
Mitigating Data Sparsity via Neuro-Symbolic Knowledge
Transfer
Tommaso Carraro1,2,∗, Alessandro Daniele2, Fabio Aiolli1 and Luciano Serafini2

1Department of Mathematics, University of Padova, Via Trieste, 63, 35131 Padova, Italy
2Data and Knowledge Management, Fondazione Bruno Kessler, Via Sommarive, 18, 38123 Povo, Italy

Abstract
Data sparsity is a well-known historical limitation of recommender systems that still impacts the performance of state-of-the-
art approaches. One practical technique to mitigate this issue involves transferring information from other domains or tasks to
compensate for scarcity in the target domain, where the recommendations must be performed. Following this idea, we propose
a novel approach based on Neuro-Symbolic computing designed for the knowledge transfer task in recommender systems. In
particular, we use a Logic Tensor Network (LTN) to train a vanilla Matrix Factorization (MF) model for rating prediction. We
show how the LTN can be used to regularize the MF model using axiomatic knowledge that permits injecting pre-trained
information learned by Collaborative Filtering on a different task or domain. Extensive experiments comparing our model
with a baseline MF on two versions of a novel real-world dataset prove our proposal’s potential in the knowledge transfer
task. In particular, our model consistently outperforms the MF, suggesting that the knowledge is effectively transferred to
the target domain via logical reasoning. Moreover, an experiment that drastically decreases the density of user-item ratings
shows that the benefits of the acquired knowledge increase with the sparsity of the dataset, showing the importance of
exploiting knowledge from a denser source of information when training data is scarce in the target domain.

Keywords
knowledge transfer, matrix factorization, neuro-symbolic integration, logic tensor networks, rating prediction, explicit
feedback, data sparsity

1. Introduction
Recommender systems (RSs) have recently become essen-
tial for e-services (e.g., Amazon, Netflix, Spotify). Given
the user’s historical data, these tools mitigate informa-
tion overload by suggesting novel items (e.g., products,
movies, songs) that match the user’s preferences [1].
Since the beginning of the RSs literature, Collaborative
Filtering (CF) [2, 3, 4, 5] has been one of the most success-
ful recommendation approaches. Latent Factor models,
in particular Matrix Factorization (MF), have dominated
the CF scene [6, 7, 8] for years, and this has been further
emphasized with the deep learning rise [9, 10, 11, 12].

Despite their success in improving recommendation
performance, state-of-the-art models still suffer from a
historical issue, i.e., data sparsity, that limits their ap-
plicability in real-world scenarios. One way to address
data sparsity consists of leveraging models pre-trained
on other sources of information (i.e., source domains)
to make the final model more accurate in the target do-
main, where the recommendations must be performed.

Fifth Knowledge-aware and Conversational Recommender Systems
(KaRS) Workshop @ RecSys 2023, September 18–22 2023, Singapore.
∗Corresponding author.
Envelope-Open tcarraro@fbk.eu (T. Carraro); daniele@fbk.eu (A. Daniele);
aiolli@math.unipd.it (F. Aiolli); serafini@fbk.eu (L. Serafini)
Orcid 0000-0002-3043-1456 (T. Carraro); 0000-0001-9441-0729
(A. Daniele); 0000-0002-5823-7540 (F. Aiolli); 0000-0003-4812-1031
(L. Serafini)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

This technique is called knowledge transfer [13] and be-
longs to the research field of transfer learning [14]. In
the context of recommender systems, knowledge trans-
fer techniques [15, 16, 17, 18] can be subdivided into two
categories: feature-based models and fine-tuning mod-
els. In feature-based models, pre-trained models are used
to learn features from side information for users and/or
items. Then, these features are integrated into the recom-
mendation framework. By merging side information and
user-item interaction data (i.e., Collaborative Filtering),
feature-based models can potentially alleviate data spar-
sity in recommendation datasets. Instead, fine-tuning
models firstly train a deep transferable neural model on
user-item interactions taken from a source domain. Then,
this pre-trained model is fine-tuned on the downstream
recommendation task, namely the target domain. The
first category inspires the approach we propose in this
paper. In particular, instead of learning features for users
and items in the source domain, we learn to predict rat-
ings via Collaborative Filtering. Then, this knowledge is
transferred to the target domain via logical reasoning.

Despite Neuro-Symbolic (NeSy) [19] approaches hav-
ing been successfully applied in many AI fields [20, 21,
22], including RSs [23, 24, 25, 26], they have not yet been
investigated in the task of knowledge transfer for rec-
ommender systems, where we believe their application
is particularly suited. In particular, NeSy aims at inte-
grating knowledge, usually expressed using logical ax-
ioms, with neural networks. The integration has shown

mailto:tcarraro@fbk.eu
mailto:daniele@fbk.eu
mailto:aiolli@math.unipd.it
mailto:serafini@fbk.eu
https://orcid.org/0000-0002-3043-1456
https://orcid.org/0000-0001-9441-0729
https://orcid.org/0000-0002-5823-7540
https://orcid.org/0000-0003-4812-1031
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

to be particularly beneficial in tasks with poor training
data [27], giving insights that this paradigm can help deal
with data sparsity in recommendation datasets.

Following this intuition, we propose using a Logic Ten-
sor Network (LTN) [28] to encode axiomatic knowledge
to enable effective knowledge transfer and injection for
a vanilla MF model1 trained on movie ratings. LTN is a
NeSy framework that effectively integrates logical rea-
soning and neural networks. Our approach uses it as the
interface between the model pre-trained on the source
domain and the final model trained on the target domain.
We called it an interface as it allows the explicit transfer
of information between domains via logical reasoning.
To perform our experiments, we use MindReader [30],
a novel recommendation dataset containing explicit rat-
ings from real users on movies and non-recommendable
entities, such as movie genres, actors, and producers. In
particular, we use ratings on movie genres to learn our
pre-trained model via Collaborative Filtering and ratings
on movies to train the final model to provide accurate
recommendations in the target domain. The pipeline of
the proposed approach consists of two steps. In the first
step, we train a genre classifier using an MF model to
learn which genres the users like and dislike in the source
domain. In the second step, we use LTN to transfer the
pre-trained knowledge to an MF model trained on the
target domain for the movie rating prediction task.

We compare our approach with a baseline MFmodel to
understand if knowledge transfer is successfully2 reached
thanks to Neuro-Symbolic integration. The results show
that our model consistently outperforms the MF, prov-
ing its ability to transfer knowledge across domains. In
addition, an experiment that drastically reduces the den-
sity of user-item ratings shows that the benefits of the
knowledge increase with the sparsity of the dataset. This
gives insight that our model can successfully deal with
data sparsity thanks to Neuro-Symbolic reasoning. To
the best of our knowledge, this is the first time a NeSy
approach has been successfully applied to the knowledge
transfer task for recommender systems.

2. Related works
In the last two years, the RS community has seen the
emergence of some Neuro-Symbolic approaches [25, 24,

1Note we selected Matrix Factorization for our experiments because,
despite its simplicity, it is still one of the most powerful state-of-
the-art approaches [29]. This is not to be intended as a limit of
our approach, as any other state-of-the-art model could be used in
principle.

2Note the objective of the experiment is not to obtain state-of-the-art
performance. Instead, our goal is to show that a NeSy approach
can be used for knowledge transfer in recommender systems. To
this end, the only difference between the models in the comparison
is the addition of knowledge via LTN.

31, 32, 33]. Among them, some directly use logical for-
mulas to learn a recommendation model [23, 26, 31]. The
seminal approach that applied NeSy to RSs has been
Neural Collaborative Reasoning (NCR) [26]. In NCR, the
sequential recommendation task is formalized as a logical
reasoning problem. In particular, the user’s ratings are
represented using propositional variables, and logical op-
erators (e.g., ∧, ⟹) are used to construct propositional
formulas that express sequential patterns between them.
Then, NCR maps the variables to logical embeddings and
the operators to neural networks (NNs) that act on those
embeddings. The NNs are forced to behave as classical
logic operators through logical regularization. By doing
so, the formulas can be organized as a neural network to
conduct logical reasoning and prediction in a continuous
space. They compared NCR with many linear and deep
baselines, showing it can reach state-of-the-art perfor-
mance. However, this approach is not properly NeSy as
neural networks implement the symbolic part (i.e., logi-
cal connectives). LTN uses fuzzy logic semantics instead,
making the framework theoretically sound. Moreover,
NCR uses propositional logic, which makes it impossible
to encode complex and expressive knowledge due to the
simplicity of the language syntax.

