
1 / 15

In-Memory Dictionary-Based Indexing of Quoted
RDF Triples

IDLab, Department of Electronics and Information Systems, Ghent University – imec
Ghent, Belgium
E-mail: ruben.taelman@ugent.be

Abstract
The upcoming RDF 1.2 recommendation is scheduled to introduce the concept of quoted
triples, which allows statements to be made about other statements. Since quoted triples en‐
able new forms of data access in SPARQL 1.2, in the form of quoted triple patterns, there is a
need for new indexing strategies that can efficiently handle these data access patterns. As
such, we explore and evaluate different in-memory indexing approaches for quoted triples. In
this paper, we investigate four indexing approaches, and evaluate their performance over an
artificial dataset with custom triple pattern queries. Our findings show that the so-called in‐
dexed quoted triples dictionary vastly outperforms other approaches in terms of query execu‐
tion time at the cost of increased storage size and ingestion time. Our work shows that index‐
ing quoted triples in a dictionary separate from non-quoted RDF terms achieves good perfor‐
mance, and can be implemented using well-known indexing techniques into existing systems.
Therefore, we illustrate that the addition of quoted triples into the RDF stack can be achieved
in a performant manner.

KEYWORDS
RDF, RDF-Star, Indexing

1. Introduction
RDF [1] and Labeled Property Graphs (LPGs) [2] have been around in recent years as two major but

diverging approaches for modeling Knowledge Graphs [3]. One of the main reasons for divergence, is
the fact that LPGs allow datasets to contain statements about other statements, while RDF does not.
This concept enables attaching metadata to statements, such as certainties or temporal validity. For ex‐
ample, it allows one to express “Alice says that Violets are Blue.”, where the statement about Violets be‐
ing Blue is quoted inside a statement about Alice.

In an effort to align these incompatibilities between RDF and LPGs, the RDF* [4] approach was intro‐
duced, which proposes an extension of the RDF data model and SPARQL query language with support
for the concept of quoted triples. This approach was picked up by a W3C community group, and stan‐
dardized in the RDF-star and SPARQL-star community group report [5]. This work is now being carried
forward by the W3C RDF-star working group for standardization into the RDF 1.2 and SPARQL 1.2
recommendations.

Given the wide range of practical real-world applications [6, 7] for quoted triples, many open-source
and commercial RDF and SPARQL systems have already implemented parts of this approach [8].
Notable are systems such as BlazeGraph, GraphDB, and Stardog, which offer the storage of quoted

Ruben Taelman, Ruben Verborgh

7th Workshop on Storing, Querying and Benchmarking Knowledge Graphs (QuWeDa) at ISWC 2023

 ruben.taelman@ugent.be (R. Taelman); ruben.verborgh@ugent.be (R. Verborgh)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR Workshop Proceedings (CEUR-WS.org)

https://en.wikipedia.org/wiki/Resource_Description_Framework
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://w3c.github.io/rdf-star/
https://www.w3.org/2021/12/rdf-star.html
https://www.w3.org/groups/wg/rdf-star/
https://w3c.github.io/rdf-star/implementations.html
https://www.rubensworks.net/
https://ruben.verborgh.org/
https://ceur-ws.org/

2 / 15

triples in their triplestore, and enable queryable access using SPARQL. Even though some approaches
offer reports of their systems passing RDF-star specification tests, and provide high-level documenta‐
tion explaining the concepts of quoted triples for end-users, none of them offer detailed descriptions of
their indexing approach, or query performance evaluations over them. As such, there is an open knowl‐
edge gap on the research question “How to index quoted triples, and what is the impact on ingestion,
storage, and query performance?”.

To fill this gap, we explore four different indexing approaches, implement them in a single system for
fair comparison, and evaluate them in terms of ingestion time, storage size, and query performance. We
focus on in-memory indexing, but approaches are generalizable to mixed disk/memory approaches such
as HDT [9]. Like many RDF indexing approaches [10, 11], we focus on providing indexed access for
triple pattern queries, as these form the basis for answering full SPARQL queries.

