
Algorithms for the Manipulation and Transformation
of Text Variant Graphs
Tara L. Andrews

Institut für Geschichte, Universität Wien, Austria

Abstract
While text variant graphs are increasingly frequently used for the visualization of a text transmitted in
multiple versions, the graph is also a very appropriate model for the querying and transformation of
such a text in the course of producing a critical edition. This article describes the algorithms used in the
StemmaREST repository for variant text traditions.

Keywords
Variant graph, Digital critical edition, Textual scholarship

1. Introduction

The variant graph has, in various forms, seen a steady uptake in use within the textual criticism
community since its initial proposal by Schmidt and Colomb.[17] It presents a compact yet
expressive way to take in the variation across divergent copies of the same text, where (in
most implementations since the 昀椀rst) the readings, or text tokens, form the nodes of the graph
and the witness pathways are indicated along the edges. Such a data structure can, moreover,
easily be expressed in a TEI-conformant form when divergent witness pathways are encoded
using the double endpoint attachment method of critical apparatus expression.[18]

While variant graphs has o昀琀en been used simply as a means of representation and visu-
alization, there has been some interest in the last ten years in using the graph as a site of
user interaction with the text, both within the Stemmaweb project [6] and also as a feature of
the TRAViz library [14]. These interactions can include the manual correction of a machine-
produced collation, annotation of the text within that collation, or even the establishment of a
canonical text and recording of emendations that an editor would make.

When variant graphs are used to interact with and even edit a text tradition, however, it
is all too easy for logical mistakes to be introduced into the data structure. The problem of
so昀琀ware support to ensure the correctness and consistency of an encoded critical text has been
discussed by Burghardt in the TEI context [8]; a similar problem can easily arise in the context
of the variant graph. The most damaging sort of mistake is that which alters the ‘ground truth’:
that is, it causes the construction of versions of individual witness texts from the collation data

CHR 2023: Computational Humanities Research Conference, December 6 – 8, 2023, Paris, France
tara.andrews@univie.ac.at (T. L. Andrews)
https://ifg.univie.ac.at/en/about-us/staff/academic-staff/tara-l-andrews/ (T. L. Andrews)
0000-0001-6930-3470 (T. L. Andrews)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC-BY 4.0).
CEUR

Workshop
Proceedings

http://ceur-ws.org

ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

577

that are not the same as the versions that went into its making. We might refer to this as a
corrupted collation.

The purpose of this paper is to give a formal de昀椀nition of one variant graph model, describe
its logical and mathematical properties, and provide some well-de昀椀ned algorithms for how
this graph may be interacted with and modi昀椀ed, in order to provide the functionality that
scholarly editors would expect to have while avoiding the production of corrupted collations.
The model described in this paper is implemented in the StemmaREST repository,1 in use via
the Stemmaweb tools for a variety of critical edition projects since 2021; many of the concepts
and algorithms discussed have their roots in the Perl library Text::Tradition,2 which was
the predecessor to StemmaREST.

2. The StemmaREST graph model

Most models for variant graphs are broadly similar. A昀琀er their initial description by Schmidt
and Colomb, the most signi昀椀cant change in their conception and use came around 2010 with
the adoption of the variant graph in the CollateX tool: unlike in the prior model, where all
information was carried along the edges of the graph, the CollateX graph moved the reading
text to the vertices and le昀琀 only the witness labels on the edges.[10, 13] This change has been
retained by all later versions of the variant graph of which the author is aware. Both the
CollateX tool and the TRAViz tool also incorporate a visualization of text transposition; this is
done respectively by drawing a line between the transposed readings (CollateX) or highlighting
them simultaneously (TRAViz). The variant graph visualization in the Stemmaweb tool suite
[5, 1] generalizes the idea of relations between readings, of which transposition is but one
example. The model used today in Stemmaweb, now powered by StemmaREST, also includes
data structures for the representation of witness information and text stemma hypotheses.

