
StarBench: Benchmarking RDF-star Triplestores
Ghadeer Abuoda

1
, Christian Aebeloe

1
, Daniele Dell’Aglio

1
, Arthur Keen

2
and

Katja Hose
3,1

1Department of Computer Science, Aalborg University, Aalborg, Denmark
2ArangoDB, San Francisco, United States
3Institute of Logic and Computation, TU Wien, Vienna, Austria

Abstract
RDF-star has rapidly gained popularity as a way to annotate RDF statements while avoiding the disadvan-

tages of reification. Hence, a number of triplestores supporting this new standard have become available.

Yet, it is difficult to assess the performance of these systems and to which degree they support RDF-star

and the corresponding SPARQL-star query language. Hence, in this paper, we propose StarBench, a

benchmark for testing SPARQL-star support and runtime performance. We ran StarBench on a number

of state-of-the-art triplestores with RDF-star and SPARQL-star support and share our findings. Based on

these findings, we highlight existing challenges and research opportunities.

Keywords
Benchmark, RDF-star, SPARQL-star

1. Introduction

The Resource Description Framework (RDF) [1] is a widely used W3C standard for representing

and exchanging information on the Web, enabling the modeling of various types of relationships

between resources. Formally, an RDF graph is a set of statements (𝑠, 𝑝, 𝑜) describing that two

resources 𝑠 and 𝑜 are connected by a relationship 𝑝. RDF-star [2] then enables the representation

of more complex relationships as well as metadata about the statements in the RDF graph, such

as provenance [3], knowledge evolution [4], archiving [5, 6], etc. Technically, RDF-star eases the

annotation of statements by allowing the 𝑠 or 𝑜 resources to be statements as well (embedded
statements), e.g., ((𝑠, 𝑝, 𝑜), 𝑞, 𝑎). SPARQL-star [7] is an extension of SPARQL for RDF-star: it

enables queries involving multi-edge relationships and recursive relationships. To meet the

interest in RDF-star, a range of triplestores supporting this new model have become available.

While there are various initiatives to benchmark RDF triplestores and their query engines,

e.g. [8, 9, 10], to the best of our knowledge, the only benchmark that supports RDF-star and

SPARQL-star is the RDF Reification (REF) benchmark [11]. As the name suggests, REF was

proposed to benchmark solutions for annotating statements, such as RDF reification and RDF-

star. However, it does not cover several important aspects. First, REF only supports a subset of

SPARQL-star and therefore does not support assessing to which degree the diverse RDF-star

QuWeDa 2023 : 7th Workshop on Storing, Querying and Benchmarking Knowledge Graphs @ ISWC2023
$ gsmas@cs.aau.dk (G. Abuoda); caebel@cs.aau.dk (C. Aebeloe); dade@cs.aau.dk (D. Dell’Aglio);

arthur@arangodb.com (A. Keen); katja.hose@tuwien.ac.at (K. Hose)

� 0000-0003-4904-2511 (D. Dell’Aglio); 0000-0001-7025-8099 (K. Hose)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1

mailto:gsmas@cs.aau.dk
mailto:caebel@cs.aau.dk
mailto:dade@cs.aau.dk
mailto:arthur@arangodb.com
mailto:katja.hose@tuwien.ac.at
https://orcid.org/0000-0003-4904-2511
https://orcid.org/0000-0001-7025-8099
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

Ghadeer Abuoda et al. CEUR Workshop Proceedings 1–16

and SPARQL-star constructs are supported. For example, embedded patterns in object position

or using Union or Optional between different embedded graph patterns. Moreover, REF only

reports runtime performance but does not check if the query answers are correct.

Hence, we propose StarBench, a benchmark aimed at overcoming such limitations, tailored

for evaluating and comparing the performance of SPARQL-star query engines. We built Star-

Bench by extending REF: we designed a comprehensive set of queries that account for various

specific constructs of RDF-star and SPARQL-star [12], totaling in 56 SPARQL-star queries. The

benchmark is available at the URL: https://github.com/dkw-aau/SPARQL-star-Benchmark under

open licences (CC-BY 4.0 for the data and ASL 2.0 for the code).

We discuss the effectiveness of StarBench by analyzing the performance of various SPARQL-

star query engines, including Apache Jena, Oxigraph, and GraphDB. The insights we gather

from our results hint the research and development directions need to fully support RDF-star to

efficiently query it.

This paper is structured as follows: we introduce the related work in Section 2 and the

background in Section 3. We describe the modification strategies used to generate StarBench

queries and how we selected them in Section 4. We describe our experience applying StarBench

to existing query engines in Section 5, and we conclude with final remarks in Section 6.

2. Related Work

Ever since the inception of SPARQL, there has been a long-standing tradition of benchmarking

SPARQL query engines. This effort is still ongoing with several works on benchmarking SPARQL

query engines being published over the past few years [8, 9, 10, 11, 13, 14, 15, 16, 17, 18]. These

benchmarks cover various different aspects of SPARQL query engines, such as reasoning [8],

federations [13, 14], stress-testing [10, 15], and query processing performance [16]. Furthermore,

the Linked Data Benchmarking Council (LDBC) [19, 20] aims to organize management and

development of RDF and SPARQL benchmarks in a collaborative environment.