2. Related Work
Given the recent introduction of RDF-star and the concept of quoted triples, scientific literature on

making use of it is limited. First, several use cases [6, 7] have been explored using quoted triples.
Furthermore, a declarative language called RML-star [12] has been introduced that allows heteroge‐
neous datasources such as CSV and JSON to be mapped into RDF datasets containing quoted triples.
This language is an extension of the RML language [13], and has been implemented in Morph-
KGCstar [14]. Similarly, RSP-QL* [15] was introduced as an extension to the RSP-QL model [16] for
RDF Stream Processing to support quoted triples. Finally, two approaches [17] are identified to trans‐
form RDF datasets containing quoted triples into a property graphs model [2].

RDF-star is seeing wide adoption among SPARQL implementations, for which a full list of implemen‐
tations that adhere to the RDF-star community group specification can be found in [8]. Unfortunately,
none of these approaches clearly document their storage and indexing approach, which motivates the
need for this article on comparing various indexing techniques.

3. Background
Indexing is an important and well-understood element of RDF storage systems and SPARQL query

engines, where it provides a trade-off between query execution time, storage space, and ingestion time.
Existing approaches are either based on existing database technologies, such as relational
databases [18] or document stores [19], or provide native support for RDF triples. In the context of this
paper, we focus on the latter. Furthermore, we limit our discussion to the storage of RDF triples without
considering the concept of named graphs, as these can be considered as fourth element in a quad-like
structure, for which straightforward index extensions are possible.

http://www.websemanticsjournal.org/index.php/ps/article/view/328

3 / 15

3.1. Indexes For Different Orders

A first important concept in RDF indexing is the storage of triples in different orders [20], which is
done by many RDF storage techniques, such as RDF-3X [10] and Hexastore [11]. Given that a triple
consists of a subject (S), predicate (P) and object (O), both systems include six indexes for different triple
component orders (SPO, SOP, OSP, OPS, PSO and POS). The presence of these indexes allows all possible
triple patterns to be executed efficiently. For example, the triple pattern query ??O can be answered
most efficiently using the OSP or OPS indexes, while the query S?O could be answered using SOP and OSP.
Next to triple pattern access efficiency, these orders also enable more efficient triple pattern join pro‐
cessing inside query engines, where the highly efficient sort-merge join could for example be used for
joins between triple patterns if triples are sorted in the same manner. RDF-3X goes a step further, and
also provides six aggregated indexes (SP, SO, PS, PO, OS, and OP), and three one-valued indexes (S, P, and
O). The triples inside each index can be stored in different ways, such as ordered lists (Hexastore) or
B+Trees (RDF-3X). Approaches such as HDT [9] and OSTRICH [21] go the different direction, and store
fewer indexes (SPO, POS, OSP) to focus purely on the triple pattern access efficiency in combination with
a lower storage cost. In the context of this article, we assume tree-like indexing via nested hash maps,
and we refer to the triple component parts of an index as triple component indexes, corresponding to
the levels in the tree. For example, the SPO index would have 3 triple component indexes: S, P, and O.

3.2. Dictionary Encoding

A second important aspect in RDF indexing is the encoding of RDF terms using dictionaries. The
main purposes of dictionary-encoding are the reduction in storage overhead if RDF terms are reused
across multiple triples inside indexes, and more efficient comparison of RDF terms during query pro‐
cessing. The dictionary itself is a datastructure that maintains a bidirectional mapping of RDF terms to
their encodings. Instead of storing RDF terms directly inside indexes, terms are first encoded into a
more compact datatype, such as an integer, which is then stored inside the index instead. At query time,
non-variable triple pattern terms can also be encoded, and queried inside the index. When returning
query results, encoded triples can be decoded using the dictionary.

Fig. 1 shows an illustration of the typical components of a triplestore. This example store contains
three indexes, with triples stored in SPO, POS, and OSP orders in tree-like structure. These indexes make
use of a single shared dictionary, which encodes the RDF terms inside all RDF triples stored by the
indexes.