Let us 昀椀rst brie昀氀y outline the StemmaREST data model.3 A Tradition may possess two
or more Witnesses, which record information about di昀昀erent manuscript versions of a given
text. The Tradition also possesses distinct Sections; these sections have a canonical order and,
taken together, comprise the text. Each Section contains a single text collation composed
of Readings, the sequences in which they occur, and information on how they are related
to each other. A reading is a piece of text that is found in one or more of the Witnesses. It
is frequently a single word, but can be a sequence of words or even a fragment of a word,
depending on the needs of the editor. A Reading object, then, is a transcription of its text
as well as the metadata that is needed to situate it (e.g. a normalized or canonical form, the
language it is in, whether it is the form that will be adopted in the edited text, and so on.) The
Reading objects occur in some sequence in each witness, and may be related to each other
insofar as they are variants of each other.

It is the structure and properties of the variant graph — that is, the subgraph whose vertices
are Reading nodes and whose edges are sequence edges, and how this interacts with reading
relations — that interests us here. In all versions of the variant graph to date, it is modelled as

1https://github.com/DHUniWien/tradition_repo
2https://github.com/tla/stemmatology
3An OWL-based version of this model was also recently presented at DH 2023; see [2].

578

a connected, rooted, directed acyclic graph (CRDAG). That is:

• Connected — the graph contains no disjoint subgroups.
• Rooted — there is exactly one vertex with an in-degree of zero; this is the origin, or root.
• Directed — all edges have an explicit direction. Paths through the graph must respect
this direction.

• Acyclic — there is no path in the graph in which a node is visited twice.

In the StemmaREST variant graph, we refer to the root as the start reading; this is a special
case of Reading. In addition to the CRDAG constraints, we add a constraint, which is that the
variant graph has a single terminal vertex for all possible paths. This is another special case of
Reading known as the end reading.

When we model variant text into a graph, we must also deal with the issue of witness lay-
ers. It quite frequently occurs in textual scholarship that a single witness can carry multiple
versions, or layers, of the text in places; this is most easily seen when the scribe has made a cor-
rection to his or her own text. Since these corrections can o昀琀en have some signi昀椀cance when it
comes to understanding the transmission history of the text, we must account for the fact that
a single witness might give rise to multiple paths through the graph. In order to conceptualize
this, we posit that every witness has a base layer which is a single complete version of the
text; the witness also has zero or more additional layers that represent alternative versions of
speci昀椀c subsets of that text. Formally, we may state the following:

1. Let 𝐶 be a variant graph consisting of Reading nodes as vertices and sequence edges
connecting them. Let 𝑆 and 𝐸, respectively, denote the initial vertex and terminal vertex
(start and end reading) of all paths in 𝐶 . As described above, 𝐶 is a connected, rooted,
directed acyclic graph.

2. Let 𝑊 be a manuscript witness; let 𝑅 be a single ordered set of readings 𝑅 ∈ 𝑉 (𝐶) which
represents the text carried in the base layer of 𝑊 . A single non-cyclical path 𝑃𝑊 = 𝑆...𝐸
must exist from the start reading 𝑆 to the end reading 𝐸 whose set of inner vertices𝑉𝑃 = 𝑅.

3. For every additional layer 𝐿 in 𝑊 , there exists one or more disjoint ordered sets of read-
ings 𝑅𝐿 ∈ 𝑉 (𝐶), 𝑅𝐿 ∉ 𝑅; moreover, a single non-cyclical path 𝑃𝐿 must exist between some
two 𝑟 ∈ 𝑅 whose inner set of vertices 𝑉𝑃𝐿 = 𝑅𝐿.

4. 𝐶 is the set of all paths 𝑃𝑊 and 𝑃𝐿 for a given set of witnesses.

