the task of Japanese sentence-昀椀nal particle prediction.

Ettinger [7] explores the role of di昀昀erent types of information in prediction of the sentence-
昀椀nal word on the basis of its le昀琀-side context for English. Similarly, we implement the tag word
prediction task informed only by its le昀琀-side context. The factors tested in [7] are similar to
those that play a role in the felicity conditions of German tags: semantic roles, event knowledge,
and pragmatic inferences. Ettinger 昀椀nds them to be particularly challenging for BERT.

To our knowledge, there are no studies that explore the features of question tags or focus on
automatic tag prediction with language models.

3. Data

We work with the TQ dataset from [4] built from three German corpora: CallHome (CH) [10],
OpenSubtitles (OS) [14], and Twitter (TW) [19]. This dataset contains automatically extracted
TQ candidates that need to be manually disambiguated as to whether or not they end with a
tag. We con昀椀ne our analysis to the four most frequent tags (ja, ne, nicht and oder), for which
we uni昀椀ed and annotated the data with the tag/no-tag labels. The annotation was performed

2We 昀椀nd that the sense of non-negotiability conveyed by this utterance is best expressed without a tag in English.
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by four annotators: the author of this paper and three annotators with a linguistic background.
The latter were provided with the annotation guidelines. To ensure the annotation quality, the
author of this paper independently annotated approx. 1,000 TQ candidates from each annota-
tor’s 昀椀le. High inter-annotator agreement was reached on these data subsets: Cohen’s kappa
score of 0.9 with annotator 1 and 0.78 with annotator 2.3 Any con昀氀icting annotations in these
data subsets, i.e., between the author of the paper and each respective annotator, were resolved
a昀琀erwords. Table 1 shows the number of annotated tag words per corpus used in this study.4

Table 1
Distribution of the tag and no-tag instances per tag and corpus.

CH OS TW Total
tag no-tag tag no-tag tag no-tag tag no-tag

ja 139 283 11,660 280 492 1,034 12,291 1,597
ne 665 2 373 1 640 44 1,678 47
nicht 223 278 4,852 17,719 293 13,077 5,368 31,074
oder 90 0 1,087 0 1,396 0 2,573 0
Total 1,117 563 17,972 18,000 2,821 14,155 21,980 32,718

4. Tag word embeddings

We test the following existing pretrained German BERT models:

1. bert-base-german-cased5 trained on a German Wikipedia dump, Open Legal Data dump,
and news articles (12 GB)

2. bert-base-german-dbmdz-cased6 trained on a Wikipedia dump, EU Bookshop corpus,
Open Subtitles, CommonCrawl, ParaCrawl, and News Crawl (16 GB)

3. gbert-large7 trained on the OSCAR corpus, Wikipedia dump, the OPUS project, and Open
Legal Data (163.4 GB)

To generate the tagword embeddings, we extracted one TQ candidate from each record in the
dataset.8 Depending on the corpus, we applied di昀昀erent preprocessing steps to the extracted
TQ candidates. For CH and OS, we removed all meta-language sequences. For TW, we stripped
URLs (end of sentence), hashtags and @username mentions (beginning and end of sentence),
and common emoticons (anywhere in sentence). Furthermore, we excluded TQ candidates
consisting of fewer than three tokens including the tag word, in order to eliminate (most of)

3We could not calculate the inter-annotator agreement with annotator 3, as they did not complete their annotations,
so that there were no overlapping annotations available for comparison. The annotation in this case was completed
by the author of the paper.

4The annotated dataset and the annotation guidelines are available via the Open Science Framework: https://osf.io
/pcng9.

5https://huggingface.co/bert-base-german-cased
6https://github.com/dbmdz/berts#german-bert
7https://huggingface.co/deepset/gbert-large; [2].
8Some records consist of several sentences (e.g., a tweet) and hence can contain more than one TQ candidate. We
extracted each record’s 昀椀rst sentence ending with one of the relevant tag words.
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the short sequences bearing little meaning. Finally, we removed all duplicates based on case-
sensitive string comparison. Examples of the preprocessed sentences in the 昀椀nal dataset are
given in Table 2.