In Graph Collaborative Reasoning (GCR) [31], NCR
is extended to work with knowledge graphs. In partic-
ular, they provide a simple approach for translating the
graph structure into logical expressions to convert the
link prediction task into a logical reasoning problem. As
in NCR, they use logically constrained neural modules
to build the network architecture according to the logi-
cal expression. They conducted experiments similar to
NCR, showing that GCR can improve NCR on knowledge
graphs.

In Counterfactual Collaborative Reasoning (CCR) [32],
NCR is used to perform data augmentation based on log-
ical reasoning for sequential recommendation. Specifi-
cally, counterfactual logic reasoning is exploited to gener-
ate counterfactual examples for data augmentation. The
examples are generated by discovering slight changes in
users’ explicit feedback (i.e., the sequence of purchases)
by solving a counterfactual optimization problem. They
showed that these new examples, together with the orig-
inal examples, can alleviate scarcity and enhance the
performance of sequential recommendations.

Another approach that successfully integrated logical
reasoning and learning has been HYbrid Probabilistic
Extensible Recommender (HyPER) [25], which is based
on Probabilistic Soft Logic [34]. In particular, HyPER
exploits the expressiveness of First-Order Logic (FOL)
to encode knowledge from a wide range of information
sources, such as multiple user and item similarity mea-
sures, content, and social information. Then, Hinge-Loss
Markov Random Fields are used to learn how to balance
the different information types. HyPER is highly related

to our work with LTN since the logical formulas we use
resemble the ones used in HyPER.

In [24], they propose a NeSy approach to encode FOL
formulas to enhance knowledge graph embeddings [35]
and provide accurate knowledge-aware recommenda-
tions. Their approach consists of three steps: (𝑖) the
FOL formulas are automatically extracted from a recom-
mendation knowledge graph, then (𝑖𝑖) the knowledge
graph embeddings are learned jointly with the extracted
formulas using a NeSy approach. Finally, (𝑖𝑖𝑖) the user-
item embeddings are fed to a neural architecture to get
predictions. Specifically, in the second step, they used
KALE [36], a NeSy approach that allows learning knowl-
edge graph embeddings jointly with FOL formulas. In
particular, the learning can be unified as the graph triples
can be interpreted as FOL atoms. As KALE uses fuzzy se-
mantics to learn graph embeddings, this approach can be
considered more theoretically sound compared to previ-
ous deep approaches, as the symbolic component remains
symbolic during learning, as it happens with LTN and
HyPER.

One [23] of the last published approaches is highly
related to ours. Specifically, they try to mitigate data
sparsity by using LTN to inject content information into
an MF model. In particular, they encode FOL formulas
to use side information as a regularizer for the latent
factors of the MF model. They show that the proposed
NeSy approach can outperform the MF. However, the
improvement is poor, and the model has some scalabil-
ity issues due to the number of times the formulas have
to be evaluated during training. Our approach differs
from [23] on how axiomatic knowledge is used. In [23],
the knowledge extends the MFmodel using content infor-
mation, while our model uses it to enable the transfer of
pre-trained knowledge learned via Collaborative Filter-
ing on another task (i.e., movie genre rating prediction).
Moreover, our model provides a logical formalization for
the rating prediction task3, while [23] proposes a ranking-
based method. Finally, note all the presented models use
some form of knowledge (e.g., knowledge graphs, logic)
to improve the recommendation performance. However,
none of them have designed experiments to understand
if the advantages of a NeSy system can help mitigate one
or some of the historical issues of recommender systems
(e.g., data sparsity, cold-start, explainability). Hence, it
is unclear if the properties (e.g., few-shot learning, inter-
pretability) of a NeSy approach are totally exploited.

3. Background
This section provides useful notation and terminology
used in the remainder of the paper.

3Note our approach can be easily extended to the top-n recommen-
dation task by changing the formalization of the knowledge base.

3.1. Notation
Bold notation differentiates vectors, e.g., x = [3.2, 2.1],
and scalars, e.g., 𝑥 = 5. Matrices and tensors are denoted
with upper case bold notation, e.g.,X. X𝑖 is used to denote
the 𝑖-th row of X, while X𝑖,𝑗 to denote the item at row 𝑖
and column 𝑗. We refer to the set of users of an RS with
𝒰, where |𝒰| = 𝑛. Similarly, the set of items is denoted
asℐ, such that |ℐ | = 𝑚. We use𝒟 to denote a dataset. 𝒟
is defined as a set of 𝑁 triples 𝒟 = {(𝑢, 𝑖, 𝑟)(𝑗)}𝑁𝑗=1, where
𝑢 ∈ 𝒰, 𝑖 ∈ ℐ, and 𝑟 ∈ {0, 1} is a binary explicit rating.
𝒟 can be reorganized in the so-called user-item matrix
R ∈ ℕ𝑛×𝑚, such that R𝑢,𝑖 = 𝑟 if (𝑢, 𝑖, 𝑟) ∈ 𝒟, 0 otherwise.
Then, since we work with binary feedback, we refer to
𝒟+ (resp. 𝒟−) as the dataset of positive (resp. negative)
user-item pairs. 𝒟+ is defined as a set of 𝑁+ couples
𝒟+ = {(𝑢, 𝑖)(𝑗)|(𝑢, 𝑖, 𝑟)(𝑗) ∈ 𝒟, 𝑟 (𝑗) = 1}𝑁𝑗=1. Similarly, 𝒟−
is defined as a set of𝑁− couples𝒟− = {(𝑢, 𝑖)(𝑗)|(𝑢, 𝑖, 𝑟)(𝑗) ∈
𝒟, 𝑟 (𝑗) = 0}𝑁𝑗=1. Finally, 𝒟? denotes the dataset of user-
item pairs for which the rating is unknown, i.e., 𝒟? =
{(𝑢, 𝑖) ∈ 𝒰 × ℐ |(𝑢, 𝑖, 𝑟) ∉ 𝒟}. Clearly, 𝑁? = 𝑛 ⋅ 𝑚 − 𝑁.

3.2. Matrix Factorization
Matrix Factorization (MF) is a Latent Factor Model that
aims at factorizing the user-item matrix R into the prod-
uct of two lower-dimensional rectangular matrices, U ∈
ℝ𝑛×𝑘 and I ∈ ℝ𝑚×𝑘, containing the users’ and items’ latent
factors, respectively. 𝑘 represents the number of latent
factors. More formally, the objective of MF is to find U
and I such that R ≈ U ⋅ I⊤. An effective way to learn the
latent factors is by using gradient-descent optimization.
Given the dataset 𝒟, an MF model seeks to minimize
the Mean Squared Error (MSE) between predicted and
target ratings, defined as 1

𝑁 ∑(𝑢,𝑖,𝑟)∈𝒟 || ̃𝑟 − 𝑟 ||2 + 𝜆||𝜃||2. In
the formulation, ̃𝑟 = U𝑢 ⋅ I⊤𝑖 + u𝑢 + i𝑖, where u𝑢 and i𝑖
are bias terms for user 𝑢 and item 𝑖, respectively, and
𝜃 = {U, I,u, i}. 𝜆 is a hyper-parameter to set the strength
of the 𝐿2 regularization.

In our setting, we use a different implementation of MF
since we treat the recommendation problem as a binary
classification task. Specifically, we need to recommend if
a user likes (1) or dislikes (0) an item. Hence, the focal
loss is used in place of MSE for the training, and the
logistic function is applied to the prediction of MF to
restrict the output between 0 and 1. Focal loss is defined
as

1
𝑁

∑
(𝑢,𝑖,𝑟)∈𝒟

−𝛼𝑡(1 − 𝑝𝑡)𝛾 log 𝑝𝑡 + 𝜆||𝜃||2

𝛼𝑡 = {
𝛼 if 𝑟 = 1
1 − 𝛼 if 𝑟 = 0

𝑝𝑡 = {
𝑝 if 𝑟 = 1
1 − 𝑝 if 𝑟 = 0

(1)

where 𝛼 is a hyper-parameter to give different weights
to the two classes, 𝛾 is a hyper-parameter that represents
the penalty assigned to the examples that are hard to
classify, and 𝑝 = 𝜎(U𝑢 ⋅ I⊤𝑖 + u𝑢 + i𝑖), where 𝜎 is the
logistic function.

