CEUR-WS.org/Vol-3565/MEPDaW2023-paper3.pdf

SPARQL Statement Annotations for Temporal
Metadata in the Dydra RDF Store*

James A. Anderson®™!, Vimal Kumar?

!datagraph gmbh, frankfurter tor 1, 10243 berlin, germany
?NXP Semiconductors N.V.

Abstract

Revisioned RDF datasets associate transaction-time metadata with statements. Applications use this
metadata to constrain query results. Cases which involve dataset snapshots, windows, or streams need
apply just global temporal constraints. Applications which embody business logic which interprets
statement-level metadata require finer-grained access.

This report describes the application of revisioned storage capabilities in the Dydra RDF storage
service to record and report version information in a product life-cycle management (PLM) system at
graph node granularity. It describes the current nature of revisioned RDF repositories managed by
the service for typical application queries and focuses on one PLM application and its data model for
which transaction-time metadata reveal important management information. It discusses an extension
to SPARQL to use RDF Star annotation syntax to associate temporal metadata with this application data
model, reviews a realization of that approach for the PLM application, and discusses performance issues.

Keywords
RDF, RDF Star, SPARQL, temporal annotation,

1. Introduction

This report describes how revisioned storage capabilities of Dydra RDF storage service have
been applied to record and report modifications to semiconductor device specifications in a
product life-cycle management (PLM) system. First, it reviews Dydra architecture and relates
the approach to alternatives in temporal RDF data management. Then it describes the storage
characteristics of the revisioned RDF repositories as they relate to the model of the managed
PLM data and illustrates the effect of revisioned storage on retrospective access execution time
based on the execution statistics for a number of application queries. Finally it introduces an
extension to SPARQL to use RDF Star annotation syntax to permits a PLM application to use
SPARQL queries to reveal important product management information.

The exposition includes detailed statistics about the application’s production datasets to
call attention to their notable characteristics. It reiterates aspects of standard benchmarks and
compares the results between well known datasets and those in production to demonstrate

MEPDaw 2023, Athens, Greece

" This reports on work with the service at version e48262281df808888ef66333ef2d7e62eb2cc1a6@20220726T161540
& james@dydra.com (J. A. Anderson); vimal. kumartv@nxp.com (V. Kumar)

& https://dydra.com/ (J. A. Anderson)

® 0000-0002-1461-6338 (J. A. Anderson)

© 2023 Copyright for this paper by its authors.

CEUR Workshop Proceedings (CEUR-WS.org)

mailto:james@dydra.com
mailto:vimal.kumartv@nxp.com
https://dydra.com/
https://orcid.org/0000-0002-1461-6338
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

that the architectures accommodates a wide range of data models. It presents aspects of the
implementation in detail, to highlight space and time tradeoffs which are not yet governed by
abstract models for archival RDF data.

2. Dydra Service Architecture

2.1. Implementation

The Dydra store architecture has been described in detail in reports to previous MEPDaw
workshops[1][2]. It has also been described in surveys of RDF stores — with the most accurate
being Ali’s survey[3]. The store provides access to transaction-time timestamp-based revisioned
RDF storage through W3C Graph Store and SPARQL protocols, with extensions to target and
retrieve dataset content from other than the latest revision. Some mention of the service has
also been included in expositions of alternative approaches to versioned data, such as [4], [5]
and [6], but in order to resolve ambiguities which these publications have introduced regarding
its architecture and behaviour, we first review the store’s architecture and operation in order to
resolve ambiguities left by these descriptions.

Dydra provides a multi-tenant service in which users create RDF repositories and operate on
them through HTTP requests in the manner of the W3C SPARQL and Graph Store protocols.
That service layer relies on a repository storage layer built with LMDB[7] B-tree databases
to provide a term dictionary, the standard six quad term identifier indices - in this case gspo,
gpos, gosp, spog, posg, and ospg, and indices for revision metadata among timestamps, UUID
designators, and ordinals, Terms are stored in a global index among term values, their ordinal
identifiers and their hash codes. Each B-tree key represents a quad as the respective term
identifiers. The particular feature which supports transaction-time metadata is the interpretation
of quad index records as transaction indices. As illustrated in figure 1, the index records for
a stand-alone revisioned repository contain a sequence of revision ordinals to identify those
repository transactions which added and removed that statement over time. Index entries for
non-revisioned repositories contain no record data and the records for replicated repositories
contain global revision identifiers rather than repository-relative ordinals.

All access operations devolve to just three principal transaction-scoped operations: match,
count, and scan. All processing is within a request transaction, which captures its request’s
revision constraints. In order for a request to address a dataset snapshot, window, or stream, it
designates one or more target transactions with timestamps, ordinals or UUIDs. As the query
processor interprets the statement patterns in a basic graph pattern (BGP), it resolves any
constraints present in the transaction which governs that BGP to ordinal intervals. During
a count or scan phase, the revision record of each matched quad is inspected and only those
which satisfy the constraints are further processed. This limits the stream of BGP solution
results to those which satisfy the request’s revision constraints.

This arrangement implements the transaction-time aspect of a bi-temporal store. It provides
efficient storage for minimal transaction-time metadata and constitutes one dimension of
Grandi’s multi-temporal dimensions[8] . In order to capture the validity-time aspect of higher-
dimensional temporal constraints in a form which supports efficient retrieval, rather than
introduce additional domains into the statement revision indices, it augments the standard

quad [alls L[]

o
O

revisioned quad [[g[Ts ord+ |

|

.......... —— [ord+ []ord- |

.......... ——{[ord+ ord- ord+

replicated quad [[g[|s uuid+ |

|

.......... —— [uuid+ [[uuid- |]

»»»»»»»»»» —— ["uuid+ [[uuid-= [[uuid+ | |

Figure 1: Quad index record variants for static, revisioned, and replicated repositories

quad indices with variants which store and index timestamps for declared predicates in their
respective value domains instead of as term identifiers. The two index forms are independent
and combine to support bi-temporal models. If an account maintains a provenance repository, a
record is generated for each transaction to capture temporal attributes and information about
the request agent. Its transaction metadata can be used to derive revision constraints from
request arguments and/or to augment result bindings for matched statements.

As a strict TB variant[9], this architecture provides the benefit, that revision information is
handled only when a statement is relevant, and is stored in proximity to the respective quad
data as it is the index record respective the quad index key. When solutions are constructed,
only the relevant data must be marshalled from persistent storage, examined, and collected.
This distinction as to dependency and locality is important, but not adequately characterised by
abstract RDF data models. In one instance Pelgrin[10], proposed that the Dydra architecture
retained revision metadata at the dataset level. Despite that this aspect of the metadata is
secondary, the notion persists in later works where, for example Kovacevic[4] emphasises the
significance of dataset-level metadata, while neglecting the relation between metadata and the
individual statements.