Fig. 1: The different components of a triplestore, containing one dictionary that is used by
three indexes.

http://www.websemanticsjournal.org/index.php/ps/article/view/328
https://rdfostrich.github.io/article-jws2018-ostrich/

4 / 15

3.3. Triple Pattern Queries

To simplify discussions involving triple pattern queries, we outline a traditional high-level query exe‐
cution approach for triple pattern queries in Algorithm 1, Algorithm 2, and Algorithm 3. As shown in
Algorithm 1, the first step involves determining the most suitable index for a given triple pattern query.
For example, a ??O query can be answered most efficiently using the OSP index, because O can be select‐
ed in constant time from the root of the tree. The triple pattern query is then delegated to the index,
which is executed according to Algorithm 2. In this step, we recursively drill down into the tree-like in‐
dex by iterating over all matching terms of each triple pattern component. The algorithm for finding all
matches for a single triple pattern component is shown in Algorithm 3, which either returns all terms in
this part of the index if the term is a variable, or returns the term itself if the term is inside the index if
the term is not a variable. We will replace parts of these algorithms when introducing our quoted triples
indexing approaches in Section 5.

FUNCTION QueryStore(store, tp)

 INPUT:

 store: triple store

 tp: triple pattern

 OUTPUT:

 ts: sequence of triples

idx = most suitable index from store.indexes

ts = QueryIndex(idx, store.dict, tp)

RETURN ts

Algorithm 1: Pseudocode for executing a triple pattern query over a triplestore containing
one or more indexes.

FUNCTION QueryIndex(idx, dict, tp)

 INPUT:

 idx: triple pattern index

 dict: dictionary

 tp: triple pattern

 OUTPUT:

 ts: sequence of triples

tpe = dict.encode(tp);

ts = [];

FOR subject IN QueryIndexComponent(idx, dict, tpe.subject])

 indx_s = idx[subject]

 FOR predicate IN QueryIndexComponent(indx_s, dict, tpe.predicate])

 indx_p = indx_s[predicate]

 FOR object IN QueryIndexComponent(indx_p, dict, tpe.object])

 object = indx_p[object]

 ts.push(subject, predicate, object)

 END

 END

END

RETURN ts

Algorithm 2: Pseudocode for executing a triple pattern query over an index, sorted in SPO
order.

5 / 15

4. Use Case
As example use case to illustrate different indexing approaches, we introduce a fictional dataset con‐

taining statements from different people on the color of violets in Listing 1.

To find out what color each person says violets have, we can execute the SPARQL query from
Listing 2. This query contains a variable in the subject position, and a variable inside the quoted triple
pattern of the object position. For brevity in the remainder of this article, we refer to the variables in‐
side quoted triple patterns as quoted variables.

More advanced datasets may also contain nested quoted triples, in which any term inside a quoted
triple could be another quoted triple. There is no upper limit of the nesting depth that can occur.

5. Indexing Approaches
In this section, we introduce four approaches for indexing quoted triples, with increasing levels of

complexity. These approaches build upon the well-established methods of using dictionary encoding
and storing triples in different orders as explained in Section 3. Our approaches only rely on changes
within the dictionary mechanism, while the triple index itself can remain unchanged.

FUNCTION QueryIndexComponent(idxc, dict, term)

 INPUT:

 idxc: a certain triple component of a triple index

 dict: dictionary

 term: a term inside a triple pattern

 OUTPUT:

 ts: sequence of triples

matchingTerms = []

IF term.type === 'Variable'

 FOR key IN idxc

 matchingTerms.push(dict.decode(key))

 END

ELSE

 IF idxc contains dict.encode(term)

 matchingTerms.push(term)

 END

END

RETURN matchingTerms

Algorithm 3: Pseudocode for finding all matches of a single triple component inside an
index.

@prefix : <http://example.org/foo#> .

:Alice :says << :Violets :haveColor :Blue >> .

:Bob :says << :Violets :haveColor :Yellow >> .

Listing 1: Turtle snippets containing statements by Alice and Bob on the color of violets.

PREFIX : <http://example.org/foo#>

SELECT ?person ?color WHERE {

 ?person :says << :Violets :haveColor ?color >> .

}

Listing 2: SPARQL query to find what color each person says violets have.

6 / 15

5.1. Singular Dictionary

A straightforward way to achieve dictionary encoding of quoted triples, is to include quoted triples
directly inside the dictionary with all other RDF terms. As such, quoted triples are handled in exactly
the same manner as other RDF term types. For dictionaries that map strings to integers, this requires a
mechanism to convert quoted triples into strings. Fig. 2 shows an example of such dictionary contents
based on our use case data.