This de昀椀nition has some overlap with the ‘multi-version document’ (MVD) of Schmidt and
Colomb, especially the construction of start and end readings and the constraint that a witness
text must comprise a single unbroken path from start to end. The MVD model, however, did
not speci昀椀cally describe ways to account for separate layers in individual witnesses. Of note for
the StemmaREST model is that witness layers are not necessarily regarded as full and separate
versions of the text. Consider, for example, a manuscript that has multiple scribal corrections
in the original hand; typically, where the pre-corrected state of the text can be deciphered, it
will be represented in a critical apparatus with the notation ‘a.c.’ (ante correctionem). It would
be possible (and has been done from time to time) to imagine a witness layer that runs from

579

the beginning to the end of the text, taking none of the corrections into account, and refer to
this as ‘the a.c. layer’. The epistemological problem here, however, is that there is no evidence
that the text ever existed in a fully uncorrected state; it is much more likely that at least some
of the corrections were made immediately during the composition or copying process. For this
reason, the StemmaREST variant graph model only stores non-base witness layers where they
are recorded to exist.

In StemmaREST’s Neo4J implementation, individual witness layer paths are represented us-
ing edge properties, where the property key denotes the name of a layer and the property value
is an array of sigla whose witness texts follow that edge. The name of the base layer is wit-
nesses; typical names for other layers might be ‘a.c.’ or ‘s.l.’ (supra lineam). The property key
witnessesmust be present and non-empty for every edge; property keys for other layers may
be present and must be non-empty.

In this model, the traversal is a simple matter of following the correctly labeled sequence
paths from the start node to the end node. We do this by providing a custom Evaluator algo-
rithm to a Neo4J traversal description, as given in Appendix A.1. The validity of a given variant
graph may be checked at any point by ensuring that every de昀椀ned layer of every witness, sub-
stituted by the witness’s base layer where the given layer is not present at all, produces a single
unbroken sequence of readings from start to end.

3. Relations between variant readings

One of the advantages of a graph model for text collation, as described in 2012, is the ability
to indicate relations between variant readings as a separate category of edge in the graph —
that is, to classify variants. This is a feature that is usually indispensable to scholarly editors,
who must work through the variants and make determinations about how an edited version of
the text should be constituted, or understand how the di昀昀erent versions of the text came to be.
Variant classi昀椀cation is an essential 昀椀rst step, for example, for the construction of a stemma
codicum in most accepted methods.[7, 20]

3.1. The related edge

The StemmaREST model allows for the following properties of a related edge between two
readings:

• type — indicates the classi昀椀cation being made (see below).
• scope — indicates whether the relation applies only to this variant location, or to all
variant locations for this text where the related readings occur. Possible values are local
and document.

• is_significant — indicates whether, according to the judgment of the editor, the vari-
ation is stemmatically signi昀椀cant. The three values ‘yes’, ‘maybe’, and ‘no’ are accepted.

• alters_meaning — boolean to indicate whether the variation alters the semantic inter-
pretation of the text.

580

• non_independent — boolean to indicates whether, according to the judgment of the ed-
itor, the variation was unlikely to occur in two unrelated manuscripts. This corresponds
to the concept of a Bindefehler.

• a_derivable_from_b, b_derivable_from_a — booleans to indicate whether, in the
judgment of the editor, one of the readings would have been correctable to the other
by a typical scribe. This corresponds to the concept of a Trennfehler.

3.2. The relation type model

Of particular interest here is the typology of relations. The set of relation types that apply to any
given text tradition is de昀椀ned by the user; each relation type is given a name and description
and is de昀椀ned according to a set of properties. With the properties given, it is possible to create
a limited hierarchy of relation types.

• is_colocation — a boolean to indicate whether this relation is de昀椀ned within a single
variant location. A transposition, for example, is not a colocation. One of the features
of the StemmaREST model is to ensure that, if a colocation relation is set between two
readings, those readings remain topologically at the same location in the text.

• is_transitive — a boolean to indicate whether this relation type is transitive.
• is_generalizable— a boolean to indicate whether this relation type may be applied at
document scope.

• bindlevel — an integer to indicate how closely related readings of this type are. Lower
values indicate closer relations. This value is used to deduce implication for transitive
relations.