Table 2
Examples of TQ candidates before and a昀琀er preprocessing. Tag words are marked in bold.

CH
tag

before {laugh} Aber das geht erst, das geht nicht ab sechzig, ja? Das {laugh}
a昀琀er Aber das geht erst, das geht nicht ab sechzig, ja?

no-tag
before {laugh} (( )) wahrscheinlich noch besser ja.
a昀琀er wahrscheinlich noch besser ja.

OS
tag

before [Deacon] Ein schöner Bau, nicht?
a昀琀er Ein schöner Bau, nicht?

no-tag
before - (Walter) Mr. Taransky will das nicht.
a昀琀er Mr. Taransky will das nicht.

TW
tag

before @username Yo...warum Schwer wenn’s auch Einfach geht ne.... :P
a昀琀er Yo...warum Schwer wenn’s auch Einfach geht ne....

no-tag
before Ich wollt vor #btn noch eine Rauchen, aber ne.
a昀琀er Ich wollt vor #btn noch eine Rauchen, aber ne.

We fed the preprocessed TQ candidates through each model and obtained embeddings con-
sisting of either 12 layers with 768 dimensions (bert-base-german-cased and bert-base-german-
dbmdz-cased) or 24 layers with 1,027 dimensions (gbert-large) per token. To get a single embed-
ding per token, we concatenated each token’s last four layers, thus obtaining one vector with
3,072 (bert-base-german-cased and bert-base-german-dbmdz-cased) or 4,096 (gbert-large) dimen-
sions. Finally, we extracted each tag word’s embedding, which we use here as its contextual
representation.

5. BERT model comparison

This section discusses the output of the three BERT models with respect to the tag/no-tag
distinction and the di昀昀erences among the tag forms. We reduce the embeddings to three com-
ponents with Principal Component Analysis (PCA)9 and map them into a vector space. We
use the visualized data for our analysis and provide a more compact version of the plots in
Appendix A for illustration.10

5.1. bert-base-german-cased

This model di昀昀erentiates prima facie well among the four tag words: Vectors representing the
same tags are densely grouped together, while distinct tags are visibly separated from each
other (Figure 1a, 2a, 3a in Appendix A). However, each vector group is a tag/no-tag mixture

9We used the scikit-learn implementation: https://scikit-learn.org/stable/modules/generated/sklearn.decompositio
n.PCA.html.

10The plots in Appendix A were created with seaborn (https://seaborn.pydata.org/). The interactive 3D plots used
for our analysis were created with matplotlib (https://matplotlib.org/) and are available via the Open Science
Framework: https://osf.io/pcng9.
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(except for oder, which has no no-tag counterparts). This suggests that this model only dif-
ferentiates between the surface forms of the tag words, and will most likely be insu昀케cient in
handling 昀椀ner-grained distinctions, such as di昀昀erent types of utterances ending with the same
word.

5.2. bert-base-german-dbmdz-cased

The vector groups generated by this model are less dense and have visually less space between
them compared to bert-base-german-cased (Figure 1b, 2b, 3b in Appendix A). Nonetheless, the
model di昀昀erentiates well among the tags and provides a reasonable tag/no-tag separation in
most cases. Furthermore, it subdivides the tag groups, which is not the case with bert-base-
german-cased. This is particularly prominent for CH (ja, ne and nicht) and TW (all tags).

We 昀椀nd that the formation of subgroups (among the TQs ending with the same tag) is tied
to punctuation. Tags are placed into di昀昀erent subgroups depending on whether they are fol-
lowed by a question mark or a period. This is consistent across the tags and corpora. The
tag-preceding comma also plays a role: The tags are either clearly separated (e.g., ‘, ja?’ vs.
‘ja?’ in OS/TW), or there is a gradual transition from one punctuation type to another within
a subgroup (e.g., ‘ne.’ vs. ‘, ne.’ in CH).