Executing triple pattern queries is identical to the baseline approach as explained in Section 3, except
for triple patterns containing quoted variables, such as the query ?person :says <<Violets haveColor
?color>>. As this approach has no direct way of matching the ?color variable to quoted triples, we are
required to convert quoted triple pattern terms containing variables to variables, and perform a post-
processing step to only emit those triples that match the quoted triple pattern. The pseudo-code of this
algorithm is shown in Algorithm 4.

The main advantage of this approach lies in its simplicity of implementation. However, we hypothe‐
size two main disadvantages:

Fig. 2: Plain terms and quoted triples are stored inside the same dictionary.

FUNCTION QueryIndexSingularDict(idx, dict, tp)

 INPUT:

 idx: triple pattern index

 dict: singular dictionary

 tp: triple pattern

 OUTPUT:

 ts: sequence of triples

IF tp.subject.type === 'Quoted' && tp.subject contains variables

 s_filter = tp.subject

 tp.subject = new Variable()

IF tp.object.type === 'Quoted' && tp.object contains variables

 o_filter = tp.object

 tp.object = new Variable()

ts = QueryIndex(idx, dict, tp);

ts = ts.filter(t =>

 (s_filter === undefined || s_filter matches t.subject) &&

 (p_filter === undefined || p_filter matches t.predicate) &&

 (o_filter === undefined || o_filter matches t.object)

)

RETURN ts

Algorithm 4: Pseudocode of the algorithm for executing triple pattern queries using a sin‐
gular dictionary. This algorithm is a variant of QueryIndex from Algorithm 2.

7 / 15

1. Storage overhead: Quoted triples with shared terms lead to a storage overhead, such as the dupli‐
cate storage of :Violets and :haveColor in Fig. 2.

2. Slow quoted triple pattern execution: When executing triple pattern queries with quoted vari‐
ables, there is no indexed access to matching quoted triples, which can lead to query performance
issues.

5.2. Quoted Triples Dictionary

In an attempt to cope with the two disadvantages of the singular dictionary approach, we can dedi‐
cate the storage of quoted triples to a separate dictionary, as shown in Fig. 3.

To execute triple pattern queries in this approach, the post-processing step from the singular dictio‐
nary is not needed anymore. Instead, we can hook directly into the internal processing of separate
triple component indexes. Concretely, when finding all matches of a given term inside a triple compo‐
nent index, we check if our term is a quoted triple pattern. If so, we perform an inner join between all
quoted triple entries within the quoted triples dictionary, and the terms within the triple component in‐
dex. If the triple component index is index in a hash-like manner, then this inner join can be done effi‐
ciently in a hash join manner. The pseudo-code of this algorithm is shown in Algorithm 5.

We hypothesize that this separated quoted triples dictionary will result in a lower storage overhead.
Furthermore, we expect triple pattern execution to be faster due to the fact that a quoted triple pattern
will only lead to matches with entries in the quoted triples dictionary, as opposed to all possible terms.

Fig. 3: Plain terms and quoted triples are stored in separate dictionaries.

FUNCTION QueryIndexComponentQuotedDict(idxc, dict, term)

 INPUT:

 idxc: a certain triple component of a triple index

 dict: quoted triples dictionary

 term: a term inside a triple pattern

IF term.type === 'Quoted' && term contains variables

 matchingTerms = []

 FOR quotedTriple IN dict.getAllQuotedTriples()

 IF idxc contains dict.encode(quotedTriple)

 matchingTerms.push(quotedTriple)

 END

 RETURN matchingTerms

ELSE

 RETURN QueryIndexComponent(idxc, dict, term)

END

Algorithm 5: Pseudocode of the algorithm for finding all matching terms of a certain triple
component inside an index using a quoted triples dictionary. This algorithm is a variant of
QueryIndexComponent from Algorithm 3.

8 / 15

However, as shown in Fig. 3, this approach can still lead to redundant storage if terms are shared across
different quoted triples, such as :Violet and :haveColor. Furthermore, the join inside the triple compo‐
nent index using all quoted triples might become too expensive if there are many non-matching quoted
triples.