While many SPARQL benchmarking suites focus on different aspects of query engines, they

have some commonalities. Most of these benchmarks are community-driven initiatives. Several

benchmarks focus on realistic and real-world data and queries [13, 14, 15, 16]. As an example,

LargeRDFBench [13] is a benchmarking suite for federated SPARQL query engines: it comprises

13 different and interlinked datasets within various domains, such as general knowledge and

biomedical data, and 40 queries of varying complexity and difficulty that access data across

numerous of these datasets. Other benchmarks instead choose to provide synthetic datasets

or queries [10, 8, 9]. They usually focus on performance-heavy metrics like stress-testing

and only secondarily focus on the meaningfulness of the data or the query. For instance, the

Waterloo SPARQL Diversity Test Suite (WatDiv) [10] provides data and query generators to

create synthetic datasets with unlimited scale factors and different queries based on predefined

query templates. Doing so helps assess the performance of query engines under stress for a

diversified set of queries.

While plenty of benchmarking suites exist to test various aspects of SPARQL query engines,

to the best of our knowledge, there is only one benchmark to assess SPARQL-star capabilities

in query engines, called the RDF Reification Benchmark (REF) [11]. REF was initially proposed

2

https://github.com/dkw-aau/SPARQL-star-Benchmark

Ghadeer Abuoda et al. CEUR Workshop Proceedings 1–16

to assess reification techniques over SPARQL-star engines. As such, REF provides an RDF-star

representation of the Biomedical Knowledge Repository (BKR) dataset [21]. Furthermore, REF

includes 12 queries, 7 of which were extracted from the original BKR paper [21] as well as [22].

The remaining 5 queries were created specifically for the REF benchmark. However, most

queries in the REF benchmark contain only basic graph patterns with triple patterns in the form

(𝑠, 𝑝, 𝑜) or ((𝑠, 𝑝, 𝑜), 𝑞, 𝑥), optionally with FILTER clauses.

We argue that we need a more diverse set of queries to comprehensively test the features of

SPARQL-star engines. Therefore, when designing StarBench we opted for a hybrid approach:

we use a real-world dataset, i.e., the one of the REF, and extend the REF query set with synthetic

queries. Such a mixed set of real-world and synthetic queries can be beneficial for experimenting

with realistic workloads as well as for testing the correct behavior of the SPARQL-star engines.

It is also worth noting that the goal of StarBench is to test the support of SPARQL-star engines.

This is different from the goal of REF and other initiatives like [23], which aimed to evaluate

reification strategies and compare them. As such, we believe that StarBench can be a valuable

resource for researchers and practitioners focusing on the development and comparison of

SPARQL-star query engines.

Finally, regarding the assessment of RDF-star support in RDF triple stores in general, previous

studies focused on RDF-star implementations in commercial RDF stores [24]. In this paper, we

consider different commercial and open-source RDF triplestores with a more practical, extensive

analysis of RDF-star support.

3. Background

An RDF statement is a triple consisting of a subject, a predicate, and an object. The subject is

the described resource, the predicate and object are the property-value pair of the resource.

Definition 1 (RDF statement). Let 𝐼 , 𝐵, and 𝐿 be the disjoint sets of IRIs, blank nodes, and
literals. Let 𝑇 = (𝐼 ∪ 𝐵 ∪ 𝐿) be the set of RDF terms. An RDF statement is a triple (𝑠, 𝑝, 𝑜) ∈
(𝐼 ∪𝐵)× 𝐼 × (𝐼 ∪𝐵 ∪𝐿), representing that subject 𝑠 and object 𝑜 are in a relation 𝑝 (predicate).
An RDF graph is a finite set of RDF statements.

RDF-star then extends the above definition of RDF statements by allowing subjects and objects

to be statements themselves.

Definition 2 (RDF-star statement). Let 𝑠 ∈ 𝐼 ∪𝐵 , 𝑝 ∈ 𝐼 , 𝑜 ∈ 𝐼 ∪𝐵 ∪ 𝐿, then an RDF-star
statement is a triple defined recursively as follows:

• Any RDF statement (𝑠, 𝑝, 𝑜) is an RDF-star statement;

• Let 𝑡 and �̄� be RDF-star statements. Then, (𝑡, 𝑝, 𝑜), (𝑠, 𝑝, 𝑡), and (𝑡, 𝑝, �̄�) are RDF-star
statements – also known as asserted statement. 𝑡 and �̄� are referred to as embedded (or
quoted) statements.

SPARQL [25] is the standard language for querying RDF graphs. At its core, there is the notion

of triple pattern.

3

Ghadeer Abuoda et al. CEUR Workshop Proceedings 1–16

Definition 3 (Triple pattern). Let 𝑉 be the set of query variables, infinite and disjoint from the
set of RDF terms 𝑇 . A SPARQL triple pattern conforms to: (𝑇 ∪ 𝑉)× (𝐼 ∪ 𝑉)× (𝑇 ∪ 𝑉).