The tag/no-tag groups typically partially overlap in cases of matching punctuation (e.g., ja in
OS). Given that tags with di昀昀erent punctuation form distinct subgroups, this suggests that the
model considers tags and no-tags with the same punctuation to be more similar than the same
tags with di昀昀erent punctuation. Thus, structural features seem to dominate over potential
syntactic/semantic di昀昀erences between TQs and other sentence types ending with the same
tag word.

5.3. gbert-large

Thismodel falls in between the other two, as its output looks similar to that of bert-base-german-
cased in terms of compact, spatially well-separated vector groups, while at the same time pro-
viding a good tag/no-tag distinction akin to bert-base-german-dbmdz-cased (Figure 1c, 2c, 3c
in Appendix A). The model shows a stable pattern across the three corpora: While the vector
groups representing di昀昀erent tags are spatially separated, the tag/no-tag instances are situated
in very close proximity to each other and even partially overlap (ja and nicht in all corpora;
ne in TW). The tag/no-tag distinction for nicht generally seems to be most de昀椀nite, showing
practically no overlap in OS and TW.11

This model also di昀昀erentiates based on punctuation. In some cases, tags are divided into
two distinct subgroups based on the end punctuation (ne and ja in CH). In most cases, though,
the tags are ordered within their respective groups: Tags followed by a question mark and
preceded by a comma are situated on one side of the vector group, whereas those ending with
a period are placed on its other end. The latter is also where a (partial) overlap with the no-tags
takes place, as no-tags are largely followed by a period.

11The clear tag/no-tag distinction for nicht is also made by the bert-base-german-dbmdz-cased model.
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5.4. Summary

We 昀椀nd that bert-base-german-dbmdz-cased looks most promising for exploring tag inter-
changeability in our data. This model di昀昀erentiates between the tags quite clearly, but also
places several tag subgroups close to each other (contrary to gbert-large), which might indicate
potential cases of similarity. Therefore, we perform a clustering analysis of its output (Section
6) and use this model for the tag word prediction task (Section 7).

6. Clustering

In this section, we focus only on the tag part of the data and apply the K-Means clustering
algorithm to the BERT-generated tag vectors.12 As discussed in the previous section, BERT
groups tags by their form (and punctuation). By means of clustering, we explore whether
there are any common features across these tag groups. Our assumption is that distinct tags
that occur in similar contexts will have similar linguistic properties encoded in their vector
representations and will hence be clustered together.

6.1. Cluster analysis

We experiment with di昀昀erent numbers of clusters (𝑘) starting with 4 (i.e., the number of tags
in the dataset) and increasing it in single steps up to 10. As discussed in Section 1, tags are
interchangeable only in certain contexts, which is why we are interested in impure clusters,
i.e., the ones where di昀昀erent tag groups are partially clustered together.

The general tendency we observe is that with higher 𝑘’s, each tag form is allocated to a
distinct cluster or even divided intomultiple clusters. Hence, we determine the highest 𝑘 (below
10) with which any di昀昀erent tags are still clustered together, and examine the resulting impure
clusters in more detail. Following this strategy, we select 𝑘=9 for CallHome, 𝑘=7 for Twitter,
and 𝑘=4 for OpenSubtitles. Table 3 shows the impure clusters. An overview of all clusters
generated with the respective 𝑘’s can be found in Figure 4 in Appendix A.

Table 3
Impure K-Means clusters per corpus. 𝑘 denotes the overall number of clusters, { } mark cluster bound-
aries, subscript numbers indicate cluster IDs in plots.