An alternative to TB architectures is the "independent copy” (IC) approach. The BEAR project

itself implemented this variant based in named graphs in Jena in order to test its behaviour[9].
Cuevas[11] also proposes an IC variant which relies on graphs to segment the data into revisions
in order to investigate the consequence for index size and query formulation relative to CB and
TB variants. Independent of its variants, the approach presents two deficiencies. On one hand,
in an application environment where a given PLM repository at one time contained 56,216,953
active quads with 5,377,260 distinct subjects in 1,547,220 graphs, to segment revisions with
graphs would conflict with the application data models, as they rely on graphs to segment
the device specifications. On the other, an IC architecture which materialized quad datasets
which correspond to these PLM models, would set prohibitive space requirements. For example,
the same PLM repository, which occupied 67,566,194,688 bytes in the current architecture,
would require 1,787,570,499,040 bytes when stored as independent copies of the 33,567 revisions
present. (see table 3)

The other principal alternatives to TB architectures are found in change-based (CB) ap-
proaches, which seek to minimize the storage requirements by retaining just the changes which
effect each revision. Of these, the principal developments have followed from Taelman’s re-
search programm([5][6], which endeavours to accommodate large rapidly evolving datasets
by trading trade space resources for time by decreasing the interval between snapshots. The
latest variant[12] intends to address the misfortune, that "existing approaches for RDF archiving
cannot ingest long histories on large datasets" by improving the delta computation process and
making its representation more effective. The results demonstrate, however, that in order to
achieve acceptable ingestion times, the representation consumes significant space. By contrast,
as indicated in table 1, the results for ingestion of the BEAR-B instance dataset demonstrates
that a TB architecture accomplishes a reasonable ingestion rate, while producing a much more
compact dataset and, in connection with the smaller BEAR-B hour dataset, figure 2 indicates
that the performance of the Dydra TB variant approached that of the HDT-IC implementation
on the materialised access pattern.’

repository archival statements | revisions | size(MB) | ingestion (min)
Dydra 234764 21045 88.72 86.91
OSTRICH+ high periodicity | 234,588 21045 2283.43 57.89
OSTRICH+ low periodicity 234,588 21045 787.75 298.36

Table 1

BEAR-B instance dataset statistics comparing Dydra with an improved OSTRICH variant[12]

This temporal storage architecture manifests the following principles

« The BGP solution stream generation process contrasts to approaches which materialize
the set of temporally constrained statements - whether explicitly or implicitly, and only
then constrain them with a statement pattern. The BGP processor first applies the pattern
to the dataset and then interprets temporal constraints. The average execution statistics
for the views included below reflect this effect: the count of matched statements is a small
fraction of the statements which would be need to be examined in order to generate a
materialized version.

"This graph of the BEAR-B performance is drawn of the results presented at the MEPDaw-2019 workshop, which
covered all ingestion and query variants for the hour dataset.[2]

Jena-IC —+— Jena-TB HDT-IC Dydra-TB —e—
Jena-CB —<— HDT-CB R43ples
o 100000 ——e—— 1 T w
g) 7777777el777””””*fﬁ:e;,,,,,,iww
[} 10000 F]
n
o
S 1000
R 10 | .
g
o 1+r |
P
Ef' 0.1 =
3
o 0.01
0 200 400 600 800 1000 1200
version

Figure 2: BEAR-B materialised query performance over the hour dataset revision history

repository view matchCount | statementCount
nxp/plm__rev get_list_changeditemname_for_eco | 1619419 54085015
nxp-hws/plm__rev | sfdc_salesiteminfo 18627813 75486524
nxp/plm__rev fetch_parent_for_the_ltem 218297 54085015
nxp/plm__rev ebiz_article_group 3012268 54085015

Table 2

BGP match count v/s repository statement count for typical views

« The transaction-time dimension is represented with revision ordinals which are specific
to the repository history and internal to the data management service.
They are not immediately available data as dictionary-encoded terms to be bound to
solution variables for algebra operations.

+ The transaction time domain is distinct from the validity time domain. The first is integer
ordinals while the latter is RDF temporal values.
Each is best supported by an index appropriate to its domain.

+ The logic to apply transaction constraints is implemented in an efficient value domain, it
requires no joins and - for predominant cases, can rely on data proximity.

« Transaction time metadata associates with individual triples, while validity time is associ-
ated with subject resources.
The respective retrieval patterns will entail different index access patterns which suggest
different index forms.

« Provenance or other metadata are decoupled from the revision index. Access to an
independent provenance repository is mediated through transaction UUID designators.

2.2. API

Operations under this architecture are available to client applications through as simple HTTP
API. In order to interpret a repository as revisioned, a request designates the target revision by
timestamp, revision identifier, revision ordinal or some combination of those values in a manner
similar to the specification of a target graph. The presentation in [1] describes the variants in

detail.
Under this API, a request to apply a the view 1istCompanies to a snapshot of a previous
revision of the repesitory SBA/PPP would take any of the following forms

https://dydra.com/SBA/ppp/listCompanies?revision-id=HEAD-1
https://dydra.com/SBA/ppp/listCompanies?revision-id=7a4cff4c-31c6-11ee-9363-£02f7494a8ed
https://dydra.com/SBA/ppp/listCompanies?revision-id=1999-01-01T24:02:03.5Z

Application to a revision window or stream for a view such as totalDisbursements would
take a form which designates revisions according to ISO time intervals or repetitions.

https://dydra.com/SBA/PPP/totalDisbursements?\
revision-id=1999-01-01T24:02:03.5Z--1999-01-01T24:02:03.6Z

https://dydra.com/SBA/PPP/totalDisbursements?\
revision-id=1999-01-01T24:02:03.5Z2/1999-01-01T24:02:03.6Z/P1DT2H3M4S

This API applies uniform revision constraints over the entire extent of a transaction. In order
to limit their extent, the query must factor distinct constraints into distinct SERVICE clauses,
each of which is governed by its own transaction.

3. Repository Storage Statistics

In order to address questions as to the efficiency of the chosen Dydra storage architecture
and its effects on query performance we consider two sources of information. One is the
performance on known benchmark datasets, as described above, which suggests parity with
alternatives. Another is its performance with enterprise datasets. For this, we compare access
to analogous revisioned and un-revisioned dataset instances to examine the consequence of
revisioned storage for access at scale.

The facility has been in service over the past year. Over this interval several repositories
have grown to approach 10® statements. A review of the storage statistics for these repositories
offers some insight into the resource requirements of revisioned storage. Table 3 summarizes
these statistics. It depicts the cumulative space, statement count and revision count as well as
values for the number of total changes and adds computed values for the size of equivalent IC
and CB repositories.”

Of note is that, while the absolute per quad space has grown, in most cases, the space per
archived quad is just a fraction of that required per quad by an un-revisioned repository. This
is the case despite that the quad change ratio[9] is a large multiple of that which is reported
for benchmark datasets.> The planning-integration__rev repository demonstrates, in

*In the instance, the CB value reflects just the deltas with no intermediate version materialized.

*For example the revisioned form of the production plm__rev repository replaced 613% of the statements over
thirty-three thousand revisions, while the BEAR-B instant dataset demonstrated a change ratio of just 0.011% over
its twenty-one thousand revisions.

1 bytes

m?dznxp/pﬂmgrev

65,000,000,000 -

60,000,000,000 -]

55,000,000,000 —

50,000,000,000

45,000,000,000

40,000,000,000 -

35,000,000,000 —

30,000,000,000 —

25,000,000,000

20,000,000,000

15,000,000,000

prod:nxpjplanning-integration__rev

qa:nxp/planning-integration__rev

&

qa:nxp/plm__rev

RS

>qa:nxp=hw3/pﬂ|rnu@

00'000°0L
0000002
00'000°0€

JOO'OOO'{

100'000°0S
10000009
100'000'0£

statements >

Figure 3: Repository resource usage: size v/s statement count, indicating revision count

contrast, the consequence of churn in a TB architecture: the storage requirements evolve in
the direction of IC storage. In this repository, requests over a long interval were Graph Store
protocol PUTs with the entire repository as their content.

