
Combining Public and Private Linked Data through
Graph-based Authorization Profiles in the
semantic.works Framework
Tom De Nies, Aad Versteden, Erika Pauwels and Johan Delaure

redpencil.io – email: firstname.last.name@redpencil.io

Abstract
The semantic.works framework enables developers to build applications using Linked Data, eliminating
the need to rely on conversions to disseminate it. However, in many real-world applications not all of this
data is public, either temporarily or permanently. To mitigate this, the mu-authorization microservice
allows the configuration of authorization groups and the types of data they have access to. In the
background, this means that all data will be distributed across RDF graphs corresponding to these profiles.
This process is completely transparent for other microservices in the stack, unburdening application
developers from having to implement this logic. Additionally, this allows for timed distribution of data
by other microservices, since all that needs to be done to provide access to a certain profile is to write
data into the right graph. In this paper, we describe our approach to authorization for SPARQL, show
that it has been used in real-world applications, and discuss the challenges we face.

1. Introduction

Semantic.works offers an open source microservice framework in which services communicate
through a shared semantic model, resulting in a maintainable and extendable architecture for
web applications. In this paper, we focus on the mu-authorization1 service, which allows public
and private data to be combined in a containerized triplestore, and the challenges this presents.

2. Our Approach

In many of our projects, access to certain data must be restricted. For example, confidential
documents are only accessible to certain users, work-in-progress data must not be shared
until it is finalized, digitally signed documents cannot be published whereas their unsigned
counterparts can, etc. To achieve this using a triplestore, mu-authorization places a layer in
front of the SPARQL endpoint. Data is organized into graphs, and the access to these graphs is
restricted to a certain set of roles, each of which is associated with a group of users. Our service
then rewrites queries based on the session information of the user and the access rights on the
data. Paired with identification & authentication2, this guarantees that other microservices can
transparently query the triplestore without having to worry about access to restricted data.

QuWeDa 2023, 7th Workshop on Storing, Querying and Benchmarking Knowledge Graphs
© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1Documentation and code available at https://semantic.works/ & https://github.com/mu-semtech/mu-authorization
2See https://github.com/mu-semtech/mu-identifier and https://github.com/mu-semtech/login-service

https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org
https://semantic.works/
https://github.com/mu-semtech/mu-authorization
https://github.com/mu-semtech/mu-identifier
https://github.com/mu-semtech/login-service

To determine the access policy: i.e., which users have access to which data, group access
rules are specified in a configuration file. Groups have usage restrictions that can be set to
read, write, and/or read for write3. These restrictions are paired with access rules to determine
whether or not the user is part of this group, as well as with graph specifications and resource
constraints to know which data can be read from/written to which graphs. For example, a
simple group specification for read-only, public data would be configured as follows:

%GroupSpec{
name: "public",
useage: [:read],
access: %AlwaysAccessible{},
graphs: [%GraphSpec{ graph: "http://example.org/public" }]

}

Two types of access rules are available: AlwaysAccessible and AccessByQuery. AlwaysAcces-
sible is used for public data, as it simply allows access to the data for this group for all users
regardless of their session information. AccessByQuery on the other hand, provides a flexible
way to determine whether or not a user has access to the data, for example:

%AccessByQuery{
vars: ["role"],
query: "PREFIX ex: <http://example.org/>

PREFIX org: <http://www.w3.org/ns/org#>
SELECT ?role WHERE { <SESSION_ID> ex:user / org:role ex:Admin . }"

}

The only limit here is the expressiveness of a SPARQL query, so more complex criteria are also
possible, e.g.: membership of an organization, a minimum age requirement, a valid subscription,
etc. However, there are caveats to more complex authorization rules, discussed in Section 3.

Graph specifications define which graph is created and which triples are added to this
graph by a group, based on two kinds of constraints on the data: ResourceFormatConstraints and
ResourceConstraints. A ResourceFormatConstraint defines a constraint on the prefix of the subject
URI of a triple. For example, this graph specification will send all triples with a subject that
starts with http://example.org/clients/ to the http://example.org/sales graph:

%GraphSpec{
graph: "http://example.org/sales",
constraint: %ResourceFormatConstraint{

resource_prefix: "http://example.org/clients/"
}

}

A ResourceConstraint allows to put a constraint on the resource type (rdf:Class) and/or
the predicates. For example, the following graph specification makes sure no other personal
information than the name and account name are read from/stored in the graph:
3The data can be read while doing update queries only, useful e.g., for writing login activities to a users graph

%GraphSpec{
graph: "http://example.org/sales",
constraint: %ResourceConstraint{

resource_types: ["http://xmlns.com/foaf/0.1/Person"],
predicates: %NoPredicates{

except: ["http://xmlns.com/foaf/0.1/name",
"http://xmlns.com/foaf/0.1/accountName"]