Corpus 𝑘 Impure clusters
CallHome 9 {part nicht, part oder}3, {part ne, part nicht, 1 oder}7
OpenSubtitles 4 {ne, 2 nicht, oder}4
Twitter 7 {part ja, part nicht}2

12We used the scikit-learn implementation: https://scikit-learn.org/stable/modules/generated/sklearn.cluster.
KMeans.html. The clusters are built on the original BERT vectors; the PCA-reduced vectors are used only for
visualization purposes.
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6.1.1. CallHome

Two impure clusters were generated with 𝑘=9 (Figure 4a in Appendix A). The cluster {part
nicht, part oder}3 contains the instances of these tags that are followed by a question mark
and preceded by a comma. This makes up a part of the oder-subgroup and the complete nicht-
subgroup with a question mark. A closer look at TQs in this corpus reveals that the ones with a
question mark express requests for information or an opinion from the addressee (cf. questions
and statement-question blends [12]).

The cluster {part ne, part nicht, 1 oder}7 contains tags without the preceding comma and
followed by a period (including occasional cases of alternative punctuation). This corresponds
to a part of each respective tag’s subgroup. TQs ending with a period in this corpus are those
where the speaker has epistemic authority and provides information or an opinion.

We conclude that the clustering method supports the punctuation-based distinction among
TQs, e.g., by utilizing the tag-preceding punctuation as a clustering criterion. The observed
correlation between the end punctuation and certain TQ types can be attributed to the fact
that CH contains transcribed data, where, evidently, question marks and periods represent the
rising and falling intonation, respectively. This, in turn, corresponds (at least roughly) to the
addressee vs. speaker epistemic authority. This correlation should be taken with a grain of salt,
though, as it is not necessarily the case with other corpora, e.g., Twitter users do not follow
punctuation rules strictly.

6.1.2. OpenSubtitles

One impure cluster – {ne, 2 nicht, oder}4 – was generated with 𝑘=4 (Figure 4b in Appendix A).
Any higher 𝑘 merely led to multiple clusters for ja and nicht. This is not surprising, as these
tags are represented by a notably larger number of instances than ne and oder in the corpus.
This cluster comprises the total number of ne and oder in OS and covers a mix of di昀昀erent TQ
types.

There is almost no variation in punctuation in this corpus: TQs without the tag-preceding
comma and/or endingwith a periodmake up less than 2% per tag. Due to this fractional amount,
these cases are not decisive for the automatic analysis.

The homogeneous use of punctuation in this corpus might be explained by the fact that
subtitles are supposed to conform with standard grammar (in our case, a tag separated from
the anchor clause by a comma and followed by a question mark).

For this data, K-Means prioritizes the division of large tag groups into multiple clusters over
the clustering of di昀昀erent tags together. We 昀椀nd no obvious di昀昀erences between the instances
of ja in the two clusters generated with 𝑘=4, e.g., they both contain directive TQs.

6.1.3. Twitter

One impure cluster was generated with 𝑘=7 (Figure 4c in Appendix A). This cluster – {part ja,
part nicht}2 – comprises the instances of the respective tags that have no preceding comma
and are followed by a question mark. In Twitter, the question mark is the predominant end
punctuation, and only few TQs end with a period (less than 1% with nicht and oder, 3% with ja,
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and 15% with ne). Thus, tags are clustered based on the presence or absence of the preceding
comma, rather than the end punctuation.

In general, K-Means merely assigns distinct clusters to the tag subgroups already formed
by the BERT model. The clustering together of nicht with ja is not straightforward, especially
since oder is situated closer to the former.

6.2. Mapping of linguistic properties to clusters

We assess how well the linguistic properties of TQs determined in the previous work map onto
the K-means clusters. We use the annotations of the anchor clause type, anchor speech act,
and target of con昀椀rmation from [4] available for a portion of the dataset used in this study: 940
TQs in CallHome and 641 TQs in Twitter.

To test the distribution of these properties across our clusters, we apply the cluster evaluation
metric V-measure [18], which constitutes the harmonic mean between homogeneity (whether
all TQs in a cluster belong to the same category, e.g., anchor clause type) and completeness
(whether all TQs with the same properties are put into one cluster).13 We 昀椀nd that the target
of con昀椀rmation has the highest match with the clusters in both corpora: its V-measure scores
range between 0.13-0.16 (CH and TW), depending on the number of clusters (between 4 and
10). The anchor clause type and speech act are both associated with lower scores: 0.05-0.09
(CH) and 0.11-0.16 (TW).