The relation between size and statement count and revision count is illustrated in figure 3.
Their projection in parallel coordinates form in figure 4 suggests that there is no clear correlation.

The statistics demonstrate that,

« in most cases, storage grows linearly with revision count, with a factor below 1.0, but
particular update patterns can significantly increase that factor.

« in most cases, each individual revision record involves a very small percentage of the
revisions, while n those cases where the percentage is high, storage requirements increase.

« in the limited cases where repositories exist in both static and revisioned forms, with
data models which are almost identical, the ratio of resource requirements per quad
corresponds to the number of revisions made to each quad.

« with normal application use, the majority of statements record a small number of revisions.
This is demonstrated by figure 5.

« in cases where the application updates frequently delete and insert a statement in the

date 2: 1 2023-04-07: 5-01 023-06-01 23-07-011 23-08-01

\ 7 \
revisions /‘, 16,000 18,000: ; 1000 4; : ,000 0,000 32,0 J
bytes -4: / J——-24:00G— 46 481 50.00 52:001 54,00 56:00G 58:00G so.ooei—m:oos
N\

\ NN

“ \ \\
states - 500,000 ——————550,000 600;0(50,000 00,00 50,000 800,000 850/

indexCount 1050M: 1100M: 1150M: {1200M, 1250M

ount

indexDelta

Figure 4: Correlated repository storage attributes

T (log)

1,000,000

10,000

100

T T T T T T T T T T T
10,000 12,000 14000 16000 18000 20,000 22,000 24,000 26000 28000 30,000
revision index length

T
2,000 4,000

Figure 5: Quad index record length distribution for infrequent deletion/addition cycles

T (log)

1,000,000

100004 *,oTe .

.o

. *. .
Lemes ... o -,,.~.,.-‘_ ~\._',..\ . e - -...- X ..- LT .
100 e . * B IR e S e,
. . .
T - T T T T T T T T T T T T T T
20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

revision index length >

Figure 6: Quad index record length distribution for frequent deletion/addition cycles

same revision - for example the planning-integration__rev repository mentioned,
above, this patterns leads to a large number of updates per statement, which affects the
total repository size in a non-linear manner, not only due to an increased revision record
length, but also because excessive index records promote inefficiency in index space
utilization. This is demonstrated by figure 6

4. Query Execution Performance

As a demonstration of the effect of revisioned storage on retrospective access execution time, we
report the results for frequently requested views of the principal PLM repository. We conclude
from the examples that the storage architecture trade-off between space and execution time

is acceptable. Three frequently repeated views were extracted from service logs. For each,
arguments were derived respective the accumulated revisions and the view was applied retro-
spectively. The ebiz_article_group and get_list_changeditemname_for_eco views
from figures 8 and 10 involved a dataset with close to four hundred revisions of approximately
fifty-five million statements. The sfdc_salesiteminfo in figure 12 involved a dataset with
over thirteen hundred revisions of close to eighty million statements. *

The figures include also the "baseline" elapsed and execution times. These were measured by
applying the same views to the equivalent non-revisioned repository. In both the times for the
revisioned storage is approximately twice that of the un-revisioned storage.

The graphs depict both the elapsed time and the execution time, of which the latter accounts
for time spent in parallel threads. In all cases the time was governed more by combinations
of coincident activity, solution size, and processing overhead than by retrospective access
mechanisms.

PREFIX xsd: <http://www.w3.0rg/2001/XMLSchema#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX ex: <http://example.org/>
PREFIX rdf: <http://www.w3.0rg/1999/02/22 -rdf -syntax -ns#>
SELECT ?name ?description
WHERE { { {
?nxpAG a ex:0 ;
ex:1 ?name ;
ex:2 ?description
?nxpAGGraph foaf:primaryTopic ?nxpAG ;
ex:3 ?createdGraphdate }
BIND (if(bound(?date), xsd:dateTime(? date),
’1900-11-27T18:34:55Z°"" xsd : dateTime)
AS ?dateArg)
FILTER ((xsd:dateTime(?createdGraphdate)) >= ?dateArg)
FILTER (bound(?name) && ((ucase(?name)) = ?name)) . }}

Figure 7: view ’ebiz_article_group’ SPARQL text

5. Application Practice

NXP - a prominent semiconductor vendor, approached us to contribute to a project at the inter-
face between their product lifecycle management system (PLM) and their vendor collaboration
portal (VCP). Dydra acts as the product integration hub in the NXP information architecture.
As a consequence, all downstream systems, including VCP, receive NXP product information
through Dydra, whereby the W3C RDF access protocols constitute the programming interface.

Vendor collaboration requires agents to navigate the graph of a bill of materials (BOM)
to extract the product details. The support application involves a core ontology for product
descriptions, according to which each device resource associates a type, a name, a release state,

*This view is included to demonstrate the complexity of the standard queries, rather than their detailed SPARQL
forms.

 execution (seconds)

real 4 |

24 real

T T T
50 100 150 200 250 300
ordinal >

Figure 8: view ’ebiz_article_group’ real and user execution times across revisions

SELECT ?changedltemName
WHERE {
{ ?eco <http://example.org/63> ?ecoNumber ;
<http ://example.org/4> ?changedltem
?changeditem <http://example.org/1> ?changedltemName
} UNION {
?eco <http://example.org/10> ?ecoNumber ;
<http ://example.org/7> ?changedltem
?changedltem <http://example.org/10> ?changedltemName

}

Figure 9: view get_list_changeditemname_for_eco SPARQL text

a product revision identifier, and a description, as illustrated in figure 13. For individual device
types this would be extended with performance, physical, and electrical characteristics. Each
attribute is represented by an individual triple. With respect to this model typical queries
included clauses of the form in figure 14.

The vendor collaboration portal fetches following information from Dydra.

« ECOs (Engineering Change Orders) describe changes to device specifications which need
to be acknowledged by vendors. These enumerate the details of changes to individual
properties in the model.

« Manufacturing sheets are generated with information specific to the various manufactur-
ing stages in the semiconductor product life cycle like Wafer Test, Assembly, and Final
Test. The sheet content is specific to the respective manufacturing stage. There are two
variants.

— The basic page is generated to convey the information specific to the respective
manufacturing stage.

3.0
2.8
26
244

22 & ¢
§ iy ¢ a
ft % o $ & 4,) 2 4 % % 4
&) ¢ i, 0 %, 00 0000 of W0 e o o of
20 P4 & 8y a0 8, 6,00 e 8 % @y
real 1.8

i BT oo il i o

USEr |-
bassline - |
0.4+

0.2

0.0

T T T
50 100 150 200 250 300

Figure 10: view get_list_changeditemname_for_eco real and user execution time across revisions

— A change order specific page conveys the same device and manufacturing infor-
mation, but emphasises the differences in the manufacturing data relative to the
previous ECO for the same manufacturing stage object.

The second manufacturing sheet flavour compares the latest state of the BOM for an object
with the state when an object was modified by a specific ECO. At this point, the revisioned
repositories in Dydra - such as the nxp/plm__rev repository described, above, contribute
essential information. Each ECO is posted into the Dydra PLM repository in one transaction
and each transaction creates a new revision of the repository. In the new revision, the revision
histories of the statements which correspond to modified properties for the changed item are
annotated with the new revision identifier in the manner illustrated in figure 1, above.