Triple patterns can then be combined into basic graph patterns (BGPs) via joins on the involved

query variables. Additionally, SPARQL queries can be extended with operators, such as, such

as left join (OPTIONAL), union (UNION), and selection (FILTER) as well as aggregations and

solution modifiers, such as ORDER and LIMIT. For a full description, we refer the reader to

the SPARQL standard [25]. The semantics of SPARQL queries are based on multisets (bags) of

mappings, i.e., a SPARQL solution mapping 𝜇 is a partial function that maps query variables to

RDF terms.

SPARQL-star then extends SPARQL to process RDF-star statements. One of the main differ-

ences is the definition of triple patterns, which accounts for embedded statements.

Definition 4 (SPARQL-star triple pattern). A SPARQL-star triple pattern is a triple pattern
recursively defined as follows:

• Every SPARQL triple pattern is a SPARQL-star triple pattern;

• If 𝑡 and �̄� are SPARQL-star triple patterns, 𝑥 is an RDF term or a query variable, and 𝑝 is an
IRI or a query variable, then (𝑡, 𝑝, 𝑥), (𝑥, 𝑝, 𝑡), and (𝑡, 𝑝, �̄�) are SPARQL-star asserted triple

patterns, and 𝑡 and �̄� are embedded triple patterns.

A SPARQL-star basic graph patterns (BGP-star) correspond to a conjunction of a set of SPARQL-

star triple patterns. A SPARQL-star solution mapping 𝜇 is a partial function that maps variables

to the RDF-star terms, i.e. URIs, blank nodes, literals, and RDF-star triples.

4. StarBench Design

When designing StarBench, we built upon REF [11] for our baseline queries and the dataset.

We use the Biomedical Knowledge Repository (BKR) dataset [22], which contains 61,032,567

triples, including approximately 35 million distinct subjects, 8 million distinct objects, and over

33 million distinct predicates.

At its core, StarBench relies on a number of baseline queries (Section 4.1) that are then

systematically modified using a well-defined set of modification strategies (Section 4.2), which

are applied individually or in combination to generate new query variations.

4.1. Baseline Queries

REF contains twelve baseline queries, grouped into three distinct categories: A, B, and F
1
. In

the following, we use the identifier format 𝑋𝑁 to indicate that a query is the 𝑁 th query in

category 𝑋 .

1

The complete list of queries is available in our project repository: https://github.com/dgraux/RDFStarObservatory/

tree/master/testSuits/REF-Benchmark

4

https://github.com/dgraux/RDFStarObservatory/tree/master/testSuits/REF-Benchmark
https://github.com/dgraux/RDFStarObservatory/tree/master/testSuits/REF-Benchmark

Ghadeer Abuoda et al. CEUR Workshop Proceedings 1–16

1 SELECT ?s ?p ?o
2 WHERE { << ?s ?p ?o >> provenir:derives_from pubmed:99992-INST }

Listing 1: Baseline query A1

1 SELECT ?source_cl (COUNT(?source_cl) AS ?c)
2 WHERE {
3 ?source_inst rdf:type ?source_cl .
4 << meta:C0543467-INST bkr_sn:TREATS ?o >> provenir:derives_from ?source_inst
5 } GROUP BY ?source_cl

Listing 2: Baseline query A3.

Category A includes four queries, for example, the two queries in Listings 1 and 2. These

queries are derived from the study conducted by Sahoo et al. [21], and are characterized by the

presence of a unique statement with embedded statements. The queries in this category include

a specific provenance predicate :derives_from
2
.

1 SELECT ?o1 ?o2 ?pmid2
2 WHERE {
3 << ?o1 bkr_sn:CAUSES ?o2 >> provenir:derives_from ?pmid2 .
4 << bkr_sn:C0543467-INST bkr_sn:TREATS ?o1 >> provenir:derives_from pubmed:10979521-INST
5 }

Listing 3: Baseline query B2.

Category B has three queries involving more complex triple patterns. An example is shown in

Listing 3 containing two SPARQL-star triple patterns, where the two embedded triple patterns

share a common variable.

1 SELECT ?o1 ?o2 ?pmid2
2 WHERE {
3 << bkr_meta:C0543467-INST bkr_sn:TREATS ?o1 >> provenir:derives_from pubmed:10979521-INST .
4 << ?o1 bkr_sn:CAUSES ?o2 >> provenir:derives_from ?pmid2 .
5 << ?o2 bkr_sn:AFFECTS ?o3 >> provenir:derives_from ?pmid3 .
6 }

Listing 4: Baseline query B3.

Another example of is the baseline query B3, shown in Listing 4: it contains three triple

patterns where the join variables lie in the embedded triple patterns.

1 SELECT ?o ?source1 ?source2
2 WHERE {
3 << bkr:META_C0040300-INST bkr_sn:PART_OF ?o >>
4 provenir:derives_from ?source1 ;
5 provenir:derives_from ?source2 .
6 FILTER (str(?source1) > str(?source2))
7 }

Listing 5: Baseline query F3.

Finally, category F includes five queries, introduced by the REF authors [11]. Such queries

are characterized by the presence of FILTER clauses. These queries retrieve asserted statements

containing both provenance and temporal annotations. An example query of this category, F3,

is presented in Listing 5.

2

For ease of presentation, we omit prefixes in the examples and the queries in this paper.