These results con昀椀rm previous observations that the tags’ felicity conditions only partially
depend on the anchor clause type and speech act. They also support previous 昀椀ndings that cer-
tain tags, such as oder, are infelicitous with requests to acknowledge the provided information,
while other tags, such as ne, are typical for this target of con昀椀rmation [8].

7. Tag word prediction

In this section, we describe the BERT Masked Language Modeling task for the tag word pre-
diction with the model selected in Section 5. We test the impact of 昀椀ne-tuning on the model’s
performance and examine its predictions with regard to the tags’ interchangeability potential.
We implement the training task using PyTorch [16] and the HuggingFace Transformers library
[21].

7.1. Experimental setup

For this task, we use the complete dataset (tags and no-tags) and 昀椀ne-tune the BERT model to
predict the tag word form (e.g., ne vs. ja) and class (tag vs. no-tag). We represent the no-tags
with the special tokens [ntja], [ntne], and [ntnicht] to di昀昀erentiate them from the respective
tags in themodel’s predictions.14 The special tokens and tags are then replacedwith the [mask]
token. We run the training for 10 epochs with standard parameters. The performance of the
昀椀ne-tuned model is compared with that of the original pretrained model (baseline).

13We used the scikit-learn implementation: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.v_
measure_score.html.

14The tag oder has no counterpart [ntoder].
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The dataset is randomly split into the training and test sets (80% and 20% from each corpus,
respectively). The training set is further randomly split into 80% training and 20% evaluation.
We apply this con昀椀guration to (a) the whole dataset and (b) the dataset without OpenSubtitles
in the training data. With this, we test how much the model relies on the OS data, which was
part of its original pretraining.

Furthermore, we train the model separately on each corpus and test on the rest of the dataset.
Our corpora di昀昀er in terms of style and conformity to standards: spoken telephone conversa-
tions (CH), transcribed spoken language (OS), and computer-mediated communication that
can be placed somewhere between written and spoken (TW) [cf. 4]. With this, we test the
suitability of di昀昀erent types of data for training a generalized model for tag prediction.

7.2. Evaluation

For each sentence, we consider the top three predictions and calculate two types of scores to
evaluate the model’s performance:

• score_equal – the model predicts the correct class (tag/no-tag) and the correct form
(e.g., ne-tag for ne-tag)

• score_close – the model predicts the correct class, but the form can be incorrect (e.g.,
ja-no-tag for nicht-no-tag or ja-tag for nicht-tag); this score includes score_equal

We sum up the probabilities that match these criteria within the top three predictions to
obtain a single score. The calculation is demonstrated below for a TQ from the Twitter corpus
in (4):

(4) Eh Digga, das war voll fett krass alter oder?
‘Eh dude, that was absolutely totally cool man right?’

The top three predictions and their probabilities for this TQ are oder (0.933), ne (0.03), and
[ntnicht] (0.026). Thus, score_equal amounts to 0.933 + 0 + 0 = 0.933 (93%) and score_close
to 0.933 + 0.03 + 0 = 0.963 (96%). Additionally, we report precision, recall, and F1 scores based
on the model’s top prediction.

7.3. Results

The score_equal and score_close results are given in Table 4. Independently of whether OS
is present in the training data, we observe a considerable improvement over the baseline (both
scores). The tag/no-tag distinction (score_close) reaches almost a 100% probability in most
cases.