This revision metadata is made available to SPARQL queries via RDF-star annotation
syntax[13]. The first attempt to integrate involved explicit temporal attributes extracted accord-
ing to terms which corresponded to Allen interval algebra[14] and combined as tests. The initial
strategy used the two metadata properties met-by and starts with a following approach

Query for a met-by property within the statement pattern. This returns the ordinal
where the statement, returned by the pattern, was deleted

Also query for starts property for the same pattern. This returns the ordinal where the
statement was inserted.

Compare these ordinals with the ordinal which corresponds to the ECO in a such a way
that start the current ordinal should not be equal to met-by and should be equal to
starts .

Combine the above conditions such that, if the statement is not deleted in the current
ordinal but is inserted in the current ordinal, the test returns a true value in the response,
otherwise false.

If the test returns true, then the statement is newly inserted in the ECO repository revision.
In such case, the Ul redlines that specific property, i.e. applies red font, when presenting
it.

A family of queries evolved through this approach to integrate the statements’ revision
metadata into the query solutions following the pattern illustrated in figure 16. They realized a
variant of the VM and VQ access patterns[9] which drew solutions from a virtual materialised
version, but, instead of annotating the solutions with version metadata, in this case, individual
bindings were augmented with version metadata drawn from the respective statement. These
queries produced the intended results, but they involved conversion between domains to make
temporal values available to general algebra operations. This turned out to be problematic.

Dydra follows the customary RDF storage architecture, whereby repository content is
dictionary-encoded. Normalized term values are replaced with term identifiers and stored
quads comprise term identifiers rather than term values. This manifests the RDF principle of
term identity and permits the SPARQL algebra implementation to move less data and apply
faster comparisons than were solution compatibility to be determined in the term value domain.
This principle does not, however, extend to terms with temporal value domains. In order to
index them efficiently and to order results properly, their representation must reflect their
respective value domain. The linear revision index associated with each statement comprises
monotonically increasing revision ordinal or time-based UUID values. If temporal properties
are to be combined with results from statement patterns in a filter, as in figure 16, they must be
transformed into term identifiers in order to pass them through the algebra operators. Where
they are dictionary-encoded in order to incorporate them into a solution, that introduces a
delay: the current term interning rate is only seventy-thousand per second.

The limited performance of this approach demonstrated the issue noted above, that revision
metadata is not immediately suitable to be included in BGP solutions. A more efficient approach
is to reduce interning by applying as much logic as possible in the temporal value domain. Rather
than formulating the queries with annotations and filters, a more efficient implementation is to
introduce temporal operators which embody the complete logic. In order to circumvent that
rate limit, we introduced a virtual temporal attribute to designate an operator which applies the
described logic to compute whether the statement had been introduced in a given revision. This
attribute was bound in the respective solution for each device parameter to a single boolean
variable specific to the parameter.

The result was queries according to the pattern illustrated in figure 17 where the implemen-
tation encapsulates this logic in a more optimum system function called not-asserted. This
not only executes the above operation more optimally, it also provided for cleaner code. The
approach permitted queries of the complexity illustrated in figure 18. The effect of the revised
logic was to reduce their execution times from minutes to tens of seconds.

Acknowledgments

Thanks to the developers of SBCL and LMDB upon which Dydra is implemented.

References

[1] J. Anderson, A. Bendiken, Transaction-time queries in dydra, in: J. Debattista, J. Umbrich,
J. D. Fernandez, A. Rula, A. Zaveri, M. Knuth, D. Kontokostas (Eds.), Joint Proceedings of

the 2nd Workshop on Managing the Evolution and Preservation of the Data Web (MEPDaW
2016) and the 3rd Workshop on Linked Data Quality (LDQ 2016) co-located with 13th
European Semantic Web Conference (ESWC 2016), Heraklion, Crete, Greece, May 30th,
2016., volume 1585 of CEUR Workshop Proceedings, CEUR-WS.org, 2016, pp. 11-19. URL:
http://ceur-ws.org/Vol-1585/mepdaw2016_paper_02.pdf.

[2] J. Anderson, Rdf graph stores as convergent datatypes, in: Companion Proceedings of
The 2019 World Wide Web Conference, 2019, pp. 940-942.

[3] W. Ali, M. Saleem, B. Yao, A. Hogan, A.-C. N. Ngomo, A survey of rdf stores & sparql
engines for querying knowledge graphs, The VLDB Journal (2022) 1-26.

[4] F. Kovacevic, F. J. Ekaputra, T. Miksa, A. Rauber, Starvers-versioning and timestamping
RDF data by means of RDF* — an approach based on annotated triples.

[5] R. Taelman, M. Vander Sande, J. Van Herwegen, E. Mannens, R. Verborgh, Reflections on:
triple storage for random-access versioned querying of rdf archives, in: Journal Track at
the 18th International Semantic Web Conference (ISWC 2019), volume 2576, 2019.

[6] R. Taelman, T. Mahieu, M. Vanbrabant, R. Verborgh, Optimizing storage of rdf archives
using bidirectional delta chains, Semantic Web 13 (2022) 705-734.

[7] H. Chu, Mdb: A memory-mapped database and backend for openldap, in: Proceedings of
the 3rd International Conference on LDAP, Heidelberg, Germany, volume 35, 2011.

(8] F. Grandi, Multi-temporal rdf ontology versioning., in: IWOD@ ISWC, 2009.

[9] J. D. Fernandez, J. Umbrich, A. Polleres, M. Knuth, Evaluating query and storage strategies
for rdf archives, in: Proceedings of the 12th International Conference on Semantic Systems,
ACM, 2016, pp. 41-48.

[10] O.Pelgrin, L. Galarraga, K. Hose, Towards fully-fledged archiving for rdf datasets, Semantic
Web 12 (2021) 903-925.

[11] L Cuevas, A. Hogan, Versioned queries over rdf archives: All you need is sparql?, in:
MEPDaW@ ISWC, 2020, pp. 43-52.

[12] O. Pelgrin, R. Taelman, L. Galarraga, K. Hose, Scaling large rdf archives to very long
histories, in: 2023 IEEE 17th International Conference on Semantic Computing (ICSC),
IEEE, 2023, pp. 41-48.

[13] O. Hartig, P.-A. Champin, G. Kellogg, A. Seaborne, D. Arndt, J. Broekstra, B. DuCharme,
O. Lassila, P. F. Patel-Schneider, E. Prud’hommeaux, et al., Rdf-star and sparql-star. w3c
draft community group report, 2022.