5

Ghadeer Abuoda et al. CEUR Workshop Proceedings 1–16

4.2. Modification Strategies

In total, we used six modification strategies (M1 through M6) as described below.

M1. RDF-star constructs. This modification strategy changes the SPARQL-star triple pat-

terns in the queries to increase or reduce their complexity. In particular:

• it introduces double nesting of embedded graph patterns, as for example in the StarBench

query C1 (Listing 6, Line 2) and

• it positions the embedded triple pattern in the subject or object position of the RDF-star

triple, e.g., query C2 in Listing 7 is derived from baseline query A1 (Listing 1) by moving

the embedded triple pattern from the subject to the object position.

1 SELECT (COUNT(*) as ?Triples)
2 WHERE { «« ?s ?p ?o » ?d ?e » ?t ?u }

Listing 6: Query C1: asserted triple pattern as the subject of another asserted triple pattern.

1 SELECT (COUNT(*) as ?Triples)
2 WHERE { ?d ?e « ?s ?p ?o » }

Listing 7: Query C2: embedded triple pattern in object position.

1 SELECT (COUNT(*) as ?Triples)
2 WHERE {
3 << ?o1 bkr_sn:CAUSES ?o2 >> provenir:derives_from ?pmid2
4 << meta:C0543467-INST bkr_sn:TREATS ?o1 >> provenir:derives_from ?pmid1 .
5 }

Listing 8: Query P19: the object of the triple pattern in Line 4 is replaced with a variable

M2. Replacing resources with variables. By replacing resources in a query template with

variables, we can increase the number of retrieved results. For example, query P19 in Listing 8

has been derived from baseline query B2 in Listing 3; the resource pubmed:10979521-INST
in Line 4 is replaced with variable ?pmid1.

M3. FILTER conditions. This modification strategy modifies the query by introducing

FILTER clauses in different flavors:

• condition on one of the variables of an embedded triple pattern,

• string comparisons with REGEX functions, and

• equality and inequality operators, such as <, >, =, between variables.

For instance, query S14 (Listing 9) is derived from baseline query F3 (Listing 5) by adding a

filter condition on variable ?o1 of the embedded triple pattern.

6

Ghadeer Abuoda et al. CEUR Workshop Proceedings 1–16

1 SELECT (COUNT(*) as ?Triples)
2 WHERE {
3 << ?s1 bkr_sn:PART_OF ?o1 >>
4 provenir:derives_from ?source1 ;
5 provenir:derives_from ?source2 .
6 FILTER (str(?o1a) > str(?s1))
7 }

Listing 9: Query S14: filter on the subject and object variables of the embbeded triple pattern.

M4. Triple pattern addition and removal. This modification strategy transforms a query

by removing or adding triple patterns. As a consequence, this modification strategy affects

query complexity as well as the number of retrieved results. An example of a query derived

through M4 is query P17 in Listing 10, which is derived from baseline query B2 (Listing 3) by

removing the triple pattern in Line 3.

1 SELECT (COUNT(*) as ?Triples)
2 WHERE {
3 « ?o1 bkr_sn:CAUSES ?o2 » provenir:derives_from ?pmid2 .
4 << bkr_meta:C0543467-INST bkr_sn:TREATS ?o1 >> provenir:derives_from pubmed:10979521-INST .
5 }

Listing 10: Query P17: query with an asserted triple pattern.

M5. Advanced operators. This modification strategy adds Optional and Union graph patterns

to a query. M5 is useful to both test the parsing capabilities of the query engines and to test

their evaluation strategies beyond BGP evaluation.

1 SELECT (COUNT(*) as ?Triples)
2 WHERE {
3 << bkr:META_C0543467-INST bkr_sn:TREATS ?o1 >> provenir:derives_from pubmed

:10979521-INST
4 { << ?o1 bkr_sn:CAUSES ?o2 >> provenir:derives_from ?pmid2 }
5 UNION
6 { << ?o2 bkr_sn:AFFECTS ?o3 >> provenir:derives_from ?pmid3 }
7 }

Listing 11: Query C10: query with Union.

An example of a query obtained through this modification strategy is query C10 (Listing

11), derived from the baseline query B3 (Listing 4). By applying M5, a Union operator is added

between the triple patterns in Lines 4 and 6.

M6. Solutionmodifiers. This strategy adds or removes solution modifiers, such as DISTINCT,

COUNT, and projected variables in the SELECT clause. For example, we used this strategy to

add COUNT to the queries in Listings 6-11.

4.3. StarBench Queries

We applied the modification strategies to the baseline queries to obtain a new set of 56 queries.

We designed this set of queries to cover various SPARQL-star operators. We categorized the

7

Ghadeer Abuoda et al. CEUR Workshop Proceedings 1–16

StarBench queries into three categories: plain, selective, and complex, identified by P, S, and C,

respectively. We describe them in the remainder of this section.

4.3.1. Category 𝑃 Queries

StarBench contains 23 plain (P) queries. They are characterized by having a WHERE clause

consisting of a basic graph pattern, where each triple pattern has at most one embedded

statement as the subject. These queries are usually obtained through modification strategies

M2, M4, and M6.