}
}

}

3. In Use & Challenges

At the time of writing, mu-authorization is used in projects4 in the public sector, which have a
strong focus on disseminating Linked Data as part of an effort towards openness of government.
Most notably, these projects include Kaleidos, a software platform to support the decision
making process of the Flemish government; and LBLOD, a platform to increase the quality of
the data streams between local administration, the Flemish government, and the public. Both of
these projects combine public and private data. In Kaleidos, decisions are drafted and internally
discussed before they are released to governmental agencies & the general public. Additionally,
there are currently 5 incremental access levels for documents and 8 different user roles, going
from ministers & their supporting staff, to employees at various agencies, which makes the
need for a flexible authorization service very clear. In LBLOD, most data is publicly readable,
but only authorized organizations and mandataries can submit new data. In these projects, the
following technical challenges emerged as a consequence of the authorization layer.

(Timed) data distribution: When a group must have read access to parts, but not all of the
data that is written to a graph, resource constraints are not enough to ensure confidentiality
when it is needed. Additionally, for governments, the release of information to the public is
often mandatory at specified times. E.g., in the Kaleidos project, the decisions made during the
Flemish council of ministers must be released the same day, while the documents are released at
2pm the next day. To address this, mu-authorization calculates deltas5 for each update query it
executes, and forwards this delta to interested clients. E.g., in Kaleidos, where different levels of
government have different access levels to confidential documents, these deltas are consumed by
a custom distribution service. This service copies the document-related triples to the appropriate
graphs based on their access level. Additionally, this service interprets publication times for
decisions of the council, automatically releasing these decisions to government agencies and
eventually, the public at predetermined times.

Data duplication: Copying data to graphs to accommodate timed distribution introduces an
additional challenge: when a portion of the data that is distributed across graphs is identical, this
creates significant data duplication, scaling linearly with the number of groups that need access
to the same data at different times. E.g, in Kaleidos, each public resource starts in the most

4https://redpencil.io/projects
5i.e. which triples have been added and which have been removed

restricted graph, and is then gradually made public across 3 other graphs, going from most to
least restricted. Since the most restricted graph in this application has approx. 15 million triples,
and the least restricted graph holds 13.1 million, we estimate 87.3% of the data is duplicated
across all graphs. While this does reduce query execution overhead, as each user group only
has one graph to select from, it is unclear whether the benefits in query performance outweigh
the downside of added storage. To minimize the duplication needed for each group, we are
currently exploring separating the ’active’ data from the ’static’ data in individual graphs.

Query execution overhead: As with any query rewriting approach, a certain increase in
query execution time is to be expected. The actual performance depends highly on the strategy
that is chosen when distributing data and specifying authorization groups. Storing disjoint data
in separate graphs and allowing multiple groups to access these graphs might minimize data
duplication, but could increase query execution time. This results in a delicate balancing act,
for which we have yet to find an optimum. A full benchmark on added execution time would
be out of scope for this paper, and is part of our future work.

Indexing: Finally, most web applications require some form of search engine, including our
projects. While semantic.works supports integration of Elastic search6, special attention must
be given to the authorization groups. Originally, each group required its own search index,
resulting in a quickly increasing indexing time. Recently, an update was made to the mu-search
service, which allows the specification of additive indexes, enabling the indexer to re-use indexes
for authorization groups that share graphs. In the case of Kaleidos, this optimization allowed us
to reduce the indexing time from 36 hours to 16 hours.

4. Related Work

Since a complete literature overview is well beyond the scope of this short paper, we refer to
Kirrane et al.[1], Zdraveski et al.[2], and more recently, da Silva[3] for a comprehensive overview
of related work in this field. Our approach can be classified between what Kirrane et al. call Role
Based Access Control and Context Based Access Control. While we do allow contextual access
rules defined using SPARQL, in practice the complexity is often limited to querying for user
roles to avoid the downsides we discussed in Section 3. Finally, we are looking for optimizations
to rewrite queries in the field of federated querying, e.g., as in Werbrouck et al., where the use
of FROM NAMED instead of FROM showed significant performance gains for disjoint graphs[4].

References

[1] S. Kirrane, A. Mileo, S. Decker, Access control and the resource description framework: A
survey, Semantic Web 8 (2016) 1–42. doi:10.3233/SW-160236.

[2] V. Zdraveski, D. Trajanov, R. Stojanov, S. Stojanova, M. Jovanovik, Ranking semantic web
authorization systems, Semantic Web (2017).

[3] T. G. da Silva, Access control in linked data archives (2023).
[4] J. Werbrouck, P. Pauwels, J. Beetz, R. Verborgh, E. Mannens, Consolid: A federated ecosystem

for heterogeneous multi-stakeholder projects, Semantic Web (2022) 1–32.
6https://github.com/mu-semtech/mu-search

http://dx.doi.org/10.3233/SW-160236

	1 Introduction
	2 Our Approach
	3 In Use & Challenges
	4 Related Work