[14] J. F. Allen, Maintaining knowledge about temporal intervals, Communications of the
ACM 26 (1983) 832-843.

http://ceur-ws.org/Vol-1585/mepdaw2016_paper_02.pdf

SjuaWUOIIAUL Juawdoaaap pue y/Q) ‘uononpoid worj sjuerrea 10 sanpradoid uorsiaar pue sjuaurarmbar a8e103s A103150day :¢ Sqe],

8270 | 0S€STT | 2000 | 2622 | £2500°0 LIg 0921 LL'6E 62909 Aorwyd/dxu:adp
99¢ 09°01 LL'6E 0 wid/dxu:asp

9¢6°0 9¥08¢¥ £00°0 19°602 02¥€0°0 vig €971 299 8L16 Adr wid/smy-dxuiasp
6ST°L L€8088¢ 2900 cr'o1e 8¢¥L6°0 L2E 0L°LT 80'%S 9¢¢ Adr wd/dxu:eb
€L2 00'TT LT 0¥ 0 wd/dxuzeb

VL61CLT 969¢LE01G L1'8 0091 60'8¢€¢ 0L121 L0'9¢ 96'¢ 9¢ Adruonerdaqur-guruued/dxu:eb
66181 1G029%¥¥1 1€¢ L80LE £8620°0 00% 61°0¢ 9%'SL 96¢¢el Ad1 wd/smy-dxu:eb
82°¢19 | 8ESLOTTIY 8¢'L LS L8LT 285€0°0 2021 LS'L9 61°9S 695€¢ 201 wyd/dxu:pord
SLC €v'Gl 6195 0 wyd/dxu:poxd

66'899TT | 80991¥SH8T €562 7820 SZ'LST SZ9¥1 01'SH 80°¢ ¢6 | a1 uoneidour-Suruuerd/dxu:poid
‘orje1 93ueyo penb | sejop penb | (D) s91hq g0 | (D) s914q O1 | penb ‘as1/se1hq | penb/salhq | (D) sa14q | () spenb | suorsiaax Joue)sul

Deseription PackingType Description ?ProdRh(2006 Leadfree ?ProdRhizuds EURGHS 7RAF2006_ RHFIndicator 2ProdRhi200s.Halogenfree e Lendiree 7

Leadfree _LeadFrec 7DEV_Dite 7ASM.Date 7CQS_Date 7RFS_Date 7DOD_Dste TWIT_Dte ?ProcessGrouping

€6 Yo Yer' No')
CE N vesT o)
CH N e ver)
N Nt Nt i)
(<KEVWORD/UNDEE- “Not Applicable © “Nat Applicable* “Not Applicable ")}
C00 0L 1 SELECT PBasicType BasicType_Description BasicType_Name ?PackageType Description ?PackageType Name ypeSysiem Name
WHERE (({ 28asicType <hitp =/ /v w3, org 1999102/ 22 rdf-syatax-nastype <hitp /] example .org 18
PBasicType <hitp -/ example.org.1= 7BasicType_Name
BasicType <http o1/ example .org 19 _inode1741
_inode1 145 <hitp /) cxample org /1 TypeSystem Name |
{ PBasicType <hitp /) xample arg/20- _inade1750
inode1750 <htp o/ example org 2> ?PackageType_Description) 1)
[SELECT 7hroductType 7ProductType_Name
WHERE (2ProductType <hitp o/ v g /1999/02/22 -l ~syntax-nsbtype » <hitp// xample.org/21 -
PProductType <http 1/ example. arg/1 = 7ProductType_Name |

[SELECT 267G 2676 _Description 7676, Name
WHERE (761G <http /w3, org /1999/02122 - 1df -syntax-nshiype- <http -/ example g 22+
76T <hitp 1/ example.org 1+ 767G, Name
267G <hitp 1/ example.org 2 767G Description |
FUUUU T U0 U U 7Salesitem <http /o ua. org /1999/02/22 - ~syntax -nsstype » <hitp 1/ sxample. arg/ 23~
PSalesiten <hitp -/ example org 124+ 0rderablePartNumber

PSatestten <hitp // example org /27~ 1CustomerSpecificindicator
PSalesitem <hitp -/ exsmple org 128+ MinimumOrderQuantity
PSalesitem <hitp -/ example org 129+ 761G
PSalestiem <hitp // example org 19> TProduciType
PSalesitem <hitp s/ exsmple org 130+ Outlineacking
7OutlinePacking <Hitp i/ /vww. 3. org 1999/02123 - rdf-syntax -ns¥iype <http i/l example org 31+
PPraductType <hitp /) example org/19= BasicType |

SELECT ?Salestem ?CreatedGraph_Date

W | {751

raph <hitp -/ xmins com! a1 10,1/ primaryTapic = TSalesitem
TSI_Graph <hitp:(/ cxample org 3+ 7CreatedGraph_Date) FILTER
(=Rt v w3 07 2001/ XMLSchemasdateTime =(7CreatedGraph_Date)) == (<hitp /v w. org 12001 XMLSchemasdateTime »(7 date))))])
BIND((-0R. DATAGRAPH.SP0CQ ALGEBRA, replace -,
ormiowaL

1) As7sstesem_Name)

{ 7Salestiem <hitp:// xample arg/20- PPackingType
2PackingType <hitp - v w3 org 1999102122 - rdf -syatax -msttypes <hitp o/ example org 32+ | }]
ormiowaL
(?Salestiem <hitp /) xample.org/ 42 ?CodingCentre | 1]
[Salestiem <hitp: /) example.arg/34= 7RA2006_RHFindicator | 1]
{ 2Salesttem <hitp /) xample. org/35 PSafeassureFunctionalSafety | 1)
{ 2Salestiem <hitp:/) example.arg /36> ?ProductbareWeight mg. |
ormonaL

{ 2Salesticm <hitp:/) sxample. o

+

R

tem <hitp) example org 38+ TMSLLE |)

1 7Satesttem <hutp /) example.org/35= 7P |)1
1 2Salestiem <hutp:/) example.org/aa> 289] 1)
{ 2Salesttem <hutp:// example.org /41> 70EV_Date | 1}

ormonaL
1 PSalesttem <hetp: /) example.org/42- ASM Dste | 1}

ormonaL

| 7Satesttem <hetp//example org/a1 76as Dxe) 1)

| 7Salesitem <http 1/ example org/ad 7875 Date) 1)
[7Salesitem <htip:// example_org/4s> 700D Date | 1}

PSalestiem <hitp:(/ example_org /46> 7WIT Date | 1}

opmonaL
SELECT 2Satestiem ((group. . « B -
WHERE ([7Salesttem <hitp -/ /vam. 3. org 1999102/ 22 rdf-syatax-nastype <hitp /) example .arg 23> |

SELECT DISTINGT ?ProcessGrouping. ?Salesitem

e | o oot organs orgra0-0) 250

sitem) 1)
GRove Y TSatesitem 01)) 1

SELECT 70utlinePacking ?SmallestPackingQuantity
e oo

SELECT 7PackingType TPackingType_Name
WHEE | 2PackingType <hitp /) caample.
ormova

311+ PPackingType Name | 1)

SERVICE <hitp 1/ example org/50-
GRAPH <urndydraail = [2PackingType SPC <hitp /fva . org 1999/02/22 -rdf -syntax naiype <hitp:example org 51
bel = 7PackingType_Name |

PackingType_SPC <htp 5/ w. g /2000101, 1 schemas
[PackingType_SPC <hitp:/f example_arg/52> ?PackingType_Description) 1))1
ormowa
GRAPH <urn - dydra:all > [7BasicType_SPC <hitp: /w3, org 2000101/ 1df -schemas label = 7BasicType_Name
Rode1751 <hitp: 1/ example org /54~ 7DescriptiveTitle) 1)
ormonaL
GRAPH <urn:dydra: a1l » [BasicType_SPC. <hitp:/ (v, 3. org /20001011 rdf ~schemas label = TBasicType_Name
2POV_Eptos LRI <hitp =/ example .arg 56> _node1752
i node1752 <hitp -/ example org 34= TPOV_Eptos_Code) 1)

SELECT DISTINCT ?Salesitem ((min(2FOV_Name_)) a5 7P0V_Name) ((_sample (7POV_Enovia_Code_)) 45 7POV_Enovia_Code)