3.3. Transitivity and implication

The logic of transitivity and implication in the graph is crucial to the robust representation of
text variation. To illustrate this, let us de昀椀ne two relation types spelling and grammatical; as
their names imply, readings that are linked through relations of these types are, respectively,
spelling variations and grammatical variations of each other. Both these relation types will
have true values for all three booleans (the relation implies colocation of the respective read-
ings; the relations are logically transitive; the relations may be applied to identical colocated
pairs of readings throughout the text). Since spelling variants are much more o昀琀en treated as
‘the same reading’ than grammatical variants are, we set a lower bindlevel value (e.g. 1) for
the spelling relation type than the value we would set (e.g. 2) for the grammatical relation
type.

An example of transitivity can be seen in Figure 1. Here, the editor has set relations of
type grammatical between the two reading pairs (‘croit’, ‘croient’) and (‘croit’, ‘crois’); since
all three readings are conjugations of the verbe ‘croire’, they all have the same relationship to
each other as variants and the third relation has been inferred by the model.

Transitivity alone, however, is not su昀케cient for correct automatic deduction of relations
between readings. Consider the situation in Figure 2; if the editor were to set a grammati-
cal relation between ‘suggestiones’ and ‘suggestionem’, and between ‘suggestiones’ and ‘sug-

581

Figure 1: Relation transitivity: conjugations of ‘croire’

(a) A set of grammatical variants. Two relations
are set by the editor...

(b) ...the third is inferred based on transitivity
rules.

Figure 2: Relation implication: variants of ‘suggestio’

(a) A mixed pair of variant relations. Two rela-
tions are set by the editor...

(b) ...the third is inferred based on transitivity and
implication rules.

gescionem’, the logic of transitivity would give us a grammatical relation between ‘sugges-
tionem’ and ‘suggescionem’, when an editor would rather see a spelling relation. Here the
concept of implication, represented by our bindlevel setting, comes into play: wherever a
transitive relation (e.g. grammatical) is set between two readings, and one of these readings
has a more closely-bound (e.g. spelling) relation to a third reading, a more loosely-bound
relation between the as-yet unconnected readings will be inferred. This holds true no matter
the order in which the di昀昀erently-typed relations are set; our experience, however, is that for
variant locations with very many variants, the best results are achieved by ‘working outwards‘
from the most closely bound readings to the least.

The system of transitivity and implication, simplistic though it is, handles the logical conse-
quences of di昀昀erent levels of normalization and serves thereby as both a practical help and a
sanity check for users of the StemmaREST model. A more comprehensive typology of variant
readings would be a useful future direction; one possibility would be to construct a graph hi-
erarchy of possible relation types, and use the hierarchy to determine implication rather than
the bindlevel value.4

4At least one proposal for a di昀昀erent typology, in the form of an ontology, has been made [11]; implementation of
this particular typology in StemmaREST would additionally require the direction of relation edges to be taken into
account, as they currently are not.

582

Figure 3: Normalization of a graph via projection

(a) The original graph; spelling relations are marked in green

(b) The projected graph of spelling normalization; cluster representatives are majority read-
ings

4. Relation-based normalization of a variant graph

Text normalization is a frequent desideratum of scholarly editors, who are usually faced with
the con昀氀icting desires to represent the text versions as faithfully as possible on the one hand,
and to avoid burdening their readers on the other hand with variation that would be consid-
ered trivial.[12, 16, 3] Normalization is also a core issue in stemmatics; the widely-adopted
best practices for construction of a stemma depend on distinguishing ‘signi昀椀cant error’ from
‘insigni昀椀cant’ changes that could be easily reversed by a later copyist.[15, 19, 9]

A StemmaREST variant graph can be normalized by means of its reading relations. A com-
mon task, for example, is to omit variations in spelling and punctuation. In order to produce a
collation normalized in this way, we 昀椀rst identify the clusters of multiple readings that should
be treated as a single reading — that is, the readings that are related to each other with either
the ‘spelling’ type or the ‘punctuation’ type. Readings that are part of no such relation then
become one-member clusters.

The next step is to create a graph projection in which each cluster is represented by one of
its members. The choice of representative may be made in any number of ways, e.g. a reading
selected at random, the reading present in a majority or plurality of witnesses, or the reading
that has been selected as a lemma (i.e. canonical) by the editor.