1 SELECT DISTINCT (COUNT(*) AS ?Triples)
2 WHERE {
3 << ?s ?p bkr:META_C0339897-INST >> provenir:derives_from ?pm
4 }

Listing 12: Query P8: the query replaces the predicate resource with a variable and counts the

results.

For example, query P8, shown in Listing 12, is obtained by applying two modification strategies

to baseline query A1 (Listing 1). First, by applying M2 (Line 2), the variable in the object position

of the embedded triple pattern is replaced with the resource bkr:META_C0339897-INST, and

the object of the asserted triple pattern is replaced by variable ?pm. Next, by applying M6 (Line

1), the DISTINCT clause is added, and the aggregation function Count(*) replaces the projected

variables. Other examples of plain queries are P19 and P17 in Listings 8 and 10.

4.3.2. Category 𝑆 Queries

StarBench contains 22 𝑆 queries. Such queries are structurally similar to the 𝑃 queries, with

the addition of the selection algebraic operator (i.e. the FILTER clause). The queries are usually

obtained by applying modification strategies M2, M5, and M6.

1 SELECT (COUNT(*) as ?Triples)
2 WHERE {
3 << ?s1 bkr_sn:PART_OF ?o >>
4 provenir:derives_from ?source1 ;
5 provenir:derives_from ?source2.
6 FILTER(str(?source1) > str(?source2)).
7 }

Listing 13: Query S11: the query replaces a resource with a variable, and counts the number of

results.

Queries S14 (Listing 9) and S11 (Listing 13) are examples of 𝑆 queries. Query S11 is obtained

by applying modification strategies M2 and M6 to baseline query F3 (Listing 5). The former

leads to a replacement of the subject of the embedded statement with a variable ?s1 while the

latter replaces the projected variables with the Count(*) aggregate function.

4.3.3. Category 𝐶 Queries

StarBench includes 11 complex queries, which may use Union, Optional and Group By operators,

or complex SPARQL-star triple patterns, i.e., triple patterns with an embedded triple pattern in

the object position, or triple patterns with multiple nested triple patterns.

8

Ghadeer Abuoda et al. CEUR Workshop Proceedings 1–16

Examples of C queries are C1, C2, and C10 in Listings 6, 7, and 11, respectively. Listing 14

shows another example of a complex query: query C9 is obtained by applying modification

strategies M4 and M6 to baseline query B3 (Listing 4), which add the Optional operator (Line 5)

and the Count(*) aggregate function (Line 1).

1 SELECT (COUNT(*) AS ?Triple)
2 WHERE {
3 << bkr_meta:C0543467-INST bkr_sn:TREATS ?o1 >> provenir:derives_from pubmed:10979521-INST .
4 << ?o1 bkr_sn:CAUSES ?o2 >> provenir:derives_from ?pmid2 .
5 OPTIONAL { << ?o2 bkr_sn:AFFECTS ?o3 >> provenir:derives_from ?pmid3 . }
6 }

Listing 14: Query C9: query with Optional graph pattern

5. StarBench in Action

In this section, we use StarBench to compare six different triplestores with support for RDF-star

and SPARQL-star. Our analysis focuses on the following three aspects: (i) support for RDF-star

and SPARQL-star in the triplestores, (ii) performance of the queries when evaluated over the

triplestores, and (iii) correctness of the obtained query results.

Experimental Setup. We considered the following six triplestores and query engines using

StarBench: (1) Apache Jena/TDB2 [26] 4.7.0 exposed via Fuseki, (2) Engine X
3
, (3) Oxigraph [27]

0.3.16 via Docker, (4) GraphDB [28] 10.0.2 as a standalone server, (5) AnzoGraph [29] 2.5.16 via

Docker, and (6) BlazeGraph [30] 2.1.6 as a standalone Jetty server. However, as we explain in

Section 5.1, AnzoGraph and BlazeGraph had issues loading the datasets. Hence, we were able

to run all the tests only on the remaining four engines.

We ran these engines on a machine with 16 vCPU cores (AMD 7281) with a clock speed of

2.7 GHz, 512KB L1 cache, 8MB L2 cache, 32MB L3 cache, 256GB RAM, 240GB SSD, and 8TB

HDD. We issued the queries from the command line on a different machine with the same

specifications as above and on the same network, using cURL to send the HTTP requests. We ran

the queries sequentially (and not concurrently) for each engine 3 times and report the averages

in this section. We used a timeout value of 30 minutes (1,800 seconds) in our experiments.

The full set of queries provided in StarBench, an overview of the query characteristics and

the expected results, as well as the full experimental setup, including scripts to benchmark the

considered systems, can be found at: https://relweb.cs.aau.dk/starbench/.

5.1. Support for RDF-star and SPARQL-star

Unfortunately, neither AnzoGraph nor BlazeGraph was able to load the dataset into their native

datastores successfully, and we were thus not able to run StarBench on either of them due to

parsing errors. According to the AnzoGraph documentation
4
, there is a limit on the allowed

number of property values per edge (255 properties to be exact). As such, when loading the

3

Engine X is a commercial engine, and the company behind it preferred to obfuscate the name in this article.