WHERE [{75t
SELECT 2POV_Enovia Code. 7POV_Enavia URI 2POV_Name_ ?Salestiem ?Subpackage

- <BUtp 3 or1999/02122 - 1 -syotax s stypes <hitp 1 example org 23+ |

WHERE [1 [TSubpackage “<http 1/ sxample.arg/30-+ TSalesitem |
WHERE (75ubpackage <hitp ! /vww.3. arg /199902122 - (df-syntax -ns¥type <htp s/ example. org 57
?Subpackage <http /] example. org 58> 7POV_Enowis_URI
2POV_Enovia URI <hitp/ example. org 2+ 7POV_Enavia_Code.
7POV_Enovia_URT <http 11 example org/1= TPOV.Name_ | 1) 1)
GRoup By Tsalestiem 1)
BIND (<R, DATAGRAPH.SPOCQ. ALGEBRA/ caslesce ». 7FOV.Eptas Cade. 7POV.Enovia_Cade. ') ASTFinal_POV.Code)
SERVICE <hitp £/ exsmple org 50~
GRAP <urn dydra [TFinal

OV <htty /s example org 56 _node1753

TFinal POV <hitp o1/ example .arg 59 _inode1754

Rode1754 <hitp 1/ example.org 54+ 1PackageOutlineVersion Description |

SERVICE <htp o/ example org 0~
GRAH <urndydracall - (PSalesticm <hitp /) example arg 61~ TLeadTime_Data
PSalesitem <hitp /s exsmple org 62+ TLeadTime_Unit |
BIND.((<htp ¢/ w1 g,/ 2001/ XNLSKhemasnteger (7 LeadTime_Data))) AS?LexdTime_Numeric)
BIND (¢ §F (2 LeadTime_ Numeric <= 1). TLeadTime_Unit, (concat (LeadTime_Unit, "s"))))) ASTUnit)
BIND. (¢ concat ((str(7LeadTime_Numeric)), " ", 7Unit))) AS7LeadTime) 1}
BIND (1F((bound (PTLE)) . TPPTLE, “Not Applicable))) AS?PeakPackageTemperature_Leadrree)
BIND. (7 ([bound (PPT)) . 2P "Not Applicable 1)) AS?PeakPackageTemperaiure)
BIND. (17 ((bound (7MSLLF)) . TMSLLE, “Not Applicable ') AS?MoistureSensitivityLevel Leadiree)
BIND [IF((bound (2MSLI) . ZMSL. "Net Applicable))) AS?MoistureSensitivityLevel)
BIND. [<htp £/ w3 0812001 XNLSchemas ntoger ~(?PPT_LF))) ASTPPT_LF_integer)
BIND.((<hitp o/ s g /2001 XNLSchemasinteges ~(7PPT))) ASTPPT Integer)
BIND ((_<ORG.DATAGRAPH SPOCQL ALGEBRA conlesce »((1 (in (7CodingCentre . ('CP-ATX 01", 'CP-ATX-02')) && (2PPT_inteser == 240) && (7PPT_integer < 1000), 40", (1 / 0))). (if(in (2 CodingCentre ('CP-ATN-01", 'CP-ATX-02')) & (?PPT_integer < 260) & (2PPT_integer = 0), 30", (1 / 0))). "Not Applicable)} A5
?MaxTimePeakTemperature)
(<0G, DATAGRAPH.SPOCQL ALGEBRA colesce »((if (in (7 CodingCentre . ('CP-ATX-01", 'CP-ATX-02')) && (2PPT_LF Integer ~- 260) & (7PPT_LF integer < 1000), 40", (

o 0010, (i (2CodingCentre, ('CP-ATX-01". 'CPATN-02')) K& (1PPT_LF_Integer < 260) &% (ZPPT_LF integer = 0). '50°, (1 / 0))). "Not

Applicable ")) AS?MaxTimePeakTemperature LeadFree))}

Figure 11: view ’sfdc_salesiteminfo’ SPARQL text

 execution (seconds)

T T T T T T T T T T T
1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 11,000

Figure 12: view ’sfdc_salesiteminfo’ real and user execution time across revisions

T
12,000

T
13,000
ordinal >

prefix plm: <http://nxp.com/data>

prefix rdfs: <http://www.w3.0rg/2000/01/rdf -schema#>
plm:Device a rdfs:Class

plm:name a rdfs:predicate;

rdfs :domain plm:Device;

rdfs:range xmxls:string

state a rdfs:predicate;

rdfs :domain plm:Device;

rdfs:range xmxls:string

revision a rdfs:predicate;

rdf :domain plm:Device;

rdfs:range xmxls:string

description a rdfs:predicate;

rdfs :domain plm:Device;

rdfs:

plm:

plm:

plm:

range xmxls:string

Figure 13: lllustrative PLM ontology core

prefix
select =
from :all
where {
?s a ?type

<urn:dydra:>

plm:name ?name ;

plm:state ?state ;
plm:revision ?revision ;
plm:description ?description

Figure 14: a query which projects the minimal device description

prefix : <urn:dydra:>
prefix plm: <https://nxp.com/plm#>

select =«
from :all
where {

?s a ?type
{|] :met-by ?type_metBy ; :starts ?type_starts |} ;
plm:name ?name

{| :met-by ?name_metBy ; :starts ?name_starts |} ;
plm:state ?state

{| :met-by ?state_metBy ; :starts ?state_starts |} ;
plm:revision ?revision

{|] :met-by ?revision_metBy ; :starts ?revision_starts |} ;

plm:description ?description
{| :met-by ?description_metBy ; :starts ?description_starts |}

Figure 15: an annotated device query

prefix : <urn:dydra:>
select =
from :all
where {
?s a ?type
{| :met-by ?type_metBy ; :starts ?type_starts |} ;
plm:name ?name

{| :met-by ?name_metBy ; :starts ?name_starts |} ;
plm:state ?state
{| :met-by ?state_metBy ; :starts ?state_starts |} ;
plm:revision ?revision
{| :met-by ?revision_metBy ; :starts ?revision_starts |} ;
plm:description ?description
{| :met-by ?description_metBy ; :starts ?description_starts |}
bind (?type_metBy != ?type_starts as ?type_redline)
bind (? name_metBy != ?name_starts as ?name_redline)
bind (? state_metBy != ?state_starts as ?state_redline)
bind (?revision_metBy != ?revision_starts as ?revision_redline)
bind (? description_metBy != ?description_starts as ?description_redline)

Figure 16: a query which compares temporal attributes to determine "redline" status

prefix : <urn:dydra:>

select =
from :all
where {
?s a ?type {| <urn:dydra:notAsserted> ?type_redline |} ;
plm:name ?name
{| <urn:dydra:notAsserted> ?name_redline |} ;
plm:state ?state
s