Each edge in the projection corresponds to an edge in the original graph, replacing the orig-
inal source and target vertices with their respective cluster representatives. Its properties are
calculated as a union of the properties of all edges in the original graph that it represents. An
example of normalization is given in Figure 3.

583

5. Self-consistency of the variant graph: reading rank and
reading location

It is not di昀케cult to 昀椀nd examples in printed critical editions of apparatus entries that are mis-
taken or confusing. Even when a tool such as Classical Text Editor is used, the intention of
the editor does not always translate correctly to the underlying data model, as is frequently
discovered when the editor attempts to export a TEI XML-encoded version of their edition [4].
The logical notion of variant location is not only key to the clear and error-free construction of
an apparatus, but is also a necessary precondition for any sort of computer-assisted stemmatic
analysis of the manuscript tradition.

5.1. Calculation of reading rank

It is clear that, if a normalized projection is made of a variant graph, that projection is subject to
the same rules provided in section 2: it must itself be a CRDAG whose base witness paths run
unbroken from the start reading to the end reading, and the sequence of readings produced for
any given witness path must correspond correctly to the editor’s view of how the text of the
respective manuscript reads. This restriction in turn informs what relations may be created
within the graph: a reading relation may only be set if one of the following two conditions
holds:

1. The relation type is de昀椀ned as a colocation, and a graph projection using this relation
together with all other colocated relations de昀椀ned in the graph would result in a valid
graph according to our de昀椀nition.

2. The relation type is NOT de昀椀ned as a colocation, and a graph projection using this rela-
tion together with all other colocated relations de昀椀ned in the graph would NOT result
in a valid graph according to our de昀椀nition.

We improve the e昀케ciency of our consistency check by de昀椀ning colocations in terms of read-
ing rank. One can speak of ranking the vertices of a DAG according to their sequence in the
paths de昀椀ned for that graph. A typical algorithm for this is𝐾𝑛 = 1 +max (𝐾𝑝) ,

where 𝐾𝑛 is the rank of vertex 𝑛 and 𝐾𝑝 is the rank of the source vertex of an incoming edge
to 𝑛.

In our variant graph, we understand reading rank to be synonymous with variant location.
That is, all readings with the same rank can be understood to be at the same location in the
text, and thus variants of each other. Colocation in the sense of reading relations, then, is
strictly equivalent to identical node rank of the related readings. For this we slightly modify
our formula for calculating rank:𝐾𝑛 = max (max (𝐾𝑐) , 1 +max (𝐾𝑝))

where 𝐾𝑐 is the rank of a vertex connected by a colocation relation to 𝑛. An implementation
of our ranking algorithm is given in Appendix A.2.

584

5.2. Use of reading rank as a constraint

Once the reading rank is calculated for all readings in a variant graph, it may be used to set
constraints on other graph operations. Perhaps themost crucial of these, from the point of view
of avoiding a corrupted collation, is as a constraint for setting relations between readings. For
any proposed reading relation between readings 𝑎 and 𝑏, we 昀椀rst check whether the relation is
a colocation and 𝐾𝑎 = 𝐾𝑏 ; if so, the relation may be allowed without further calculation. If this
condition does not hold, then a full projection (that is, a projection that takes into account all
colocated relations) must be made for all readings where 𝐾𝑎 ≤ 𝐾𝑟 ≤ 𝐾𝑏 and the graph must be
searched for the existence of a path between the representative vertices of 𝑎 and 𝑏.

The other primary use of reading rank as a constraint arises when the editor is ready to
establish the text. One of the primary purposes of almost any critical edition of a text is to
present a single version that the editor considers the best representative of the text. This ver-
sion is o昀琀en known as the lemma text. In terms of the variant graph, then, the lemma text is
modelled as a single path which obeys the same rules as a witness base path: that is, it runs
without interruption through some set of readings from start to end. An additional constraint
for the lemma text path is that its creation may not alter the rank of any of its readings. When
the editor comes to set a lemma text through StemmaREST, this constraint will be enforced to
ensure that there is never more than one lemma reading at any given rank in the variant graph,
and that the lemma text respects the order of the existing ranks. In this way the consistency
of the eventual edition and its critical apparatus is ensured.