3.3. Logic Tensor Networks
Logic Tensor Networks (LTN) [28] is a Neuro-Symbolic
framework that allows using a knowledge base composed
of a set of FOL axioms as the objective of a neural model.
LTN uses a specific first-order language, called Real Logic,
that is fully differentiable and has concrete semantics that
allows mapping every symbolic expression into the do-
main of real numbers. We refer to the term grounding4,
formally denoted by 𝒢, as the function that defines this
mapping. Real Logic allows LTN to ground logical formu-
las into computational graphs, enabling gradient-based
optimization.

In particular, 𝒢maps individuals (e.g., users) to tensors
of real features (e.g., users’ demographic information),
functions (e.g., Score(𝑢𝑠𝑒𝑟 , 𝑖𝑡𝑒𝑚)) as real functions (e.g.,
inner product), and predicates (e.g., Likes(𝑢𝑠𝑒𝑟 , 𝑖𝑡𝑒𝑚)) as
real functions with output in [0, 1]. Then, a variable
𝑥 is mapped to a sequence of 𝑛𝑥 individuals (e.g., some
items of the dataset), with 𝑛𝑥 ∈ ℕ+, 𝑛𝑥 > 0. As a conse-
quence, a term 𝑡(𝑥) or a formula P(𝑥), will be mapped
to a sequence of 𝑛𝑥 values too. Afterward, connectives
are grounded using fuzzy semantics (i.e., operators deal-
ing with fuzzy values), while quantifiers are grounded as
special aggregation functions (e.g., generalized means).
This paper uses the product configuration, best suited
for gradient-based optimization [37]. In the notation,
𝑣 , 𝑧, 𝑣1, … , 𝑣𝑛 ∈ [0, 1] and 𝑝 ≥ 1.

𝒢(∧) = T𝑝𝑟𝑜𝑑(𝑣 , 𝑧) = 𝑣 ∗ 𝑧

𝒢 (⟹) = I𝑅(𝑣 , 𝑧) = 1 − 𝑣 + 𝑣 ∗ 𝑧
𝒢 (¬) = N𝑆(𝑣) = 1 − 𝑣

𝒢 (∀) = ME𝑝(𝑣1, … , 𝑣𝑛) = 1 − (1
𝑛

𝑛
∑
𝑖=1

(1 − 𝑣𝑖)𝑝)
1
𝑝

𝒢(∃) = M𝑝(𝑣1, … , 𝑣𝑛) = (1
𝑛

𝑛
∑
𝑖=1

𝑣𝑝𝑖)
1
𝑝)

The intuition behind the choice of hyper-parameter 𝑝
is that the higher that 𝑝 is, the more weight that M𝑝
(resp. ME𝑝) will give to true (resp. false) truth-values,
converging to the max (resp. min) operator. Real Logic
also provides a special type of quantification, called diag-
onal quantification, denoted as Diag(𝑥1, … , 𝑥𝑛). It allows

4Notice that this is different from the common use of the term ground-
ing in logic, which indicates the process of replacing the variables of
a term or formula with constants or terms containing no variables.

quantifying over specific tuples of individuals of vari-
ables 𝑥1, … , 𝑥𝑛, such that the 𝑖-th tuple contains the 𝑖-th
individual of each variable.

Given a Real Logic knowledge base 𝒦 = {𝜙1, … , 𝜙𝑛},
where 𝜙1, … , 𝜙𝑛 are closed formulas, LTN allows learning
the grounding of constants, functions, and predicates ap-
pearing in them. In particular, if constants are grounded
as embeddings and functions/predicates onto neural net-
works, their grounding 𝒢 depends on some learnable pa-
rameters 𝜃. We denote a parametric grounding as 𝒢(⋅|𝜃).
In LTN, the learning of parametric groundings is obtained
by finding parameters 𝜃∗ that maximize the satisfaction
of 𝒦, namely 𝜃∗ = argmax𝜃 SatAgg𝜙∈𝒦 𝒢(𝜙|𝜃), where
SatAgg ∶ [0, 1]∗ ↦ [0, 1] is a formula aggregating opera-
tor, generally defined using ME𝑝.

3.4. Neuro-Symbolic knowledge transfer
Our model is inspired by feature-based knowledge trans-
fer models [13]. In these approaches, a pre-trained model
is learned on some additional source of information, usu-
ally side information. Then, the acquired knowledge
is transferred to the target domain during the training
of the final model to help deal with the data sparsity
of user-item interactions. More formally, given the ex-
ternal source of information (e.g., content information,
additional ratings), a pre-trained model 𝑓𝑠𝑜𝑢𝑟𝑐𝑒(𝑢, 𝑔|𝜃1) is
learned to generate features5 for users and items in the
source domain. In the notation, 𝑢 is a user index, 𝑔 is an
item index, and 𝜃1 are the parameters of the pre-trained
model. Instead of generating features, our approach
learns 𝑓𝑠𝑜𝑢𝑟𝑐𝑒 to predict user-genre preferences in the
source domain via Matrix Factorization; hence, the out-
put of this model is a score for the given user-genre pair
in the source domain. Then, we assume 𝑓𝑡𝑎𝑟𝑔𝑒𝑡(𝑢, 𝑖|𝜃2) is
a model that learns to predict user-movie preferences in
the target domain. In the notation, 𝑢 is a user index, 𝑖
is an item index, and 𝜃2 are the parameters of the final
recommendation model. Specifically, 𝑓𝑡𝑎𝑟𝑔𝑒𝑡 outputs a
score for the given user-movie pair in the target domain.
In our approach, 𝑓𝑡𝑎𝑟𝑔𝑒𝑡 is learned while transferring6

knowledge from 𝑓𝑠𝑜𝑢𝑟𝑐𝑒 via logical reasoning thanks to
Neuro-Symbolic computing. The objective of our model
is to maximize function

ℱ (𝜃1, 𝜃2) = 𝑙(𝑓𝑠𝑜𝑢𝑟𝑐𝑒(𝑢, 𝑔|𝜃1), 𝑓𝑡𝑎𝑟𝑔𝑒𝑡(𝑢, 𝑖|𝜃2), 𝑐𝑜𝑛𝑡𝑒𝑛𝑡(𝑖, 𝑔))

where 𝑙 is a logic-based aggregation function, 𝑢 is a user
index, 𝑔 is a movie genre index, and 𝑖 is a movie index.
Note 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 is a function that relates movies and genres
5In feature-based models, the pre-trained model is usually used
to obtain features for users and items from the content or side
information. In our scenario, it learns to predict user-item ratings
via Collaborative Filtering.

6Note that parameters 𝜃1 (of 𝑓𝑠𝑜𝑢𝑟𝑐𝑒) are frozen during the training of
parameters 𝜃2 (of 𝑓𝑡𝑎𝑟𝑔𝑒𝑡).

using content information. It can be seen as a lookup
table denoting which movies belong to a specific genre
in the dataset. In our approach, this function is used by 𝑙
in combination with the predictions of 𝑓𝑠𝑜𝑢𝑟𝑐𝑒 and 𝑓𝑡𝑎𝑟𝑔𝑒𝑡
to regularize the training of 𝑓𝑡𝑎𝑟𝑔𝑒𝑡 via logical reasoning.
In particular, the aggregation function 𝑙 can be seen as
the logical knowledge base that LTN seeks to maximally
satisfy during training. Specifically, 𝑙 is a composition of
logical formulas that defines how the source and target
domain interact during training. In other words, 𝑙 makes
it possible to transfer knowledge between domains via
logical reasoning and is carefully formalized in Section 4.

4. Method
Our approach uses an LTN to enable domain adaptation
for effective knowledge transfer. Specifically, the LTN
is trained using a Real Logic knowledge base containing
facts designed to intuitively transfer information about
movie genre preferences (i.e., the source domain) to a Ma-
trix Factorization model trained onmovie ratings (i.e., the
target domain). In the next subsections, we will present
our knowledge base, how 𝒢 is used to convert it into
a computational graph suitable for gradient-based opti-
mization, and how the learning of the LTN takes place.

4.1. Real Logic knowledge base
The objective of our LTN model is the satisfaction of the
following Real Logic knowledge base.