5.3. Referential Quoted Triples Dictionary

To solve the redundant storage issue within the quoted triples dictionary approach, we extend upon
that approach by not storing quoted triples in full, but by instead encoding the three components of
that quoted triples, and using those encodings as key inside the dictionary. Fig. 4 illustrates an example
of this approach.

The triple pattern query algorithm is identical to the one from Algorithm 5, except for the fact that
dictionary encoding and decoding will require the extra step of encoding and decoding of the three
triple components.

We hypothesize that this approach will lead to lower storage usage due to the shared encoding of re‐
dundant terms inside quoted triples.

5.4. Indexed Quoted Triples Dictionary

The Quoted Triples Dictionary approach requires triple component indexes to join with all quoted
triples, which may be costly for selective quoted triple patterns in the presence of many non-matching
quoted triples. To solve this problem, we can modify the storage of our Quoted Triples Dictionary from
a map-like structure to a tree-like structure, so that triple pattern matching can be done more efficiently.
Concretely, this tree-like structure can be implemented similar to a triple index, but it must map to inte‐
ger encodings of quoted triples. Fig. 5 illustrates an example of this approach. This example only makes
use of the SPO order for encodings, but in practise multiple other collation orders may be used.

Fig. 4: Plain terms and quoted triples are stored in separate dictionaries, where quoted
triples are recursively encoded using existing dictionary encodings.

9 / 15

Executing triple pattern queries is very similar to the approach of the Quoted Triples Dictionary, with
the difference that instead of joining with all quoted triples, we join with only those quoted triples that
match with the current quoted triple pattern. The pseudo-code of this algorithm is shown in
Algorithm 6.

We hypothesize that this approach will speed up triple pattern query performance due to the higher
selectivity during joins between the quoted triples dictionary and the current component index.

6. Evaluation
In this section, we evaluate the impact of the indexing approaches discussed in Section 5 in terms of

storage size, ingestion time, and query execution time. We start by discussing our implementation of
the approaches, followed by our experimental setup, results, and end with a discussion.

Fig. 5: Plain terms and quoted triples are stored in separate dictionaries, where quoted
triples are recursively encoded using existing dictionary encodings, and indexed in a tree
structure based on triple components.

FUNCTION QueryIndexComponentQuotedDictIndex(idxc, dict, term)

 INPUT:

 idxc: a certain triple component of a triple index

 dict: quoted triples dictionary

 term: a term inside a triple pattern

IF term.type === 'Quoted' && term contains variables

 matchingTerms = []

 FOR quotedTriple IN dict.getMatchingQuotedTriples(term)

 IF idxc contains dict.encode(quotedTriple)

 matchingTerms.push(quotedTriple)

 END

 END

 RETURN matchingTerms

ELSE

 RETURN QueryIndexComponent(idxc, dict, term)

END

Algorithm 6: Pseudocode of the algorithm for finding all matching terms of a certain triple
component inside an index using an indexed quoted triples dictionary. This algorithm is a
variant of QueryIndexComponent from Algorithm 3.

10 / 15

6.1. Implementation

To achieve a fair comparison between the different indexing approaches, we have implemented all
approaches in the same programming language (TypeScript/JavaScript). The implementation of these
approaches is open-source, and is available on GitHub at https:/​/​github.com/rubensworks/rdf-stores.js.

6.2. Experimental Setup

To measure the performance impact of different quoted triple depths, we create synthetic datasets of
various sizes. Our dataset generator is based on the data model of Section 4 with different people (size /
10) and colors (10), and allows any number of triples to be generated. Furthermore, it allows a depth pa‐
rameter to be specified, which defines the nesting depth of quoted triples in object positions. For in‐
stance, a depth value of 1 generates quoted triples in the form of ?person :says << :Violets

:haveColor ?color >>, while a depth value of 3 generated quoted triples in the form of ?person :says
<< ?person :says << ?person :says << :Violets :haveColor ?color >> >> >>.

For our experiments, we range the dataset from 1.000 to 1.000.000 triples, with the depth ranging
from 1 to 5. For each combination, we measure the performance of the four indexing approaches in
terms of the following metrics:

Storage size: The total memory consumption after ingestion in MB.