6. Conclusion

The idea of a variant graph is now around 昀椀昀琀een years old. Its properties and its use has been
described more or less formally by those who have adopted it, but the implications have o昀琀en
been le昀琀 to the reader’s intuition. Over the course of developing the StemmaREST repository,
we have encountered many more consequences, pitfalls, implications, and inadvertent produc-
tion of corrupted collations than we have yet seen described in any of the existing literature;
all of these situations have led to a much more thorough and explicit de昀椀nition of what a vari-
ant graph is. We present that de昀椀nition here with the hope that it will be of service to digital
textual scholarship.

Acknowledgments

The StemmaREST code was begun in the spring semester of 2015 by a team of students in the
class ‘So昀琀ware Engineering’ under the supervision of Prof. Thomas Studer of the University
of Bern; its further development was made possible in the framework of the SNSF-funded
project ‘The Chronicle of Matthew of Edessa Online’ (#159433) and through support from the
University of Vienna. Further contributors to the source code have included Julia Damerow,
Sascha Kaufmann, and Tamim Ziai.

585

References

[1] T. L. Andrews. “Analysis of variation signi昀椀cance in arti昀椀cial traditions using Stem-
maweb”. In: Digital Scholarship in the Humanities 31.3 (2016), pp. 523–539. doi: 10 .10
93/llc/fqu072.

[2] T. L. Andrews. “Graph schema validation at last? Revisiting the Stemmarest data model
with Neo4J and SHACL”. In: ADHO Digital Humanities Conference 2023 (DH2023). Graz,
2023, pp. 318–319. doi: 10.5281/zenodo.8107471.

[3] T. L. Andrews. “Transcription and Collation”. In: Stemmatology in the Digital Age: An
Introduction. Ed. by P. Roelli and M. Buzzoni. Berlin: De Gruyter, 2020, pp. 160–175. doi:
10.1515/9783110684384-004.

[4] T. L. Andrews. “Where are the tools? The Landscape of Semi-Automated Text Edition”.
In: Digitale Edition in Österreich. Ed. by R. Bleier and H. W. Klug. Schri昀琀en des Instituts
für Dokumentologie und Editorik 16. Norderstedt: Books on Demand, 2023, pp. 3–17.
url: https://kups.ub.uni-koeln.de/70445/.

[5] T. L. Andrews and C. Macé. “Beyond the tree of texts: Building an empirical model of
scribal variation through graph analysis of texts and stemmata”. In: Literary and Linguis-
tic Computing 28.4 (2013), pp. 504–521. doi: 10.1093/llc/fqt032.

[6] T. L. Andrews and J. J. Van Zundert. “An Interactive Interface for Text Variant Graph
Models”. In: Digital Humanities 2013: Conference Abstracts. Lincoln, NE, 2013, pp. 89–91.
url: http://dh2013.unl.edu/abstracts/ab-379.html.

[7] P. Baret, C. Macé, and P. Robinson. “Testing Methods on an Arti昀椀cially Created Textual
Tradition”. In: The Evolution of Texts: Confronting Stemmatological and Genetical Methods.
Ed. by C. Macé, P. Baret, A. Bozzi, and L. Cignoni. Linguistica computazionale Xxiv–xxv.
Pisa; Rome: Istituti Editoriali e Poligra昀椀ci Internazionali, 2006, pp. 255–283.

[8] M. Burghart. “The TEI Critical Apparatus Toolbox: Empowering Textual Scholars
through Display, Control, and Comparison Features”. In: Journal of the Text Encoding
Initiative Issue 10 (2016). doi: 10.4000/jtei.1520.

[9] P. Chiesa. “Principles and practice”. In: Handbook of Stemmatology: History, Methodology,
Digital Approaches. Ed. by P. Roelli and O. E. Haugen. De Gruyter, 2020, pp. 74–87. doi:
10.1515/9783110684384-003.