∀Diag(𝑢𝑠𝑒𝑟+, 𝑚𝑜𝑣 𝑖𝑒+) Likes(𝑢𝑠𝑒𝑟+, 𝑚𝑜𝑣 𝑖𝑒+) (2)

∀Diag(𝑢𝑠𝑒𝑟−, 𝑚𝑜𝑣 𝑖𝑒−)¬ Likes(𝑢𝑠𝑒𝑟−, 𝑚𝑜𝑣 𝑖𝑒−) (3)

∀Diag(𝑢𝑠𝑒𝑟?, 𝑚𝑜𝑣 𝑖𝑒?)(∃𝑔𝑒𝑛𝑟𝑒¬ LikesGenre(𝑢𝑠𝑒𝑟?, 𝑔𝑒𝑛𝑟𝑒)
∧HasGenre(𝑚𝑜𝑣𝑖𝑒?, 𝑔𝑒𝑛𝑟𝑒)) ⟹ ¬ Likes(𝑢𝑠𝑒𝑟?, 𝑚𝑜𝑣 𝑖𝑒?)

(4)

Specifically, 𝑢𝑠𝑒𝑟+ and 𝑚𝑜𝑣𝑖𝑒+ are variable symbols de-
noting positive user-item pairs, 𝑢𝑠𝑒𝑟− and𝑚𝑜𝑣𝑖𝑒− are vari-
able symbols denoting negative user-item pairs, 𝑢𝑠𝑒𝑟? and
𝑚𝑜𝑣𝑖𝑒? are variable symbols denoting user-item pairs for
which the rating is unknown, and 𝑔𝑒𝑛𝑟𝑒 is a variable sym-
bol denoting the genres of the movies. Then, Likes(𝑢, 𝑖)
is a predicate symbol denoting whether a user 𝑢 likes a
movie 𝑖, LikesGenre(𝑢, 𝑔) is a predicate symbol denoting
whether a user 𝑢 likes amovie genre 𝑔, andHasGenre(𝑖, 𝑔)
is a predicate symbol denoting whether a movie 𝑖 belongs
to genre 𝑔.

Intuitively, Axiom (2), Axiom (3), and Axiom (4) are ap-
plied to user-item pairs in 𝒟+, 𝒟−, and 𝒟?, respectively.
Diag is used to quantify over the desired user-item pairs
rather than quantifying over all possible combinations
of user and item indexes in the dataset.

4.2. Grounding of symbols
The grounding𝒢 defines how logical symbols aremapped
onto the real field and hence how the axioms in the
knowledge base define the computational graph of the
LTN model. In this work, 𝒢(𝑢𝑠𝑒𝑟∗) = ⟨𝑢(𝑗)|(𝑢, 𝑖)(𝑗) ∈
𝒟∗⟩

𝑁∗
𝑗=1 and 𝒢(𝑚𝑜𝑣𝑖𝑒∗) = ⟨𝑖(𝑗)|(𝑢, 𝑖)(𝑗) ∈ 𝒟∗⟩

𝑁∗
𝑗=1, namely

𝑢𝑠𝑒𝑟∗ and 𝑚𝑜𝑣𝑖𝑒∗ are grounded as a sequence of the 𝑁∗
user and movie indexes in 𝒟∗, with ∗ ∈ {+, −, ?}. In-
stead, 𝒢(𝑔𝑒𝑛𝑟𝑒) = ⟨1, … , 𝑁𝑔⟩, namely 𝑔𝑒𝑛𝑟𝑒 is grounded
as a sequence of 𝑁𝑔 genre indexes, where 𝑁𝑔 is the
number of movie genres in the dataset. Afterward,
𝒢(Likes |U, I,u, i) ∶ 𝑢, 𝑖 ↦ 𝜎(U𝑢 ⋅ I⊤𝑖 + u𝑢 + i𝑖), namely
Likes is grounded onto a function that takes as input a
user index 𝑢 and a movie index 𝑖 and returns the pre-
diction in [0, 1] of the MF7 model for the given user-
item pair. U ∈ ℝ𝑛×𝑘, I ∈ ℝ𝑚×𝑘, u ∈ ℝ𝑛, and i ∈ ℝ𝑚 are
the matrices of the users’ and items’ latent factors, and
the vectors of users’ and items’ biases, respectively. No-
tice Likes is the predicate that implements 𝑓𝑡𝑎𝑟𝑔𝑒𝑡. Then,
𝒢(LikesGenre) ∶ 𝑢, 𝑔 ↦ G𝑢,𝑔, where G ∈ {0, 1}𝑛×𝑁𝑔 ,
namely LikesGenre is grounded onto a function that
takes as input a user index 𝑢 and a genre index 𝑔 and
returns the prediction contained in matrix G for user 𝑢
and genre 𝑔. In particular, G can be seen as a lookup table
containing the binarized8 predictions of a pre-trained
genre classifier. LTN has shown to work better with
binarized outputs as the classifier was returning pre-
dictions too near the decision boundary for LTN to un-
derstand9 the difference between like and dislike. Note
LikesGenre is the predicate that implements 𝑓𝑠𝑜𝑢𝑟𝑐𝑒. Fi-
nally, 𝒢(𝐻𝑎𝑠𝐺𝑒𝑛𝑟𝑒) ∶ 𝑖, 𝑔 ↦ {0, 1}, namely HasGenre is
grounded onto a function that takes as input a movie
index 𝑖 and a genre index 𝑔 and returns one if the movie
𝑖 belongs to genre 𝑔, zero otherwise. Note HasGenre
is the predicate that implements 𝑐𝑜𝑛𝑡𝑒𝑛𝑡. Intuitively,
𝒢(LikesGenre) contains the knowledge pre-trained on
the source domain. In contrast, 𝒢(Likes |U, I,u, i) rep-
resents the MF model we need to train on the target
domain.

Intuitively, Axiom (2) forces Likes to be true for each
positive user-item pair in 𝒟+, while Axiom (3) forces
Likes to be false for each negative user-item pair in 𝒟−.
In other words, by maximizing the satisfaction of Ax-
iom (2) and Axiom (3), the model learns to factorize the
user-item matrix using the ground truth. In contrast,
Axiom (4) is designed to transfer knowledge from the

7Notice that Likes can be any function returning a score for a user-
item pair. In this work, we use an MF model. This has not to be
intended as a limit of our approach as any other state-of-the-art
model could be used in principle.

8A binarized prediction is obtained by using the decision boundary
of the classifier on the output of the model to get values in {0, 1}.

9For a binary classifier, 0.45 and 0.55 are predictions belonging to
different classes. For a logical framework, those values represent
similar truth values.

source domain to the target domain through logical rea-
soning. Specifically, it forces Likes to be false whenever
a user 𝑢 does not10 like at least one genre 𝑔 of a movie
𝑖. Note this axiom is applied only to unknown user-item
pairs in 𝒟?. In fact, when no movie ratings are available
on the target domain, knowing something about movie
genre preferences is better than knowing nothing. In
other words, we believe transferring knowledge from
the source domain is crucial when data is missing in the
target domain.

4.3. Learning of the LTN
The objective of our model is to learn 𝒢(Likes |U, I,u, i)
by maximizing the satisfaction of the knowledge base. In
other words, LTN seeks to minimize the following loss
function:

L(𝜃) = (1 − SatAgg𝜙∈𝒦 𝒢(𝑢𝑠𝑒𝑟+,𝑚𝑜𝑣 𝑖𝑒+)←ℬ+
(𝑢𝑠𝑒𝑟−,𝑚𝑜𝑣 𝑖𝑒−)←ℬ−
(𝑢𝑠𝑒𝑟?,𝑚𝑜𝑣 𝑖𝑒?)←ℬ?

(𝜙|𝜃)) + 𝜆||𝜃||2

(5)
whereℬ∗ denotes a batch of training examples randomly
sampled from 𝒟∗. The notation (𝑢𝑠𝑒𝑟∗, 𝑚𝑜𝑣 𝑖𝑒∗) ← ℬ∗
denotes that variables 𝑢𝑠𝑒𝑟∗ and𝑚𝑜𝑣𝑖𝑒∗ are grounded with
actual user-movie pairs coming from the corresponding
batch ℬ∗, where ∗ ∈ {+, −, ?}. Notice the loss does not
specify how the variable 𝑔𝑒𝑛𝑟𝑒 is grounded. At each
training step, we ground it with the sequence of all the
movie genre indexes in the dataset. Note ℬ? is created
by uniformly sampling user-item pairs from 𝒟? at each
training step. While all the user-item pairs in𝒟+ and𝒟−
are iterated at each epoch, going through all the possible
unknown pairs is unnecessary and would be unfeasible.
In this sense, ℬ? has not to be considered a mini-batch
in the usual sense.