With OS in the training data, the lowest score_equal values are obtained for ne<oder<nicht
(increasing in this order). This re昀氀ects the number of the respective tags in the training part of
the dataset, with less frequent tags receiving poorer scores. The baseline scores are distributed
di昀昀erently, suggesting that oder and ja were the most frequent tags in the model’s original
training data. However, the correctness probability of the baseline model does not go beyond
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Table 4
Experiment results: training on all corpora (upper part) and without OS (lower part). BL stands for
baseline, FT for fine-tuned.

equal (%) close (%)
# test Tag word BL FT BL FT

C
H
+T

W
+O

S

2,457 ja 17 84 36 99
351 ne 0 31 22 86

1,068 nicht 8 59 46 99
524 oder 31 43 37 94

4,400 all tags 15 69 37 97
10,908 tags + no-tags 6 86 15 98

C
H
+T

W

2,481 ja 17 55 36 99
331 ne 0 43 22 89

1,075 nicht 7 18 47 99
531 oder 30 67 37 95

4,418 all tags 15 47 37 98
10,909 tags + no-tags 6 76 15 98

50% (both scores). Given that we introduced the no-tag special tokens for this task, the baseline
scores are especially low in the test containing all items (tags and no-tags).

Without OS in the training data, score_equal drops drastically for nicht and ja. We attribute
this to the fact that the majority of TQs with these tags come from this corpus, thus limiting
the model’s exposure to this type of data during training. The importance of large datasets for
predictions with BERT was emphasized in previous studies [e.g., 13, 1].

Precision, recall, and F1 scores show a (notable) improvement of the 昀椀ne-tuned model over
the baseline for each tag (Tables 5 and 6). When trained on all corpora, the 昀椀ne-tuned model
shows lower recall for oder compared to the baseline. The latter provides reasonable results
primarily for ja. Its predictions for ne and nicht tend towards zero.

Table 5
Experiment results for training on all corpora: precision (P), recall (R), and F1 scores.

P (%) R (%) F1 (%)
# test Tag word BL FT BL FT BL FT

316 NTJA 0 73 0 61 0 67
11 NTNE 0 67 0 18 0 29

6,181 NTNICHT 0 97 0 99 0 98
2,457 ja 77 81 33 84 46 83
351 ne 0 46 0 32 0 38

1,068 nicht 1 60 3 60 1 60
524 oder 15 51 59 44 24 47

The experiments with training on one corpus and testing on the rest of the dataset resulted
in a lower performance compared to the training on the data from all corpora. This can be
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Table 6
Experiment results for training without OS: precision (P), recall (R), and F1 scores.

P (%) R (%) F1 (%)
# test Tag word BL FT BL FT BL FT

329 NTJA 0 70 0 54 0 61
12 NTNE 0 33 0 8 0 13

6,150 NTNICHT 0 97 0 99 0 98
2,481 ja 76 89 33 56 46 68
331 ne 0 20 0 43 0 27

1,075 nicht 1 56 2 18 1 27
531 oder 16 20 60 67 25 31

explained by the limited amount of the training data (CH in particular turned out to be least
suitable for training). Another reason is that our data, especially OS and TW, is imbalanced
and certain tags are heavily underrepresented. As with the tests described above, the results
here directly depend on the amount of the training data: The tag words represented by larger
numbers of instances received higher scores.

In addition to these tests, we examine the top three predictions in the results of the train-
ing on all corpora (see Section 7.1) regarding the frequency with which di昀昀erent tags were
suggested by BERT for each original tag variant.15 We hope to 昀椀nd indications of the tags’ in-
terchangeability by examining which tags might constitute the best substitutes for each other.
For TQs with ne, BERT predicted ne, ja, and nicht with almost equal frequency (in 21-23% of
the cases for each). For TQs with ja, nicht, or oder, the original tag was predicted in the ma-
jority of the cases (27-32%, depending on the tag). The next-best alternatives were as follows:
nicht (29%) for ja, ja (25%) for nicht, and both ja and nicht (21% each) for oder. These results
suggest that oder and ne are generally poor substitutes for each other, which con昀椀rms previous
corpus-based results [4]. The indication that ne could be replaced by nicht or ja is consistent
with the experimental evidence in [5], which shows that these tags have common characteris-
tics. For example, they are less felicitous in TQs expressing speaker assumptions based on the
addressee’s behavior.