[10] R. H. Dekker and G. Middell. “Computer-supported collation with CollateX: Managing
Textual Variance in an Environment with Varying Requirements”. In: Supporting Digital
Humanities. Copenhagen, 2011, pp. 1–7. url: https://pure.knaw.nl/ws/portalfiles/porta
l/799786159/Computer%5C%5Fsupported%5C%5Fcollation%5C%5Fwith%5C%5FCollate
X%5C%5Fhaentjens%5C%5Fdekker%5C%5Fmiddell.pdf.

[11] F. Giovannetti. “The Critical Apparatus Ontology (CAO): Modelling the TEI Critical Ap-
paratus as a Knowledge Graph”. In: Graph Data Models and Semantic Web Technologies
in Scholarly Digital Editing. Ed. by E. Spadini, F. Tomasi, and G. Vogeler. Schri昀琀en des
Instituts für Dokumentologie und Editorik 15. Norderstedt: BoD, 2021, pp. 125–139. url:
https://kups.ub.uni-koeln.de/55230/.

586

[12] D. C. Greetham. Textual Scholarship: an Introduction. New York: Garland Publishing,
1992.

[13] R. Haentjens Dekker, D. Van Hulle, G. Middell, V. Neyt, and J. van Zundert. “Computer-
supported collation of modernmanuscripts: CollateX and the Beckett Digital Manuscript
Project”. In: Literary and Linguistic Computing 30.3 (2015), pp. 452–470. doi: 10.1093/llc
/fqu007.

[14] S. Jänicke, A. Geßner, G. Franzini, M. Terras, S. Mahony, and G. Scheuermann. “TRAViz:
A Visualization for Variant Graphs”. In: Digital Scholarship in the Humanities 30.suppl_1
(2015), pp. i83–i99. doi: 10.1093/llc/fqv049.

[15] P. Maas. Textkritik. 2nd edition. Leipzig: Teubner, 1950.

[16] L. D. Reynolds and N. G. Wilson. Scribes and Scholars: A Guide to the Transmission of
Greek and Latin Literature. Oxford: Clarendon Press, 1991.

[17] D. Schmidt and R. Colomb. “A data structure for representing multi-version texts online”.
In: International Journal of Human-Computer Studies 67 (2009), pp. 497–514.

[18] TEI Consortium. “12.2.2. The Double End-Point Attachment Method”. In: Guidelines for
Electronic Text Encoding and Interchange. Version 4.6.0. 2023, pp. 453–455. url: http://w
ww.tei-c.org/p5/.

[19] S. Timpanaro. The genesis of Lachmann’s method. Trans. by G. W. Most. Chicago and
London: University of Chicago Press, 2005.

[20] P. Trovato. Everything You Always Wanted to Know about Lachmann’s Method. Trans. by
F. Poole. Padova: libreriauniversitaria.it Edizioni, 2014.

A. Java implementations for selected algorithms

A.1. Traversal for a selected witness path

Let sigil be a string whose value is the sigil for a Witness node; let layer be a string whose
value is a named witness layer; let db be the GraphDatabaseService object for querying the
database.

public class WitnessPath {
/* ... */

public Evaluator getEvalForWitness () {
return path -> {

if (path.length() == 0) {
return Evaluation.EXCLUDE_AND_CONTINUE;

}
// Find all relevant alternative paths out from last node;
// there should be zero or one.
Relationship correct = null;

587

for (String layer : alternative) {
Node priorNode = path.lastRelationship().getStartNode();
for (Relationship r :

priorNode.getRelationships(Direction.OUTGOING, seqType))↪
if (r.hasProperty(layer) &&

witnessIn(r.getProperty(layer)))↪
if (correct != null)

// There is more than one relevant path; cut the
tree off.↪

return Evaluation.EXCLUDE_AND_PRUNE;
else

correct = r;
}
// There is one relevant path; return depending on whether
// that path is us.
if (correct != null)

return correct.equals(path.lastRelationship())
? Evaluation.INCLUDE_AND_CONTINUE :