5. Experiments
This section presents the experiments we performed with
our method. They have been executed on an Apple Mac-
Book Pro (2019) with a 2,6 GHz 6-Core Intel Core i7. The
models have been implemented in Python using PyTorch.
In particular, we used the LTNtorch11 library [38]. More-
over, we used Weights and Biases (WandB) for hyper-
parameter optimization. Our source code is freely avail-
able12.
10Note the negated formula is used on purpose, as it is likely that
a user dislikes the majority of movies belonging to a genre she
dislikes. For example, if 𝑢 does not like horror, likely, she will not
like all the horror movies. Moreover, it is more critical to avoid
recommending something users do not like than not recommend-
ing something they like. This will restrict the recommendation to
a few positive movies.

11https://github.com/logictensornetworks/LTNtorch
12https://github.com/tommasocarraro/NESYKnowledgeTransfer

5.1. Datasets
To perform our experiments, we selected MindReader13

(MR) [30], a novel dataset containing ratings from real
users for movies and non-recommendable entities, such
as movie genres, actors, and producers. We performed
experiments on both MR-100k and MR-200k, the two avail-
able versions of the dataset. We used the ratings onmovie
genres as the source domain14 and the movie ratings as
the target domain. To guarantee the users in the source
and target domains totally overlapped, we removed the
users that only rated movie genres or movies. After this
pre-processing, MR-100k (resp. MR-200k) comprised 962
(resp. 2,182) users, 3,034 (resp. 3,806) movies, and 140
(resp. 159) movie genres. The density of user-movie
ratings was 0.62% (resp. 0.58%), while for user-genre rat-
ings was 8.09% (resp. 6.37%). Selecting ratings on movie
genres as the source domain allowed us to use particu-
larly dense information15 for knowledge transfer. When
𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑠𝑜𝑢𝑟𝑐𝑒) ≫ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑡𝑎𝑟𝑔𝑒𝑡), knowledge transfer is
more likely to be effective [39].

MR provides three types of ratings: likes (1), unknown
(0), and dislikes (-1). As in [30], we removed the unknown
ratings. After that, we changed the label for negative rat-
ings from -1 to 0. As the dataset provides binary explicit
feedback, we treated the recommendation problem as
a binary classification task16, where one has to predict
whether a user likes or dislikes an item. This choice al-
lowed us to use the focal loss (Equation (1)) to train the
MF models and the F-measure as an evaluation metric.
This helped in dealing with class imbalance. The class im-
balance ratio in MR-100k (resp. MR-200k) is 21%(-)/79%(+)
(resp. 20%(-)/80%(+)) for movie genres, and 38%(-)/62%(+)
(resp. 36%(-)/64%(+)) for movies. In both cases, the nega-
tive class is the minority one. Hence, we used it as the
positive one to compute evaluation metrics in Table 2.

As the splitting strategy for the target domain, we ran-
domly sampled 20% of the movie ratings from each user
to construct the test set. Then, we randomly sampled 10%
of the remaining movie ratings from each user to con-
struct the validation set. Instead, for the source domain,
we only created the validation set by randomly sampling
20% of the movie genre ratings from each user. The test

13https://mindreader.tech/dataset/
14Notice that our approach is flexible on the type of knowledge that
has to be transferred. In this work, we use movie genre ratings,
but every type of rating (e.g., ratings on books, actors) or side
information can be used in principle. One has just to change the
knowledge base formalization accordingly.

15Notice ratings on movie genres are dense as they are easily obtain-
able. It is more likely a user will provide a rating about some genre
over hundreds rather than some movie (or actor) over thousands.

16MindReader provides binary explicit ratings rather than usual
1-5 star ratings. For this reason, the recommendation task can
be interpreted as a binary classification problem rather than a
regression one. Finally, we work in a rating prediction task rather
than ranking as the feedback is clearly explicit.

https://github.com/logictensornetworks/LTNtorch
https://github.com/tommasocarraro/NESYKnowledgeTransfer
https://mindreader.tech/dataset/

set is not needed in the source domain, as we only need
a validation set to find the optimal hyper-parameters for
the pre-trained model.

5.2. Experimental setting
Our experiment compares the proposed Neuro-Symbolic
approach, denoted asNESYMF, with a baseline MF model,
denoted as MF, to check if NESYMF can effectively trans-
fer knowledge from source to target domain and im-
prove the performance when training data becomes
scarce. Specifically, the experiment consists of the fol-
lowing pipeline: (1) additional training sets are gener-
ated by randomly sampling the 50%, 20%, 10%, and 5%
of the movie ratings17 from the entire training set, re-
ferred to as 100%. Notice ratings are sampled indepen-
dently from the user, differently from the splitting strat-
egy explained previously. Then, (2) for each training
set 𝑇 𝑟 ∈ {100%, 50%, 20%, 10%, 5%} and for each model
𝑚 ∈ {MF,NESYMF}: (2𝑎) 𝑚 is trained on 𝑇 𝑟 using hyper-
parameters found through a bayesian search. Finally, (2𝑏)
𝑚 is evaluated on the test set. Note that for NESYMF, step
(2𝑎) consists of two steps: (𝑖) a standard MF model is pre-
trained on the source domain to populate matrix G, then
(𝑖𝑖) NESYMF is trained on the target domain, namely 𝑇 𝑟.
We repeated the entire procedure 30 times using seeds
from 0 to 29. The test metrics have been averaged across
these runs and reported in Table 2.

5.3. Training details
All the models have been trained for 500 epochs using
the Adam optimizer. Early stopping has been used to stop
the training if no improvements were found on the val-
idation set for ten epochs. For all the models, the user
and item latent factors, U and I, and the user and item
biases, u and i, have been randomly initialized using the
Glorot initialization. The MF models have been trained
using Equation (1), while NESYMF using Equation (5).
For NESYMF, Axiom (4) has been added to the loss from
epoch five18, allowing LTN to learn something about the
latent factors before starting reasoning on the acquired
knowledge.

We used Bayesian optimization to find the optimal
hyper-parameters for our models. We executed every
hyper-parameter search for 150 runs and selected the
configuration that led to the best validation score. Due

17Notice the ratings on movie genres are kept untouched as they are
used for accurate pre-training.

18Notice this is an arbitrary choice. The idea of using knowledge
transfer is to correct the misclassifications made by the MF model
when training data are sparse. The more the data sparsity, the more
likely the MF will erroneously classify user-item pairs. During the
first steps of learning, the MF has not learned enough information
to predict accurately. For this reason, it is likely knowledge transfer
is applied to random predictions, hence useless.

to computational time, the searches have been conducted
only for the first seed of the experiment and just for the
complete dataset (i.e., 100% ratings). The best hyper-
parameters found for the models have been then used
in the rest of the experiment. For all the models, we
tried a number of latent factors 𝑘 ∈ {5, 10, 25, 50}, regular-
ization coefficient 𝜆 ∈ {0.01, 0.001, 0.0001, 0.00005}, learn-
ing rate 𝜂 ∈ {0.01, 0.001, 0.0001}, training batch size 𝛽 ∈
{64, 128, 256}. For the MF models, we additionally tried
focal loss hyper-parameters 𝛼 ∈ {0.05, 0.1, 0.2, 0.3, 0.4, 0.5}
and 𝛾 ∈ {0, 1, 2, 3}. For the MF model trained on the
source domain, we also tried different thresholds for the
decision boundary 𝑡 ∈ {0.3, 0.4, 0.5, 0.6, 0.7}. Due to the
huge class imbalance in the source domain, we preferred
finding a threshold to maximize precision rather than
recall19. Finally, for NESYMF, we additionally tried dif-
ferent values for hyper-parameter 𝑝 ∈ {2, 4, 6, 8, 10} of
ME𝑝 andM𝑝. Table 1 presents the best hyper-parameters
found for the MF model trained on the source domain
(pre-trained model) and the models trained on the target
domain (i.e., MF and NESYMF).

For the MF model trained on the source domain, we
used F0.5-measure20 as the validation metric, while in
all the other cases, we used F1-measure. Clearly, the
performance of NESYMF depends on the quality of G (i.e.,
the pre-trained model). Using F0.5-measure allowed us
to obtain more precise predictions for G. In particular,
we reduced the number of false positives, namely cases in
which G erroneously predicts that a user dislikes a genre.
In such cases, Axiom (4) would have been unreliably
applied.

6. Results
The results obtained with our experiments are summa-
rized in Table 2. The discussion is limited to MR-200k as
for MR-100k we obtained similar results. Note the results
for MR-100k are better since the dataset is slightly denser.
By looking at the F1-measure, it is possible to observe that
NESYMF outperforms MF on all five folds. In particular,
the performance gap increases with the sparsity of the
user-item ratings, starting from a 1.04% improvement on
the full dataset (i.e., 100% fold) and ending with a 6.69%
improvement on the most sparse dataset (i.e., 5% fold).
This shows the benefits of transferring knowledge from
a denser domain when training data is poor. Moreover, it
suggests our proposal can be effectively used in the task
of knowledge transfer for recommendation.