Ingestion time: The duration of ingesting the generated triples in milliseconds.

Query execution time: The total duration of executing all triple pattern queries in milliseconds.

Query execution time was measured using 3 categories of queries (examples assume depth 2):
Low selectivity: Query people in the form of: ?person :says << ?person :says << :Violets
:haveColor :Red >> >>. Each query produces size / 10 results.

Medium selectivity: Query colors in the form of: ?person :says << :Bob :says << :Violets
:haveColor ?color >> >>. Each query produces 10 results.

High selectivity: Query colors of specific people in the form of: :Alice :says << :Bob :says <<
:Violets :haveColor ?color >> >>. Each query produces 1 results.

The four indexing approaches were configured with three indexes (SPO, POS, OSP), and the indexed
quoted triples dictionary was also configured with these three indexes. All experiments were executed
on a MacBook Pro 13-inch, 2020 with 16GB of RAM and a 2,3 GHz Quad-Core Intel Core i7 processor.
Our experimental setup is fully reproducible, and is available together with the raw results at https:/​/
github.com/rubensworks/experiments-indexing-quoted-triples.

6.3. Results
Fig. 6 and Fig. 7 respectively show the storage sizes and ingestion times for the different indexing ap‐

proaches. Fig. 8, Fig. 9, and Fig. 10 respectively show the query execution times for low, medium, and
high selectivity queries. We omit results for quoted triple depths that do not provide additional insights
aside from the highest and lowest values. To show an overview of all storage sizes, all figures are loga‐
rithmic in both axes.

https://github.com/rubensworks/rdf-stores.js
https://github.com/rubensworks/experiments-indexing-quoted-triples

11 / 15

Singular Dictionary

Quoted Triples Dictionary

Referential Quoted Triples Dictionary

Indexed Quoted Triples Dictionary

The labels inside each figure map to the indexing approaches as follows:

singular

quoted

quoted-ref

quoted-idx

Fig. 6: Storage sizes for the 4 indexing approaches with increasing dataset sizes.

Subfig. 6.1: Depth 1 Subfig. 6.2: Depth 5

Fig. 7: Ingestion times for the 4 indexing approaches with increasing dataset sizes.

Subfig. 7.1: Depth 1 Subfig. 7.2: Depth 5

12 / 15

Fig. 8: Query execution times for the 4 indexing approaches with increasing dataset sizes
with low result selectivity.

Subfig. 8.1: Depth 1 Subfig. 8.2: Depth 3

Subfig. 8.3: Depth 4 Subfig. 8.4: Depth 5

Fig. 9: Query execution times for the 4 indexing approaches with increasing dataset sizes
with medium result selectivity.

Subfig. 9.1: Depth 1 Subfig. 9.2: Depth 3

Subfig. 9.3: Depth 4 Subfig. 9.4: Depth 5

13 / 15

6.4. Discussion

6.4.1. Storage Size

The results from Fig. 6 show that in terms of storage size, the singular dictionary and referential
quoted triples dictionary approaches perform the best. The quoted triples dictionary and indexed quot‐
ed triples dictionary approaches on the other hand require significantly more memory. Contrary to
what we hypothesized in Section 5, the storage overhead of the singular dictionary for terms inside
quoted triples is less significant than expected, and the gains from the removal of storage redundancy
with the referential quoted triples dictionary are minimal. This is due to the string interning memory
optimization that is used by Node.js, whereby multiple equal string instances are only stored once in
memory. The indexed quoted triples dictionary approach results in a significantly higher storage size
due to the three indexes that are used to index quoted triples.

6.4.2. Ingestion Time

As expected, we observe similar results in terms of ingestion time in Fig. 7, where the singular dictio‐
nary and quoted triples dictionary are significantly faster than the referential and indexed quoted
triples dictionary approaches. These approaches are faster due to their simpler encoding approach,
whereas the referential and indexed quoted triples dictionary approaches require more operations dur‐
ing triple encoding.

Fig. 10: Query execution times for the 4 indexing approaches with increasing dataset sizes
with high result selectivity.