4

https://docs.cambridgesemantics.com/anzograph/v2.5/userdoc/lpgs.htm#insert-properties

9

https://relweb.cs.aau.dk/starbench/
https://docs.cambridgesemantics.com/anzograph/v2.5/userdoc/lpgs.htm#insert-properties

Ghadeer Abuoda et al. CEUR Workshop Proceedings 1–16

Figure 1: Execution time in seconds (log scale) for queries with inconsistent results. P16 (17) indicates
that query P16 has 17 expected results.

dataset, we obtained a “Element larger than allowed – too many properties”
error, which prevents the dataset from being loaded. BlazeGraph, on the other hand, threw

a parsing error when trying to load nested statements, meaning that the parser was not able

to parse RDF-star documents, and the support for RDF-star in BlazeGraph is severely limited.

Due to the errors explained above, we omit AnzoGraph and BlazeGraph from the remainder of

this section. However, in the future, we plan to investigate these issues further and adapt the

dataset so that AnzoGraph and BlazeGraph can successfully load the data in order to test their

SPARQL-star capabilities. The remaining query engines were all able to parse and load the data

without any issues.

Another issue we came across was that, during query execution, Engine X raised parsing

exceptions when attempting to process query C1 (Listing 6). We observe that the peculiarity of

this query is the double nesting, i.e., the triple pattern ««« ?s ?p ?o » ?d ?e » ?t ?u»,

which includes a statement that is both embedded and asserted. This suggests that the query

parser in Engine X is not able to accommodate such cases with double nesting. The remaining

queries were all parsed successfully by Engine X, and all other query engines were able to

parse all the queries as well successfully.

5.2. Correctness of the query answers

In this section, we report our findings on result completeness and correctness and provide

hypotheses for these inconsistent or missing results. Figure 1 shows the execution times of

queries for which some systems report inconsistent results. Besides the parsing error of query

C1, Engine X does not return results for queries P16, P21, P22, C9, B2, and B3, as well as

incomplete results for query C10.

As an example of a query with missing results, consider query P22 (Listing 15), derived from

10

Ghadeer Abuoda et al. CEUR Workshop Proceedings 1–16

the baseline query B3 (Listing 4). For this particular query, Jena and Oxigraph time out, while

Engine X returns no results, leaving GraphDB as the only system able to successfully answer

the query within the timeout (Figure 1), albeit still taking more than 10 minutes to do so (∼ 657

seconds). Furthermore, GraphDB answers all the queries in Figure 1 (except C1) more efficiently

than the other query engines. We suspect this is due to the query featuring two embedded triple

patterns that are joined on the common variable ?o1 (Listing 15); evidently, GraphDB is able to

handle such joins between embedded triple patterns more efficiently than the other systems.

Moreover, the most likely reason for the general slow performance of all query engines for

query P22 is the large number of resulting bindings (more than 500 million results).

1 SELECT (COUNT(*) AS ?Triples)
2 WHERE {
3 << bkr_meta:C0543467-INST bkr_sn:TREATS ?o1 >>
4 provenir:derives_from pubmed:10979521-INST .
5 << ?o1 bkr_sn:CAUSES ?o2 >> provenir:derives_from ?pmid2 .
6 ?t provenir:derives_from ?pmid3 .
7 }

Listing 15: Query P22

Regarding the missing results for Engine X, we hypothesize that Engine X is not able to

process the join between embedded triple patterns (as described above). In fact, to further

investigate this behavior, we executed two additional queries: (1) without the triple pattern at

Line 3, and (2) without the triple pattern at Line 5. Engine X was able to return the expected

results in these cases. This is similar to other queries (mentioned above) with the same join, i.e.,

P16, P21, and C9, as well as B2 and B3.

Last, for query C10 (Listing 11), Engine X returned only 991, 875 results, while the expected

number of results is 991, 892, i.e., Engine X is missing 17 results. Query C10 features the same

join between embedded triple patterns as query P22 (Listing 15), but the second triple pattern is

included in a UNION statement. Therefore, we hypothesize that the missing 17 results are the

results of that particular join, which corresponds to the 17 results of query P16, whereas the

991, 875 results that Engine X returns are the results of the other part of the UNION statement

(which does not feature a join on the ?o1 variable).

5.3. Queries timing out

The execution of 26 queries (out of 56) raised timeouts for at least one of the query engines.

Table 1 shows an overview of these 26 queries and their performance for each query engine.

Crucially, we observe that all query engines fail to answer at least one query within the 30-

minute timeout threshold. From a quantitative perspective, Engine X and GraphDB perform

the best with only a single query timing out for each of the systems (query P4 for Engine X and

query C1 for GraphDB). Oxigraph follows with four timeouts, and Jena times out on 24 queries.

While Jena experiences a large number of timeouts, most of them are in the S query group.

In fact, Jena is able to answer most P and C queries within the timeout threshold. S queries

include one or more FILTER clauses (e.g., query S14 in Listing 9), and Jena times out for 17 out

of the 22 queries in the S query group. These numbers show that Jena is unable to efficiently

process SPARQL-star queries with FILTER clauses.