Interestingly, by looking at recall, it is possible to ob-
serve that the addition of knowledge helps NESYMF in
19By maximizing precision, we obtained a more accurate pre-trained
model for predicting user-genre preferences. This helped in trans-
ferring knowledge more effectively.

20F0.5-measure gives more weight to precision than recall. It is used
when avoiding false positives is particularly important.

Table 1
Best hyper-parameters (referred to as h-p) found through Bayesian optimization for the pre-trained model (left) and the
models learned on the target domain (right). The hyper-parameters are subdivided by dataset.

(a) Source domain

h-p
MF

MR-100k MR-200k
𝑘 50 25
𝜆 0.0001 0.00005
𝜂 0.01 0.01
𝛽 128 64
𝛼 0.4 0.3
𝛾 1 1
𝑡 0.5 0.4

(b) Target domain

h-p
MF NESYMF

MR-100k MR-200k MR-100k MR-200k
𝑘 50 50 50 50
𝜆 0.00005 0.00005 0.0001 0.00005
𝜂 0.01 0.01 0.001 0.0001
𝛽 256 256 256 128
𝛼 0.3 0.3 - -
𝛾 2 0 - -
𝑝 - - 10 10

Table 2
Comparison of MF and NESYMF on the selected datasets. The test metrics are averaged across 30 runs.

(a) MR-100k
Fold Metric MF NESYMF

100%
Precision 0.5595(0.0592) 0.5432(0.0559)
Recall 0.7377(0.0452) 0.7848(0.0395)
F1-measure 0.6328(0.0322) 0.6392(0.0349)

50%
Precision 0.5410(0.0580) 0.5297(0.0512)
Recall 0.6723(0.0459) 0.7054(0.0260)
F1-measure 0.5956(0.0276) 0.6030(0.0307)

20%
Precision 0.5081(0.0558) 0.4946(0.0532)
Recall 0.5948(0.0411) 0.6529(0.0249)
F1-measure 0.5444(0.0261) 0.5605(0.0311)

10%
Precision 0.4856(0.0545) 0.4689(0.0545)
Recall 0.5468(0.0357) 0.6456(0.0322)
F1-measure 0.5112(0.0261) 0.5407(0.0349)

5%
Precision 0.4606(0.0476) 0.4474(0.0522)
Recall 0.5284(0.0250) 0.6584(0.0286)
F1-measure 0.4897(0.0213) 0.5304(0.0358)

(b) MR-200k
Fold Metric MF NESYMF

100%
Precision 0.5640(0.0560) 0.5531(0.0503)
Recall 0.7555(0.0333) 0.7931(0.0207)
F1-measure 0.6431(0.0341) 0.6498(0.0334)

50%
Precision 0.5510(0.0554) 0.5415(0.0491)
Recall 0.6893(0.0332) 0.7240(0.0195)
F1-measure 0.6095(0.0300) 0.6178(0.0306)

20%
Precision 0.5093(0.0499) 0.5050(0.0474)
Recall 0.5838(0.0302) 0.6459(0.0171)
F1-measure 0.5413(0.0231) 0.5650(0.0286)

10%
Precision 0.4806(0.0469) 0.4725(0.0441)
Recall 0.5359(0.0283) 0.6067(0.0193)
F1-measure 0.5041(0.0202) 0.5295(0.0258)

5%
Precision 0.4508(0.0438) 0.4422(0.0428)
Recall 0.5049(0.0257) 0.5953(0.0203)
F1-measure 0.4740(0.0193) 0.5057(0.0273)

finding more negative items compared to MF. In partic-
ular, the more the dataset is sparse, the more the addi-
tional knowledge affects recall. In fact, for the 100% fold,
the gap is minimal (i.e., 4.98% improvement), meaning
the dataset is dense enough for the MF model to learn
movie-genre preferences autonomously. Instead, in the
5% fold, MF does not have enough data to capture these
patterns. Hence, the acquired knowledge becomes crucial
(i.e., 17.90% improvement) to find more negative items.

To conclude, when recommending, due to the huge
number of items available in the catalog, one has to fil-
ter out as many negative items as possible to focus the
model’s attention on a small number of positive items
that can be confidently recommended. Our model ex-
hibits this behavior by drastically improving the recall
(i.e., 17.90% improvement on 5% fold) at a minimal cost in
precision (i.e., 1.91% decrease). This decrease in precision
could be explained by the fact that when using Axiom (4),
the model cannot be completely sure (i.e., having high
confidence) that a user really dislikes an item, only know-

ing she disliked one genre of that item. It is likely, but
not certain.

7. Conclusions and future works
In this paper, we presented a Neuro-Symbolic approach to
knowledge transfer for RSs. Specifically, we used a Logic
Tensor Network to encode axiomatic knowledge suitable
for transferring information from source to target do-
main via logical reasoning. We showed that our model
outperforms a standard MF model on all the presented
tasks, proving its potential in the knowledge transfer
task. Moreover, an experiment that drastically reduced
the user-item ratings in the dataset showed the ability
of our proposal to deal with data sparsity. In the fu-
ture, we would like to extend our model to the cross-
domain recommendation task. In particular, instead of
using movie-genre preferences, one could use more usual
source domains (e.g., books, songs).

References
[1] F. Ricci, L. Rokach, B. Shapira, Recommender

Systems: Introduction and Challenges, Springer
US, Boston, MA, 2015, pp. 1–34. doi:10.1007/
978-1-4899-7637-6_1.

[2] B. Sarwar, G. Karypis, J. Konstan, J. Riedl, Item-
based collaborative filtering recommendation algo-
rithms, in: Proceedings of the 10th International
Conference on World Wide Web, WWW ’01, Asso-
ciation for Computing Machinery, New York, NY,
USA, 2001, p. 285–295. URL: https://doi.org/10.1145/
371920.372071. doi:10.1145/371920.372071.

[3] Y. Koren, R. Bell, Advances in Collaborative Fil-
tering, Springer, Boston, MA, 2011, pp. 145–186.
doi:10.1007/978-0-387-85820-3_5.

[4] F. Aiolli, Efficient top-n recommendation for very
large scale binary rated datasets, in: Proceedings of
the 7th ACMConference on Recommender Systems,
RecSys ’13, Association for Computing Machinery,
New York, NY, USA, 2013, p. 273–280. doi:10.1145/
2507157.2507189.

[5] M. Polato, F. Aiolli, Boolean kernels for collab-
orative filtering in top-n item recommendation,
Neurocomput. 286 (2018) 214–225. doi:10.1016/
j.neucom.2018.01.057.

[6] Y. Koren, R. Bell, C. Volinsky, Matrix factorization
techniques for recommender systems, Computer
42 (2009) 30–37. doi:10.1109/MC.2009.263.

[7] S. Rendle, Factorization machines, in: 2010 IEEE
International Conference on Data Mining, 2010, pp.
995–1000. doi:10.1109/ICDM.2010.127.

[8] X. Ning, G. Karypis, Slim: Sparse linear methods
for top-n recommender systems, in: 2011 IEEE 11th
International Conference on Data Mining, 2011, pp.
497–506. doi:10.1109/ICDM.2011.134.

[9] Y. LeCun, Y. Bengio, G. Hinton, Deep learn-
ing, Nature 521 (2015) 436–444. doi:10.1038/
nature14539.

[10] H.-J. Xue, X.-Y. Dai, J. Zhang, S. Huang, J. Chen,
Deep matrix factorization models for recommender
systems, in: Proceedings of the 26th International
Joint Conference on Artificial Intelligence, IJCAI’17,
AAAI Press, 2017, p. 3203–3209. doi:10.24963/
ijcai.2017/447.

[11] T. Carraro, M. Polato, L. Bergamin, F. Aiolli, Con-
ditioned variational autoencoder for top-n item
recommendation, in: E. Pimenidis, P. Angelov,
C. Jayne, A. Papaleonidas, M. Aydin (Eds.), Artificial
Neural Networks and Machine Learning – ICANN
2022, Springer Nature Switzerland, Cham, 2022, pp.
785–796. doi:10.1007/978-3-031-15931-2_64.

