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Abstract
The convergence of edge computing and Artificial Intelligence, namely Edge AI, offers many opportunities
to the industry for building competitive and innovative business models. However, this new paradigm has
its own challenges in terms of latency, privacy, and energy. The latter is relevant considering that current
AI requires expensive computation that is hard to achieve in existing edge devices. This work reviews 20
studies published between December 2018 and March 2023 on the subject of energy efficiency for the
deployment of Edge AI. Most of the publications are devoted to improving the efficient deployment of
Edge AI, while only a few focus on measuring the carbon footprint and energetic impact. Our work can
help researchers quickly understand the state-of-the-art and learn which topics need more research.
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1. Technical description

With the appearance of the Internet of Things (IoT), new paradigms like edge computing have
appeared to overcome the limitations of cloud computing. Given the high volume of data
generated by edge devices, we are observing an increasing demand for systems that integrate
edge computing and Artificial Intelligence (AI), which gives birth to the concepts of edge
intelligence and intelligent edge, that make up what is known as Edge AI. [1, 2]. However,
deploying machine learning (ML) models in edge devices is limited by the available resources
of the devices and the communication network. Hence, Edge AI introduces new challenges in
latency, cybersecurity, and especially, energy efficiency.

This work reviews 20 recent studies focusing on energy efficiency when deploying MLmodels
for Edge AI. We extract and review 17 of them from a recent literature review [3]. We select the
papers whose topic is deployment, according to the classification of the paper’s authors. We
perform forward snowballing as defined in [4] to add the three remaining studies. We group
the studies by their main contributions. Figure 1 shows the themes identified and the number
of papers for each theme. The complete list of papers reviewed is available at GitHub.1
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Figure 1: The 20 papers classified into four main themes based on their main contributions.

1.1. Energetic impact of deploying ML models (3 studies)

We find that little work has been done on analyzing the energetic impact of deploying ML
models. Dodge et al. [5] show that the two most impactful factors on carbon footprint are
geographical location and time of day, in this order. Hence, they propose two scheduling
methods to optimize cloud workloads based on the time of day. Gondi and Pratap [6] evaluate
the energy-accuracy trade-off of Automatic Speech Recognition (ASR) transformer models on
an edge device. Their results show an exponential growth in CPU energy consumption as the
word error rate (WER) improves linearly. Yousefpour et al. [7] quantify the carbon footprint of
Federated Learning (FL). They find that asynchronous FL is faster than synchronous FL, but has
higher carbon emissions. Moreover, they find that the overall benefits of higher concurrency
(i.e., number of devices), considering resource consumption, do not scale linearly.

1.2. Improve network energy consumption (8 studies)

A significant portion of the studies reviewed proposes new frameworks to reduce energy by
optimizing where and when is the training/inference performed [8]. Yosuf et al. [9] study how
to place DNN inference models in a Cloud Fog Network architecture for energy efficiency. Their
results show that significant savings can be achieved by the full utilization of edge devices.
They also found that fog servers are bypassed in favor of cloud data centers. They argue this
is caused due to the processing inefficiency and high Power Usage Effectiveness (PUE) of the
fog servers. Kim and Wu [10] propose AutoScale, a tool that can select the optimal execution
scaling decision based on the DNN characteristics, QoS and accuracy targets, underlying system
profiles, and stochastic runtime variance. They improve inference energy efficiency by 9.8× and
1.6× compared to the baseline settings of mobile CPU and cloud offloading.

1.3. Improve on-device energy consumption (7 studies)

Many of the studies reviewed focus on optimizing the energy consumption in the edge de-
vices [11]. Wang et al. [12] implement an online optimization framework connecting the
asynchronous execution of federated training with application co-running to minimize energy
consumption on mobile devices. By designating the training process to run in the background



while an application is running, they can save over 60% of energy with three times faster
convergence speed compared to previous schemes. Abreu et al. [13] present a framework to
facilitate the exploration of dedicated decision trees (DTs) and random forests (RFs) accelerators.
The proposed framework translates tree-based structures to hardware description languages.
Their approach achieves 10× power reduction compared to prior works.

1.4. Current challenges (2 studies)

Only two papers study the challenges of deploying ML models on the edge. Tao et al. [14]
review the challenges of training DNNs with FPGA. They find these challenges mainly lie in
the complexity of resource management and the requirements of both software and hardware
design knowledge. Moreover, they propose an evaluation workflow and performance metric
to consider on-chip resource usage, training efficiency, energy efficiency, and model accuracy.
Fraga-Lamas et al. [15] provide a more general view and review the essential concepts related
to the development of Edge AI Green IoT systems and their carbon footprint, and make a list of
twelve open challenges.

2. Relevance and Novelty

With increased bandwidth and lower latency, edge computing promises to decentralize cloud
applications. Meanwhile, the current AI methods assume computations are conducted in a
powerful computational infrastructure, such as data centers with substantial computing and data
storage capabilities. One of the main challenges of bringing edge computing and AI together
remains in the energy constraints of edge devices.

This poster provides a brief overview of the state-of-the-art in green deployment for Edge AI.
We find that some papers focus on very specific application areas, such as ASR [6], FL [7], or
DTs [13], while some works are more general-purpose [5, 10]. In addition, excluding the two
studies reporting current challenges, we find that 14 out of 18 papers report empirical results
and the hardware used. We find that four papers report only using mobile phones or SoCs (e.g.,
Raspberry Pi, Nvidia Jetson), and two use a combination of both. While mobile phones vary
greatly, we find that are the most commonly used devices for experimentation. Overall, we
find that while most of the research is focused on improving energy efficiency by optimizing
the edge devices’ workload and communication, little work has been done on understanding
the factors impacting energy consumption and carbon footprint (e.g., time of day, underlying
hardware). This calls for putting more effort into understanding what elements contribute to
increasing energy consumption and how. This can help to tackle the problem more accurately.
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