11

Ghadeer Abuoda et al. CEUR Workshop Proceedings 1–16

Table 1
Execution time in milliseconds for each query engine over all the queries that timed out for at least one
query engine including timeout (TO), Query Parsing Error (⋆), no results (∙), and incomplete results
(▲). Bold numbers denote the fastest execution time

Query Jena Engine X Oxigraph GraphDB Query Jena Engine X Oxigraph GraphDB
P4 1,328,823ms TO 428,272ms 404,736ms S11 TO 635,389ms TO 1,366,135ms
P7 TO 433,702ms 351,525ms 289,847ms S12 TO 12,749ms 227,221ms 21,577ms
P19 TO 2,562ms TO 1,317ms S13 TO 10,476ms 229,623ms 14,907ms
P21 TO ∙ 46,065ms 16ms S14 TO 138,510ms TO 441,293ms
P22 TO ∙ TO 657,441ms S17 TO 5,625ms 32,035ms 1,961ms
S3 TO 403ms 18,197ms 174ms S18 TO 7,724ms 34,275ms 1,900ms
S4 TO 86ms 17,804ms 70ms S20 TO 162ms 21,850ms 166ms
S5 TO 25,393ms 28,345ms 9,650ms S21 TO 12,367ms 65,076ms 7,233ms
S6 TO 7,410ms 19,519ms 5,816ms S22 TO 11,302ms 62,449ms 4,562ms
S7 TO 7,957ms 28,564ms 9,547ms C1 719,331ms ⋆ 28,027ms TO
S8 TO 11,884ms 37,153ms 11,933ms C9 TO ∙ 361,470ms 25ms
S9 TO 10,759ms 38,827ms 10,060ms C10 TO ▲ 43,895ms 3,104ms
S10 TO 14,067ms 241,406ms 22,089ms C11 TO 7,534ms 44,122ms 4,416ms

We further notice that GraphDB seems to generally have the best performance over the

queries that time out, with the fastest execution time for 17 of the 26 queries. Furthermore, as

mentioned in Section 5.2, GraphDB was able to answer query P22 in just over 10 minutes, a

query that no other system was able to successfully answer due to a large number of results

(more than 500 million). Second is Engine X, with the best performance for 8 of the 26 queries,

while Oxigraph has the best performance for query C1, which corresponds to the query that

times out for GraphDB and for which Engine X has a parsing error. Jena does not have better

performance for any of the queries in StarBench.

The queries for which Oxigraph times out generally are queries with multiple embedded triple

patterns that are joined (e.g., query P19 in Listing 8), some of which are compared with FILTERs,

e.g., query S14 in Listing 9. If not properly optimized, evaluating such queries could lead to

a high number of intermediate results with a subsequent high number of filter evaluations

or joins. GraphDB and Engine X generally seem to implement optimization techniques that

accommodate such queries since they show increased performance for those queries.

5.4. Query Performance

As discussed in Section 5.3, GraphDB and Engine X generally show better performance than

Jena and Oxigraph, where Jena seems to have the worst performance of all the query engines

on StarBench. This is also the case for most of the queries that do not time out for any engine.

Figure 2 shows the execution time of queries P1-P12 over each engine. With a few exceptions,

GraphDB and Engine X have significantly better performance than both Oxigraph and Jena.

For some queries, like query P10, GraphDB and Engine X outperform Oxigraph up to three

orders of magnitude and Jena up to 5 orders of magnitude. These queries generally are the

queries in the P query group with a low number of results (less than 51000).

We also observe that the engines can behave quite differently on different queries. For

instance, while GraphDB and Engine X generally are more performant than Oxigraph, Oxigraph

outperforms the other engines in query P2. This particular query contains an embedded triple

12

Ghadeer Abuoda et al. CEUR Workshop Proceedings 1–16

Figure 2: Execution time in seconds (log scale) for queries P1-P12. P1 (3) indicates that query P1 returns
3 results.

Figure 3: Execution time in seconds (log scale) for queries S1-S11. S1 (51K) indicates that query S1
returns 51 thousand results.

pattern with all variables, i.e., « ?s ?p ?o », while query P10 contains some bindings

within the embedded triple pattern. Nevertheless, Oxigraph has very similar performance for

the two queries (30 seconds for P2 and 22 seconds for P10), while GraphDB has much better

performance for the query with bindings in the embedded triple pattern (94 seconds for P2

and just 17 milliseconds for P10). This shows that Engine X and GraphDB are able to take

advantage of given bindings in the embedded triple patterns, while Oxigraph and Jena are not

able to do so. The above observations also hold for queries P13-P23; however, due to space

restrictions, we omit details in this paper. They can be found on our website though.

As discussed in Section 5.3, Jena is unable to efficiently process queries with FILTER opera-

tions. This is in line with the results shown in Figure 3 showing the execution times of queries

S1-S11, where Jena has the worst performance for all queries, even the two it does not time out

for (S1 and S2). Oxigraph also times out for query S11; however, this is expected given the large

number of results (310 million) and the fact that both GraphDB and Engine X struggle with this

13

Ghadeer Abuoda et al. CEUR Workshop Proceedings 1–16

Figure 4: Execution time in seconds (log scale) for queries C1-C11. C3 (4K) indicates that query C3
returns 4 thousand results.

query as well (1,366 seconds for GraphDB and 635 seconds for Engine X). Furthermore, in line

with the results for the P query group, GraphDB and Engine X show very similar performance

for most of the queries in the S query group, as well as significantly better performance than

Oxigraph and Jena.