[12] D. Liang, R. G. Krishnan, M. D. Hoffman, T. Je-
bara, Variational autoencoders for collaborative
filtering, in: Proceedings of the 2018 World Wide

Web Conference, WWW ’18, International World
WideWeb Conferences Steering Committee, Repub-
lic and Canton of Geneva, CHE, 2018, p. 689–698.
doi:10.1145/3178876.3186150.

[13] Z. Zeng, C. Xiao, Y. Yao, R. Xie, Z. Liu, F. Lin,
L. Lin, M. Sun, Knowledge transfer via pre-training
for recommendation: A review and prospect,
Frontiers in Big Data 4 (2021). URL: https://www.
frontiersin.org/articles/10.3389/fdata.2021.602071.
doi:10.3389/fdata.2021.602071.

[14] S. J. Pan, Q. Yang, A survey on transfer learning,
IEEE Transactions on Knowledge and Data Engi-
neering 22 (2010) 1345–1359. doi:10.1109/TKDE.
2009.191.

[15] T. Man, H. Shen, X. Jin, X. Cheng, Cross-domain
recommendation: An embedding and mapping ap-
proach, in: Proceedings of the Twenty-Sixth Inter-
national Joint Conference on Artificial Intelligence,
IJCAI-17, 2017, pp. 2464–2470. URL: https://doi.
org/10.24963/ijcai.2017/343. doi:10.24963/ijcai.
2017/343.

[16] H. Kanagawa, H. Kobayashi, N. Shimizu, Y. Tagami,
T. Suzuki, Cross-domain recommendation via deep
domain adaptation, in: L. Azzopardi, B. Stein,
N. Fuhr, P. Mayr, C. Hauff, D. Hiemstra (Eds.), Ad-
vances in Information Retrieval, Springer Interna-
tional Publishing, Cham, 2019, pp. 20–29. doi:10.
1007/978-3-030-15719-7_3.

[17] F. Yuan, L. Yao, B. Benatallah, Darec: Deep domain
adaptation for cross-domain recommendation via
transferring rating patterns, in: Proceedings of the
Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI-19, International Joint
Conferences on Artificial Intelligence Organization,
2019, pp. 4227–4233. URL: https://doi.org/10.24963/
ijcai.2019/587. doi:10.24963/ijcai.2019/587.

[18] C. Gao, X. Chen, F. Feng, K. Zhao, X. He, Y. Li,
D. Jin, Cross-domain recommendation without
sharing user-relevant data, in: The World Wide
Web Conference, WWW ’19, Association for Com-
puting Machinery, New York, NY, USA, 2019,
p. 491–502. URL: https://doi.org/10.1145/3308558.
3313538. doi:10.1145/3308558.3313538.

[19] A. S. d’Avila Garcez, K. Broda, D.M. Gabbay, Neural-
symbolic learning systems - foundations and appli-
cations, in: Perspectives in Neural Computing, 2012.
doi:10.1007/978-1-4471-0211-3.

[20] I. Donadello, L. Serafini, A. d’Avila Garcez, Logic
tensor networks for semantic image interpretation,
in: Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, IJCAI-17,
2017, pp. 1596–1602. URL: https://doi.org/10.24963/
ijcai.2017/221. doi:10.24963/ijcai.2017/221.

[21] M. K. Sarker, L. Zhou, A. Eberhart, P. Hitzler, Neuro-
symbolic artificial intelligence: Current trends,

http://dx.doi.org/10.1007/978-1-4899-7637-6_1
http://dx.doi.org/10.1007/978-1-4899-7637-6_1
https://doi.org/10.1145/371920.372071
https://doi.org/10.1145/371920.372071
http://dx.doi.org/10.1145/371920.372071
http://dx.doi.org/10.1007/978-0-387-85820-3_5
http://dx.doi.org/10.1145/2507157.2507189
http://dx.doi.org/10.1145/2507157.2507189
http://dx.doi.org/10.1016/j.neucom.2018.01.057
http://dx.doi.org/10.1016/j.neucom.2018.01.057
http://dx.doi.org/10.1109/MC.2009.263
http://dx.doi.org/10.1109/ICDM.2010.127
http://dx.doi.org/10.1109/ICDM.2011.134
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.24963/ijcai.2017/447
http://dx.doi.org/10.24963/ijcai.2017/447
http://dx.doi.org/10.1007/978-3-031-15931-2_64
http://dx.doi.org/10.1145/3178876.3186150
https://www.frontiersin.org/articles/10.3389/fdata.2021.602071
https://www.frontiersin.org/articles/10.3389/fdata.2021.602071
http://dx.doi.org/10.3389/fdata.2021.602071
http://dx.doi.org/10.1109/TKDE.2009.191
http://dx.doi.org/10.1109/TKDE.2009.191
https://doi.org/10.24963/ijcai.2017/343
https://doi.org/10.24963/ijcai.2017/343
http://dx.doi.org/10.24963/ijcai.2017/343
http://dx.doi.org/10.24963/ijcai.2017/343
http://dx.doi.org/10.1007/978-3-030-15719-7_3
http://dx.doi.org/10.1007/978-3-030-15719-7_3
https://doi.org/10.24963/ijcai.2019/587
https://doi.org/10.24963/ijcai.2019/587
http://dx.doi.org/10.24963/ijcai.2019/587
https://doi.org/10.1145/3308558.3313538
https://doi.org/10.1145/3308558.3313538
http://dx.doi.org/10.1145/3308558.3313538
http://dx.doi.org/10.1007/978-1-4471-0211-3
https://doi.org/10.24963/ijcai.2017/221
https://doi.org/10.24963/ijcai.2017/221
http://dx.doi.org/10.24963/ijcai.2017/221

ArXiv abs/2105.05330 (2021).
[22] T. Campari, L. Lamanna, P. Traverso, L. Serafini,

L. Ballan, Online learning of reusable abstract
models for object goal navigation, in: 2022
IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), IEEE Computer Soci-
ety, Los Alamitos, CA, USA, 2022, pp. 14850–14859.
URL: https://doi.ieeecomputersociety.org/10.1109/
CVPR52688.2022.01445. doi:10.1109/CVPR52688.
2022.01445.

[23] T. Carraro, A. Daniele, F. Aiolli, L. Serafini,
Logic tensor networks for top-n recommenda-
tion, in: AIxIA 2022 – Advances in Arti-
ficial Intelligence: XXIst International Confer-
ence of the Italian Association for Artificial In-
telligence, AIxIA 2022, Udine, Italy, November
28 – December 2, 2022, Proceedings, Springer-
Verlag, Berlin, Heidelberg, 2023, p. 110–123.
URL: https://doi.org/10.1007/978-3-031-27181-6_8.
doi:10.1007/978-3-031-27181-6_8.

[24] G. Spillo, C. Musto, M. De Gemmis, P. Lops, G. Se-
meraro, Knowledge-aware recommendations based
on neuro-symbolic graph embeddings and first-
order logical rules, in: Proceedings of the 16th
ACM Conference on Recommender Systems, Rec-
Sys ’22, Association for Computing Machinery,
New York, NY, USA, 2022, p. 616–621. URL: https:
//doi.org/10.1145/3523227.3551484. doi:10.1145/
3523227.3551484.

[25] P. Kouki, S. Fakhraei, J. Foulds, M. Eirinaki,
L. Getoor, Hyper: A flexible and extensible prob-
abilistic framework for hybrid recommender sys-
tems, in: Proceedings of the 9th ACM Confer-
ence on Recommender Systems, RecSys ’15, As-
sociation for Computing Machinery, New York, NY,
USA, 2015, p. 99–106. URL: https://doi.org/10.1145/
2792838.2800175. doi:10.1145/2792838.2800175.

[26] H. Chen, S. Shi, Y. Li, Y. Zhang, Neural collab-
orative reasoning, in: Proceedings of the Web
Conference 2021, WWW ’21, Association for Com-
puting Machinery, New York, NY, USA, 2021, p.
1516–1527. URL: https://doi.org/10.1145/3442381.
3449973. doi:10.1145/3442381.3449973.

[27] A. Daniele, L. Serafini, Knowledge enhanced neural
networks, in: A. C. Nayak, A. Sharma (Eds.), PRI-
CAI 2019: Trends in Artificial Intelligence, Springer
International Publishing, Cham, 2019, pp. 542–554.
doi:10.1007/978-3-030-29908-8_43.

[28] S. Badreddine, A. d’Avila Garcez, L. Ser-
afini, M. Spranger, Logic tensor networks,
Artificial Intelligence 303 (2022) 103649.
URL: https://www.sciencedirect.com/science/
article/pii/S0004370221002009. doi:https:
//doi.org/10.1016/j.artint.2021.103649.