Subfig. 10.1: Depth 1 Subfig. 10.2: Depth 3

Subfig. 10.3: Depth 4 Subfig. 10.4: Depth 5

https://www.zhenghao.io/posts/javascript-memory

14 / 15

[1]

[2]

[3]

[4]

6.4.3. Query Execution Time

The results in Fig. 8, Fig. 9, and Fig. 10 show that on average, the indexed quoted triples dictionary
approach vastly outperforms all other approaches. This is most significant for triple patterns with medi‐
um selectivity due to the fact that this approach has indexes corresponding exactly to these queries,
while the other approaches require iteration over all quoted triples. For triple patterns with low selec‐
tivity, the difference is smaller, but the indexed quoted triples dictionary approach is still faster overall.
The difference for triple patterns with high selectivity is minimal, as the overhead of triple pattern dic‐
tionary encoding during query execution when fetching a single result becomes more apparent.

7. Conclusions
In this article, we discussed four approaches for the in-memory indexing of quoted triples, ranging

from very naive to highly optimized for quoted triple pattern access.
Our results show that the indexed quoted triples dictionary approach is on average orders of magni‐

tude faster than other indexing approaches. In the most extreme case, this approach is over 4.000 to
11.000 times faster than other indexing approaches for a dataset size of 1 million with quoted triples at
depth 5. For smaller dataset sizes, lower quoted triple depths, and other types of queries, the difference
becomes smaller. This significant speedup at query time comes with the expected cost of increased stor‐
age size and ingestion time, which is approximately two-fold for a large dataset.

As such, for use cases where quoted triple pattern queries occur at various depths, and an increase in
storage size and ingestion time are acceptable, the indexed quoted triples dictionary approach is highly
beneficial for achieving good query performance. Furthermore, given the fact that this approach stores
quoted triple terms separate from all other terms inside the dictionary, there is no significant overhead
of using such a dictionary by default in triplestores, even if is unknown before ingestion starts if quoted
triples are present in the datasets.

In future work, there is a need to evaluate the performance of different indexing approaches over
real-world data, as we only evaluated performance over artifically generated datasets, which do not
capture real-world properties [22]. Furthermore, we wish to evaluate the performance of these indexes
within full SPARQL queries by plugging them into a SPARQL query engine [23].

In conclusion, the outcomes of this work show that the inclusion of the concept of quoted triples into
the RDF and SPARQL recommendations necessitates changes in triplestores in terms of indexing and
dictionary encoding, but that approaches such as the indexed quoted triples dictionary are able to pro‐
vide very good performance, while not requiring overly complicated additions implementation-wise.

References
Cyganiak, R., Wood, D., Lanthaler, M.: RDF 1.1: Concepts and Abstract Syntax. W3C, http:/​/
www.w3.org/TR/2014/REC-rdf11-concepts-20140225/ (2014).
Rodriguez, M.A., Neubauer, P.: Constructions from dots and lines. arXiv preprint
arXiv:1006.2361. (2010).
Hogan, A., Blomqvist, E., Cochez, M., d’Amato, C., Melo, G.de, Gutierrez, C., Kirrane, S., Gayo,
J.E.L., Navigli, R., Neumaier, S., others: Knowledge graphs. ACM Computing Surveys (CSUR).
54, 1–37 (2021).
Hartig, O.: Foundations of RDF* and SPARQL*:(An alternative approach to statement-level
metadata in RDF). In: AMW 2017 11th Alberto Mendelzon International Workshop on
Foundations of Data Management and the Web, Montevideo, Uruguay, June 7-9, 2017. Juan
Reutter, Divesh Srivastava (2017).

https://comunica.github.io/Article-ISWC2018-Resource/
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/