{|] <urn:dydra:notAsserted> ?state_redline

plm:revision ?revision
{] <urn:dydra:notAsserted> ?revision_redline |} ;

plm:description ?description

{| <urn:dydra:notAsserted> ?description_redline |}

Figure 17: a query reformulated to use a natively implemented predicate

SELECT DISTINGT 7VARZ 2VARA1 7VARIZ 7VARI 7VARS 2VARIS TVARZ 2VARZS 2VAR

v
VARGA 7VARST PVARTO TVART 2VARTS TVARTS TVAREZ 2VARSS TVARS] VARG 7VARSS TVARS2 PVARGS PVARSS 2VARTI
VARIZS TVARISI TVARI3I 2VARII6 ZVARII 2VARIAZ TVARIS TVARIAS 2VARISI 2VARISS ZVARIZZ 2VARISS 2VARIG!
VARSS 7VARS2 ZVARMS 7VARSA 2VARSS ZVARIST TVARIS1 TVARIOS TVARI%S 2VARISO 2VARIS TVARIS2 2VARIS2 TVARISH ZVARIST 2VAR20
WHERE (| [{ [| SERVICE <http /) cxample . org 0~
1 7type <hitp -/ /wins w5, org /1999/02/22 - rdT -syntax -nshtypes <hip:/lvaw.w.org /2000/01 rdf -schema¥Class =
Ztype <hitp -/ /v w3, org 1200001 rdf -schemaslabel - TVARI
DT U U1 U T 7VAR <http =/ /v w3, or 11999/02/22 - rdT-syntax -nsktype= Pype
2VAR2 <http / example.org (3> TVARA {|<urn:dydra : notAsserted - 2VARS|]
VARD <hitp -1/ example org /6> VART (| <urn:dydra:notAsserted > TVARS)
2VARZ <hitp /) example..org /9~ VARIQ
VARD <hitp -1/ example org /11> TVARI2 | <urn:dydra:notAsserted = TVARI3]) |
opTIONAL
[2VAR2 <http s/ example .arg/14> 2VARIS [|<urn:dydra :notAsserted - 2VARISI) | 1]
ormoNAL
{ TVARZ <hitp:// example .org/ 17> IVARIS (| <urn: dydra:notAsserted - 2VARIS|) |)}
ormoNaL
[2VARZ <hitp // example arg /20 PVARZI (| <urn: dydrasnotAsserted = VARR2I) | 1}
orTioNAL
{ TVARZ <http)/ cxample org/23> TVARZE (| <urn dydranotAsscrted » PVARZS [} |)}
ormoNaL
[7VAR2 <hitp:// example .org /26> PVARR? (| <urn:dydranotAsserted » TVARZS|) | 1}
opTIONAL
1 PVAR2 <hittp)/ example .org/29- IVARID {|<urn: dydra natAsserted - 2VARI [} |)]
ormoNAL
(7VARZ <hitp/f example..arg /32> 2VAR (| <urn: dydra:notAsserted » TVARM]) |)}
opTIoNAL
1 PVARD <http o/ cxample . org /35> VARG {|<urn: dydra:natAsserted » VARTT])))
orTioNAL
[TVARZ <hitp/f example org/38= TVARSY (| <urn:dydra notAsserted = TVARIO|) | 1}
BIND ((iF((2VARIZ = "Yes'), "', (iF((2VARIZ = "No) &K (strstarts (VARIO, 'CP-ATK-")), 'L-FSL', 'L-NXP'))))) ASIVARMT))
oToNAL
SELECT VARZ 7VARSS
WHERE [ZVARD (*<hitp i/ example . org/42=+/ <hi1p :/ example arg /43 <http :// example org /43> <hitp

orTioNAL
LU0 (7VARSS <hitp:// example.org/3= 2VARAT (| <urn: dydra:notAsserted » TVARSS)
VARIG <hitp 1/ example. org /6= TVARMY |
(1 7VARSS <http/ /vanw.wd. 0rg /1999/02/22 - df -syntax -nsttype <http </ cxample . org/50- |
UNION { TVARSS <http -/ /wime. w3 org. <hitp/f exampl -
{ TVARZ <hittp 1/ cxample . org/42+ TVARMS {|<urndydra:natAsserted = VARS2[) |))
opTIONAL
1 7VARIS <hitp /] example org /17 TVARS (| <urn:dydra:notAsserted > WVARSH[) | 1}
oPTIoNAL
{ 7VARSS <http:// example.org /14~ IVARSS (| <urn:dydra: notAsserted > 2VARS6[} } 1)
opTioNAL
T CT UL UL L VARMS <http o/ example org/37> 7VARSS {| <urn: dydra:notAsserted = 2VARS |}
TVARSS <hEtp -/ /w3 org /1999/02/22 - rdf ~syntax-nsstype > <hitp /) example. org /60~
IVARSS <http)/ example org/3» VARSI (| urn: dydra notAsserted > TVARG2 ||
TVARSS <hitp /) example. org /6= TVARSS |
ormoNAL
(TVARSS <hitp:// example.org /17> IVARGE (| <urn:dydra: notAsserted > 2VARGSI]) 1)
orTioNAL
[PVARSS <hitp i/ example.org /66> ?VARGT [|<urn: dydra: notAsserted = VARsS 1)] 1]
orTioNAL
| TVARSS <hitp /) example. org (69> TVARTO (| <urn:dydra: notAsserted = 2VARDI[}) })
opTIONAL
[2VARSS <hitp/f example. arg/72> 2VARTS (|<urn: dydra: notAsserted » ARTA]) | 1}
opTioNAL
1 TVARSS <hitp /) example. org 75> IVARTG {| <urn: dydra:notAsserted > VARTTI})]}
ormoNAL
[7VARSS <hitp // example. org /78> IVARTS (| <urn: dydra notAsserted = IVARSO[] } 1]
opTioNAL
1 TVARSS <http /) example.org (81> TVARS2 [| <urn: dydra:notAsserted » IVARRA}) 1)
ormoNAL
[TVARSS <hitp:// example org /84> IVARSS (| <urn:dydra: notAsserted = 7VARSS} | 1}
opTIONAL
1 PVARSS <hitp:// example. arg /14> PVARS? (| <urn:dydra:notAsserted » JVARSE[) | 1}
orToNAL
SELECT TVARSS ((max((bound (PVARSD)))) as 7VARS2) ((max(TVARS1)) as 7VARS3)

WHERE [ZVARSS <hitp:(/ example. org /89~ 2VARSO (| <urn:dydra:notAsserted » TVARSH [} |
GROUP BY 7vARSS 1]
FILTER not in (2VARG3, (‘OBS', “DEV')))
oPTioNAL
C1 UL SERVICE <hitp =/ example org /94
TVARDS <hitp /w3 0rg 1999102122 - rdf -syntax -ns¥iype> <hiip :// example org/96 >
VARDS <http /w3 0rg/2000/01) rdf -schemaslabel > IVARST) FILTER
not in (1VARDT, (‘0BS', DEV')) |
[2VARAS <http // example. org /57~ 2VARSH (| <urn:dydra : notAsserted = TVARS |}
DVARSK <hUtp o/ w3 org /1999/02/22 - rdf -syntax -nsstypes <hitp /] example org /100>
2VARSE <http i/ example. arg /101~ IVARIOR {| <urn: dydra:notAsserted - 2VARIO3|)
VAR <Hitp /1 example org /104> TVARIOS {| <urn: dydranotAsserted > VARIOS)
VARSE <http i/ example . org /6~ 2VARSS |)
opTioNAL
1 7VARSS <hitp /. example org /107> 2VARIOS (| <urn: dydra:notAsserted = PVARIOS|] | })
ormoNAL
[TVARSS <hitp // example org /110> IVARITY {|<urn: dydra:notAsserted » PVARNIZ[] |]}