[29] M. Ferrari Dacrema, P. Cremonesi, D. Jannach, Are

we really making much progress? a worrying anal-
ysis of recent neural recommendation approaches,
in: Proceedings of the 13th ACM Conference on
Recommender Systems, RecSys ’19, Association for
Computing Machinery, New York, NY, USA, 2019,
p. 101–109. URL: https://doi.org/10.1145/3298689.
3347058. doi:10.1145/3298689.3347058.

[30] A. H. Brams, A. L. Jakobsen, T. E. Jendal, M. Lissan-
drini, P. Dolog, K. Hose, Mindreader: Recommen-
dation over knowledge graph entities with explicit
user ratings, in: Proceedings of the 29th ACM
International Conference on Information & Knowl-
edge Management, CIKM ’20, Association for Com-
puting Machinery, New York, NY, USA, 2020, p.
2975–2982. URL: https://doi.org/10.1145/3340531.
3412759. doi:10.1145/3340531.3412759.

[31] H. Chen, Y. Li, S. Shi, S. Liu, H. Zhu, Y. Zhang,
Graph collaborative reasoning, in: Proceedings
of the Fifteenth ACM International Conference on
Web Search and Data Mining, WSDM ’22, Asso-
ciation for Computing Machinery, New York, NY,
USA, 2022, p. 75–84. URL: https://doi.org/10.1145/
3488560.3498410. doi:10.1145/3488560.3498410.

[32] J. Ji, Z. Li, S. Xu, M. Xiong, J. Tan, Y. Ge,
H. Wang, Y. Zhang, Counterfactual collabora-
tive reasoning, in: Proceedings of the Sixteenth
ACM International Conference on Web Search
and Data Mining, WSDM ’23, Association for
Computing Machinery, New York, NY, USA, 2023,
p. 249–257. URL: https://doi.org/10.1145/3539597.
3570464. doi:10.1145/3539597.3570464.

[33] Y. Xian, Z. Fu, H. Zhao, Y. Ge, X. Chen, Q. Huang,
S. Geng, Z. Qin, G. de Melo, S. Muthukrish-
nan, Y. Zhang, Cafe: Coarse-to-fine neural
symbolic reasoning for explainable recommenda-
tion, in: Proceedings of the 29th ACM Interna-
tional Conference on Information & Knowledge
Management, CIKM ’20, Association for Com-
puting Machinery, New York, NY, USA, 2020, p.
1645–1654. URL: https://doi.org/10.1145/3340531.
3412038. doi:10.1145/3340531.3412038.

[34] A. Kimmig, S. Bach, M. Broecheler, B. Huang,
L. Getoor, A short introduction to probabilistic
soft logic, Mansinghka, Vikash, 2012, pp. 1–4. URL:
https://lirias.kuleuven.be/retrieve/204697.

[35] Z. Wang, J. Zhang, J. Feng, Z. Chen, Knowledge
graph embedding by translating on hyperplanes,
Proceedings of the AAAI Conference on Artifi-
cial Intelligence 28 (2014). URL: https://ojs.aaai.org/
index.php/AAAI/article/view/8870. doi:10.1609/
aaai.v28i1.8870.

[36] S. Guo, Q. Wang, L. Wang, B. Wang, L. Guo, Jointly
embedding knowledge graphs and logical rules, in:
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, Associa-

https://doi.ieeecomputersociety.org/10.1109/CVPR52688.2022.01445
https://doi.ieeecomputersociety.org/10.1109/CVPR52688.2022.01445
http://dx.doi.org/10.1109/CVPR52688.2022.01445
http://dx.doi.org/10.1109/CVPR52688.2022.01445
https://doi.org/10.1007/978-3-031-27181-6_8
http://dx.doi.org/10.1007/978-3-031-27181-6_8
https://doi.org/10.1145/3523227.3551484
https://doi.org/10.1145/3523227.3551484
http://dx.doi.org/10.1145/3523227.3551484
http://dx.doi.org/10.1145/3523227.3551484
https://doi.org/10.1145/2792838.2800175
https://doi.org/10.1145/2792838.2800175
http://dx.doi.org/10.1145/2792838.2800175
https://doi.org/10.1145/3442381.3449973
https://doi.org/10.1145/3442381.3449973
http://dx.doi.org/10.1145/3442381.3449973
http://dx.doi.org/10.1007/978-3-030-29908-8_43
https://www.sciencedirect.com/science/article/pii/S0004370221002009
https://www.sciencedirect.com/science/article/pii/S0004370221002009
http://dx.doi.org/https://doi.org/10.1016/j.artint.2021.103649
http://dx.doi.org/https://doi.org/10.1016/j.artint.2021.103649
https://doi.org/10.1145/3298689.3347058
https://doi.org/10.1145/3298689.3347058
http://dx.doi.org/10.1145/3298689.3347058
https://doi.org/10.1145/3340531.3412759
https://doi.org/10.1145/3340531.3412759
http://dx.doi.org/10.1145/3340531.3412759
https://doi.org/10.1145/3488560.3498410
https://doi.org/10.1145/3488560.3498410
http://dx.doi.org/10.1145/3488560.3498410
https://doi.org/10.1145/3539597.3570464
https://doi.org/10.1145/3539597.3570464
http://dx.doi.org/10.1145/3539597.3570464
https://doi.org/10.1145/3340531.3412038
https://doi.org/10.1145/3340531.3412038
http://dx.doi.org/10.1145/3340531.3412038
https://lirias.kuleuven.be/retrieve/204697
https://ojs.aaai.org/index.php/AAAI/article/view/8870
https://ojs.aaai.org/index.php/AAAI/article/view/8870
http://dx.doi.org/10.1609/aaai.v28i1.8870
http://dx.doi.org/10.1609/aaai.v28i1.8870

tion for Computational Linguistics, Austin, Texas,
2016, pp. 192–202. URL: https://aclanthology.org/
D16-1019. doi:10.18653/v1/D16-1019.

[37] E. van Krieken, E. Acar, F. van Harmelen,
Analyzing differentiable fuzzy logic opera-
tors, Artificial Intelligence 302 (2022) 103602.
URL: https://www.sciencedirect.com/science/
article/pii/S0004370221001533. doi:https:
//doi.org/10.1016/j.artint.2021.103602.

[38] T. Carraro, LTNtorch: PyTorch implementation
of Logic Tensor Networks, 2023. URL: https://doi.
org/10.5281/zenodo.7778157. doi:10.5281/zenodo.
7778157.

[39] F. Zhu, Y. Wang, C. Chen, J. Zhou, L. Li,
G. Liu, Cross-domain recommendation: Challenges,
progress, and prospects, in: Z.-H. Zhou (Ed.), Pro-
ceedings of the Thirtieth International Joint Con-
ference on Artificial Intelligence, IJCAI-21, Interna-
tional Joint Conferences on Artificial Intelligence
Organization, 2021, pp. 4721–4728. URL: https://doi.
org/10.24963/ijcai.2021/639. doi:10.24963/ijcai.
2021/639, survey Track.

https://aclanthology.org/D16-1019
https://aclanthology.org/D16-1019
http://dx.doi.org/10.18653/v1/D16-1019
https://www.sciencedirect.com/science/article/pii/S0004370221001533
https://www.sciencedirect.com/science/article/pii/S0004370221001533
http://dx.doi.org/https://doi.org/10.1016/j.artint.2021.103602
http://dx.doi.org/https://doi.org/10.1016/j.artint.2021.103602
https://doi.org/10.5281/zenodo.7778157
https://doi.org/10.5281/zenodo.7778157
http://dx.doi.org/10.5281/zenodo.7778157
http://dx.doi.org/10.5281/zenodo.7778157
https://doi.org/10.24963/ijcai.2021/639
https://doi.org/10.24963/ijcai.2021/639
http://dx.doi.org/10.24963/ijcai.2021/639
http://dx.doi.org/10.24963/ijcai.2021/639

	1 Introduction
	2 Related works
	3 Background
	3.1 Notation
	3.2 Matrix Factorization
	3.3 Logic Tensor Networks
	3.4 Neuro-Symbolic knowledge transfer

	4 Method
	4.1 Real Logic knowledge base
	4.2 Grounding of symbols
	4.3 Learning of the LTN

	5 Experiments
	5.1 Datasets
	5.2 Experimental setting
	5.3 Training details

	6 Results
	7 Conclusions and future works