15 / 15

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Hartig, O., Champin, P.-A., Kellogg, G., Seaborne, A.: RDF-star and SPARQL-star. W3C, https:/​/
www.w3.org/2021/12/rdf-star.html (2021).
Kasenchak, B., Lehnert, A., Loh, G.: Use case: ontologies and RDF-star for knowledge manage‐
ment. In: The Semantic Web: ESWC 2021 Satellite Events: Virtual Event, June 6–10, 2021,
Revised Selected Papers 18. pp. 254–260. Springer (2021).
Braun, C.H.-J., Käfer, T.: Self-verifying Web Resource Representations Using Solid, RDF-Star
and Signed URIs. In: The Semantic Web: ESWC 2022 Satellite Events: Hersonissos, Crete,
Greece, May 29–June 2, 2022, Proceedings. pp. 138–142. Springer (2022).
Group, R.D.F.-star W.C.C.: RDF-star Implementations. https:/​/​w3c.github.io/rdf-star/imple‐
mentations.html (2023).
Fernández, J.D., Martínez-Prieto, M.A., Gutiérrez, C., Polleres, A., Arias, M.: Binary RDF
Representation for Publication and Exchange (HDT). Web Semantics: Science, Services and
Agents on the World Wide Web. 19, 22–41 (2013).
Neumann, T., Weikum, G.: RDF-3X: a RISC-style engine for RDF. Proceedings of the VLDB
Endowment. 1, 647–659 (2008).
Weiss, C., Karras, P., Bernstein, A.: Hexastore: sextuple indexing for semantic web data man‐
agement. Proceedings of the VLDB Endowment. 1, 1008–1019 (2008).
Delva, T., Arenas-Guerrero, J., Iglesias-Molina, A., Corcho, O., Chaves-Fraga, D., Dimou, A.:
RML-star: A declarative mapping language for RDF-star generation. In: ISWC2021, the
International Semantic Web Conference. CEUR (2021).
Dimou, A., Vander Sande, M., Colpaert, P., Verborgh, R., Mannens, E., Van de Walle, R.: RML:
A generic language for integrated RDF mappings of heterogeneous data. Ldow. 1184, (2014).
Arenas-Guerrero, J., Iglesias-Molina, A., Chaves-Fraga, D., Garijo, D., Corcho, O., Dimou, A.:
Morph-KGCstar: Declarative generation of RDF-star graphs from heterogeneous data.
Semantic Web (Under Review). (2023).
Keskisärkkä, R., Blomqvist, E., Lind, L., Hartig, O.: RSP-QL: Enabling Statement-Level
Annotations in RDF Streams. In: Semantic Systems. The Power of AI and Knowledge Graphs:
15th International Conference, SEMANTiCS 2019, Karlsruhe, Germany, September 9–12, 2019,
Proceedings. pp. 140–155. Springer (2019).
Dell’Aglio, D., Della Valle, E., Calbimonte, J.-P., Corcho, O.: RSP-QL semantics: A unifying
query model to explain heterogeneity of RDF stream processing systems. International Journal
on Semantic Web and Information Systems (IJSWIS). 10, 17–44 (2014).
Abuoda, G., Dell’Aglio, D., Keen, A., Hose, K.: Transforming RDF-star to Property Graphs: A
Preliminary Analysis of Transformation Approaches–extended version. arXiv preprint
arXiv:2210.05781. (2022).
Erling, O., Mikhailov, I.: Virtuoso: RDF support in a native RDBMS. In: Semantic Web
Information Management. pp. 501–519. Springer (2010).
Wallgrün, J.O., Frommberger, L., Wolter, D., Dylla, F., Freksa, C.: Qualitative spatial representa‐
tion and reasoning in the SparQ-toolbox. In: International Conference on Spatial Cognition.
pp. 39–58. Springer (2006).
Harth, A., Decker, S.: Optimized index structures for querying rdf from the web. In: Third
Latin American Web Congress (LA-WEB’2005). pp. 10–pp. IEEE (2005).
Taelman, R., Vander Sande, M., Van Herwegen, J., Mannens, E., Verborgh, R.: Triple Storage
for Random-Access Versioned Querying of RDF Archives. Journal of Web Semantics. (2018).
Duan, S., Kementsietsidis, A., Srinivas, K., Udrea, O.: Apples and oranges: a comparison of RDF
benchmarks and real RDF datasets. In: Proceedings of the 2011 ACM SIGMOD International
Conference on Management of data. pp. 145–156 (2011).
Taelman, R., Van Herwegen, J., Vander Sande, M., Verborgh, R.: Comunica: a Modular SPARQL
Query Engine for the Web. In: Proceedings of the 17th International Semantic Web
Conference (2018).

https://www.w3.org/2021/12/rdf-star.html
https://w3c.github.io/rdf-star/implementations.html