Evaluation.EXCLUDE_AND_PRUNE;↪
// Follow the main path in the absence of an alternative
if (path.lastRelationship().hasProperty("witnesses")

&&
witnessIn(path.lastRelationship().getProperty("witnesses")))↪

return Evaluation.INCLUDE_AND_CONTINUE;

return Evaluation.EXCLUDE_AND_PRUNE;
};

}
private Boolean witnessIn (Object property) {

String[] arr = (String []) property;
for (String str : arr) {

if (str.equals(sigil)) {
return true;

}
}
return false;

}
}

/* ... */
Evaluator e = new WitnessPath(sigil, layer).getEvalForWitness();
db.traversalDescription().depthFirst()

.relationships(ERelations.SEQUENCE, Direction.OUTGOING)

588

.evaluator(e)

.uniqueness(Uniqueness.RELATIONSHIP_PATH)

.traverse(startNode)

.nodes();

A.2. Ranking algorithm for readings in a collation

private static class RankEvaluate implements Evaluator {

private final Long rank;

RankEvaluate(Long stoprank) {
rank = stoprank;

}

@Override
public Evaluation evaluate(Path path) {

if (path.endNode().equals(path.startNode()))
return Evaluation.INCLUDE_AND_CONTINUE;

Node testNode = path.lastRelationship().getStartNode();
if (testNode.hasProperty("rank")

&& (Long) testNode.getProperty("rank") >= rank) {
return Evaluation.INCLUDE_AND_PRUNE;

} else {
return Evaluation.INCLUDE_AND_CONTINUE;

}
}

}

public static class AlignmentTraverse implements PathExpander {

private final HashSet<String> includeRelationTypes = new HashSet<>();

// Walk the graph of sequences and colocated relations
public AlignmentTraverse(Node referenceNode) throws Exception {

// Get the colocated types for this node's tradition
List<RelationTypeModel> rtms =

RelationService.ourRelationTypes(referenceNode);↪
for (RelationTypeModel rtm : rtms)

if (rtm.getIs_colocation())
includeRelationTypes.add(rtm.getName());

}

@Override

589

public Iterable<Relationship> expand(Path path, BranchState state) {
return expansion(path, Direction.OUTGOING);

}

private Iterable<Relationship> expansion(Path path, Direction dir) {
ArrayList<Relationship> relevantRelations = new ArrayList<>();
// Get the sequence relationships
for (Relationship relationship : path.endNode()

.getRelationships(dir, ERelations.SEQUENCE,
ERelations.LEMMA_TEXT, ERelations.EMENDED))↪

relevantRelations.add(relationship);
// Get the alignment relationships and filter them
for (Relationship r : path.endNode().getRelationships(Direction.BOTH,

ERelations.RELATED)) {↪
if

(includeRelationTypes.contains(r.getProperty("type").toString()))↪
relevantRelations.add(r);

}
return relevantRelations;

}
}

public static Set<Node> recalculateRank (Node startNode, boolean
recalculateAll) throws Exception {↪
RankCalcEvaluate e = new RankCalcEvaluate(startNode, recalculateAll);
AlignmentTraverse a = new AlignmentTraverse(startNode);
GraphDatabaseService db = startNode.getGraphDatabase();

ResourceIterable<Node> touched = db.traversalDescription().depthFirst()
.expand(a)
.evaluator(e)
.uniqueness(Uniqueness.RELATIONSHIP_GLOBAL)
.traverse(startNode).nodes();

// Run the traverser and commit the updated ranks
Set<Node> changed = new HashSet<>();
for (Node n : touched.stream().collect(Collectors.toSet())) {

if (!n.hasProperty("newrank"))
throw new Exception (String.format("Node %d (%s) traversed but

not re-ranked!",↪
n.getId(), n.getProperty("text")));

Long nr = (Long) n.removeProperty("newrank");
if (!n.hasProperty("rank") || !n.getProperty("rank").equals(nr)) {

changed.add(n);

590

n.setProperty("rank", nr);
}

}
return changed;

}

591