8. Discussion and conclusion

This study explored whether the di昀昀erences among the four common German tags ja, ne, nicht,
and oder, such as those established in previous corpus-based and experimental work, can be
interpreted and predicted automatically. Our analysis of the existing German BERT models
showed that they strongly depend on structural features, such as the tag-surrounding punctu-
ation. For example, tags and no-tags were o昀琀entimes regarded as more similar to one another
than to other instances of the respective classes due to matching punctuation, while syntactic

15We look at frequencies instead of probabilities, as in our data the latter are typically considerably lower for the
second and third top predictions compared to the 昀椀rst one. This might be di昀昀erent with a larger dataset, though.
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and semantic properties of TQs were not recognizably detected.
We examined the tag vectors generated by one of these models in more detail. The mapping

of linguistic properties of TQs to the automatically formed clusters of the tag vectors con昀椀rmed
previous observations that the target of con昀椀rmation is a more informative feature for tags’
di昀昀erentiation than, for instance, the syntactic properties of the TQ anchor.

Furthermore, we 昀椀ne-tuned the selected model on the tag word prediction task. The tag
word class (tag/no-tag) was predicted with near 100% probability in most cases. The predic-
tion of the tag word form proved to be more challenging, though. Especially the experiments
with training on single corpora highlighted the importance of the dataset size: The predicted
tag word probabilities directly correlated with the number of instances they were represented
by in the training set. Overall, the results showed that with standard parameters and given
a large enough training dataset (14,045 tags and 20,860 no-tags, in our case) the 昀椀ne-tuned
model works well for this task. However, hyper-parameter optimization and class weighting
are worth exploring in the future.

The di昀케culties with the automatic distinction between the tag forms are not overly surpris-
ing, a昀琀er all. Cases where di昀昀erent TQ types share syntactic and semantic properties of the
anchor provide limited information for BERT to rely on in order to, for example, rule out the
use of certain tags, such as oder in informing TQs. The absence of additional contextual in-
formation hinders the judgments about the tags’ felicity in such cases. Nonetheless, certain
TQs contain su昀케cient information to predict the tag even without context, e.g., ja in impera-
tive directives. Since they di昀昀er both semantically and syntactically from TQs with declarative
anchors, we would expect BERT to pick up on their speci昀椀c properties. However, possibly be-
cause of their underrepresentation in our dataset, these TQswere not identi昀椀ed. Augmentation
of the dataset with certain (synthetically generated) TQ types would facilitate further testing
of BERT’s capacity to detect their features.

We conclude that BERT provides indications of TQ features that are useful for tag di昀昀eren-
tiation. It also seems to correctly recognize which tags constitute appropriate substitutes for
each other, although this needs further testing on a larger dataset. In future work, it could be
worth including the right-side context of the tags (not present in our data) to fully exploit the
power of BERT to use bidirectional context.
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A. Visualization of BERT Vectors
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(a) bert-base-german-cased

(b) bert-base-german-dbmdz-cased

(c) gbert-large

Figure 1: BERT vectors for the tag words ja, ne, nicht, and oder in the CallHome corpus. In all plots,
pc3 represents the z-axis.
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(a) bert-base-german-cased

(b) bert-base-german-dbmdz-cased

(c) gbert-large

Figure 2: BERT vectors for the tag words ja, ne, nicht, and oder in the OpenSubtitles corpus.
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(a) bert-base-german-cased

(b) bert-base-german-dbmdz-cased

(c) gbert-large

Figure 3: BERT vectors for the tag words ja, ne, nicht, and oder in the Twitter corpus.
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(a) CallHome, 𝑘=9

(b) OpenSubtitles, 𝑘=4

(c) Twitter, 𝑘=7
Figure 4: K-Means clusters for the bert-base-german-dbmdz-cased tag vectors. Cluster 0 represents the
centroid.
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