[TVARSS <hitp:// example org /1135 VARTIA (| urn:dydranotAsserted = TVARIIS|} |)]
oPTioNAL
[SERVICE <hitp 2/ example . org /91>
[7VARTIG <http ://onw.w3 org /1999/02/22 - rdf -syntax -nsstype = <htp)/ example org/117
VARIIE <hitp ¢/ /w3 or /2000/01/ rdf -schemavlabel = 2VARIS |
1 TVARS <hitp:/f example..org /117> 2VARIIG (| <urn:dydra:notAsserted = PVARII9[} |) 1}
opTIONAL
1 SERVICE <http:// example org /94>
[TVARIZD <hitp o/ wwne.w3. org /1999/02/22 - rdf -syntax -nsstype <hitp:// example. org /121>
VARIZ0 <hitp -/ /s w5, 01 12000/01/ rdT-schemaslabel = TVARIZ2 |
(UL SERVICE <http /7 example org /94
[0 7VARIZS <hitp -/ e org (199902122 - rdf -syntax -ns¥types <hitp /[example . org /96
TVARIZS <hitp -/ /winr-w3. or§ /2000/01/ rdf -schemalabel = 7VARIZ | FILTER
tin (vARIZA, (OBS, DEV')) |
[2VARSS <hitp/f example. arg /125~ IVARIZS || <urn: dydra: notAsserted - 2VARIZ? [}
TVARIZG <hEtp i/ ww.w3. org /1999/02/22 - rdf -syntax -nsstype s <hitp:// example .org /128>
PVARIZE <http) example. org/101> TVARIZD [| <urn:dydra:notAsserted = 2VARI [}
2VARI26 <hitp // example .org /104 TVARIST || <urn:dydra: notAsserted - 2VAR1Z)
2VARIZ6 <http i/ example org /107> TVARIZ (| <urn:dydra:notAsserted - PVARII |}
2VARIZG <hitp i/ example. org /135> IVARI3G {| <urn: dydra:notAsserted - 2VARIIT [}
2VARIZS <http i/ example. org /138> TVARIZD (| <urn: dydra:notAsserted - 2VARMO [}
PVARIZE <http)/ example ora /141> TVARIS2 (| <urn:dydra:notAsserted > 2VARIA [}
2VARI26 <hitp // example .org /144> TVARIAS || <urn:dydra: notAsserted - 2VARIAS |}
2VARIZG <http i/ cxample or /147> TVARISS (| <urn:dydra:notAsserted > PVARIS [}
2VARIZG <hitp i/ example. org 150> IVARIST {| <urn: dydra:notAsserted - 7VARIS [}
2VARIZS <http i/ example. org /121~ TVARIZ0 (| <urn: dydra:notAsserted - 2VARISS [}
PVARIZG <http)/ example ora /96> VARIZS |

opTioNAL
[TVARIZS <hitp:(/ example org /154> TVARISS (|<urn:dydra: notAsserted = TVARISS|}) })
ormoNaL
[7VARI2G <http 1/ example . org /157> TVARISS [| <urn: dydra:notAsserted = TVARISS |} | |}
opTIONAL
1 7VARIZS <hitp:(/ example org /160> 2VARIEL {|<urn:dydra:notAsserted > 2VARIG2}))
ormoNAL
[7VARIZ6 <http s/ example . org /163> PVARIGA (| <urn:dydra: notAsserted » IVARISS |} } 1]
opTIoNAL

1 PVARIZS <http (/ example org /166> 2VARIET <
FILTER not in (2VARS9, ('OBS', "DEV')))
ormoNAL

o dydranotasserted = VARISS)])1) 11 1))

11 2VARZ <hitp </ example . org 57> 2VARIGS [<urn: dydra:notAsserted = IVARITO|]
VARIGS <hEtp ¢/ w3, org /1999/02/22 ~rdf -syntax-nsstypes <hitp:// example org /171>
TYARIGS <hittp 1/ cxample org/3= VARITZ (| <urn: dydra notAsserted = PVARITI]
2VARIGS <hitp// example .org/ 17> 2VARITA (| <urn: dydra: notAsserted > 2VARIZS[))
orTioNAL
SELECT 7VARIGS ((max((bound (TVARITS)))) as 7VARITS) ((max(7VARITT)) as 7VARI?S)
WHERE | TVARIED <hitp /) example org /89> 7VARITS (| urn: dydra:notAsserted > IVARITI| |
GROP BY 7VARIES 1) 1)

ormoNaL
[0 1 L[{ 7VARISO <hitp /) example. org/3= 2VARISY {|<urn:dydra: notAsserted » 2VARIS2)
WVARISO <http -/ example org/6= WVARISS |
(1 2VARIBO <http /v org/1999/02/22 - rdf -syntax-nsstype > <http// example . org/184~ |
UNION { 7VARIBO <hitp -/ /s w3. o7 11999/02/22 - rdf -syntax -nstype <http :// example org /135>)
SELECT (2VARISS a5 7VARISO) TVARZ ((max(?VARISS)) as ?VARIS0)
WHERE (| SELECT 7VARIS? 7VARISS 7VAR2 TVARISS
WHERE [TVARZ <hitp /] example org /42 PVARISG
VARISS <hitp i/ example.org/42> VARIST (|<urn:dydra:notAsserted > TVARISS|} |
SELECT TVARIES 7VARIST 2VARZ
WHERE [2VARZ <hitp /) example .org 42+ 2VARISS
PVARIST <http i/ cxample . arg 42+ TVARIED) 1]
GROP BY 2VARISY VAR | |
opTioNAL
[PVARISO <http s/ example . org/17> 2VARISY (| <urn dydra: notAsserted = 7VARI2I}))]
ormioNAL

[TVARISD <hitp -/ example . org /14> 7VARISS (| <urn: dydra:notAsserted = TVARISA[] | |}
opTIONAL
[2VARIO <http:// example org /195> 2VARISG | <urn: dydra:notAsserted - 2VARIT(] | 1}
ormioNAL
{ TVARIBO <hitp </ example . org /198> 2VARISS (| <urn:dydra: notAsserted > 2VARZO[)) 1))
FILTER not in (2VARIS3, ('OBS', 'DEV'))})

R7 TVARIS 2VARIT 2VARI0 TVARS 2VARIS TVARI) VARIS 2VARS 2VARIS PVARZZ IVARZS 2VARS IVARIG 2VARZS IVARS 2VARM TVARAD IVARS 2VAR2

example . org 143~/ <http i/ xample . arg 43~/ <http -/ example . org /43~ <http :// example. org 43~/ <http:// example . org /44) 2VARS

VARITZ 2VARITA JVARIZS ZVARITD 2VARIZI VARITS TVARITS 2VARST 7
VARTA IVARTT 2VARSO TVARSS ZVARK 7VARSS 7VARY3 TVARIOZ TVARIOS PVARIDS TVARIII 2VARIIA ZVARIIS TVARS VARIOS ZVARIOG 2VARIOY TVARIIZ TVARIS
TVARIGA 7VARIGT 2VARIZT ZVARII0 TVARIS2 IVARI3 TVARIST 2VARIAD 2VARIAD 7VARIAG 2VARISS JVARISZ 7VARISS 2VARISH VARISG 7VARIG2 2VARIGS JVARIGS 7VART TVARS3 ?

AR 2VARIZS 7

Figure 18: an indicative redline query : 90 statement patterns, 61 annotations, 143 algebra expressions

	1 Introduction
	2 Dydra Service Architecture
	2.1 Implementation
	2.2 API

	3 Repository Storage Statistics
	4 Query Execution Performance
	5 Application Practice