Figure 4 shows the execution time of queries C1-C11. Similar to the previously recorded

results, GraphDB and Engine X generally have better performance for most of the queries than

Oxigraph and Jena. However, we also note that Engine X was unable to fully execute three of

the queries in the C query group, as discussed in Section 5.2. Furthermore, we note that in the

particular case of query C1, GraphDB actually times out as the only query engine. As discussed

in Section 5.1, this particular query contains a double-nested triple pattern.

In summary, the experiments suggest that, generally, GraphDB and Engine X are able to

process SPARQL-star queries more efficiently than Oxigraph and Jena. In most cases, this

difference is quite significant; for instance, query P10 leads to up to three orders of magnitude

faster query execution times for Engine X and GraphDB than Oxigraph, and up to five orders of

magnitude faster query execution times than Jena. Nevertheless, we also reiterate the fact that

Engine X is unable to process most queries with joins between embedded triple patterns, and

throws a parsing error for queries with double-nested triple patterns. Our experimental analysis

further shows that Jena generally has problems processing FILTER clauses efficiently. Finally,

our analysis shows that GraphDB is able to successfully process all queries in StarBench except

query C1 because of the double-nested triple pattern. Overall, our experimental analysis shows

that StarBench is effective in comparing and contrasting different RDF-star and SPARQL-star

query engines and that it can effectively highlight issues in the engines, such as missing support

for certain SPARQL-star features.

6. Conclusion and Future Work

In this paper, we presented StarBench, a SPARQL-star benchmark for assessing the capabilities

and support of triplestores for RDF-star. StarBench is built on top of the RDF-star representation

14

Ghadeer Abuoda et al. CEUR Workshop Proceedings 1–16

of the BKR dataset and the REF benchmark. We applied modification strategies to generate 56

variations from the initial baseline queries.

We applied StarBench to four triplestores: Jena, Engine X, Oxigraph, GraphDB. Our analysis

highlighted limitations in loading the data, query parsing, correct evaluation of SPARQL-star

queries, as well as contrasting query execution performance across all the engines. These results

suggest that StarBench is effective in comparing and contrasting existing engines.

In future work, we plan to continue extending StarBench. A direction we envision is to

extend the tested constructs to include SPARQL and SPARQL-star features, such as entailment

regimes and subqueries, as well as incorporating other RDF-star datasets by generating RDF-star

representations of publicly available RDF datasets. Another direction is the consolidation of the

modification strategies in query templates. Such templates can later be used to automatically

generate different query loads that fit the needs of the StarBench users. Similarly, we aim to use

different datasets, especially the ones with RDF-star statements having more complex structures

than the ones of REF.

Acknowledgments

This research is partially funded by the Independent Research Fund Denmark (DFF) under grant

agreement no. DFF-8048-00051B and the Poul Due Jensen Foundation. We thank the Ontotext

team for the fruitful exchange while preparing the camera-ready version of the article.

References

[1] R. Cyganiak, D. Wood, M. Lanthaler, RDF 1.1 Concepts and Abstract Syntax, W3C Recom-

mendation, W3C, 2014. URL: https://www.w3.org/TR/rdf11-concepts/.

[2] O. Hartig, Foundations of RDF* and SPARQL* (An Alternative Approach to Statement-Level

Metadata in RDF), in: AMW, 2017.

[3] E. R. Hansen, M. Lissandrini, A. Ghose, S. Løkke, C. Thomsen, K. Hose, Transparent

Integration and Sharing of Life Cycle Sustainability Data with Provenance, in: ISWC, 2020,

pp. 378–394.

[4] K. Hose, Knowledge Graph (R)Evolution and the Web of Data, in: MEPDaW@ISWC, 2021,

pp. 1–7.

[5] O. Pelgrin, R. Taelman, L. Galárraga, K. Hose, Scaling Large RDF Archives To Very Long

Histories, in: ICSC, 2023, pp. 41–48.

[6] O. Pelgrin, L. Galárraga, K. Hose, Towards fully-fledged archiving for RDF datasets,

Semantic Web Journal 12 (2021) 903–925.

[7] J. Pérez, M. Arenas, C. Gutierrez, Semantics and complexity of SPARQL, ACM Trans.

Database Syst. 34 (2009) 16:1–16:45.

[8] Y. Guo, Z. Pan, J. Heflin, LUBM: A benchmark for OWL knowledge base systems, J. Web

Sem. 3 (2005) 158–182.

[9] M. Schmidt, T. Hornung, G. Lausen, C. Pinkel, SP2Bench: A SPARQL performance

benchmark, in: ICDE, 2009, pp. 222–233.

15

https://www.w3.org/TR/rdf11-concepts/

Ghadeer Abuoda et al. CEUR Workshop Proceedings 1–16

[10] G. Aluç, O. Hartig, M. T. Özsu, K. Daudjee, Diversified stress testing of RDF data manage-

ment systems, in: ISWC, 2014, pp. 197–212.

[11] F. Orlandi, D. Graux, D. O’Sullivan, Benchmarking RDF Metadata Representations: Reifi-

cation, Singleton Property and RDF, in: ICSC, 2021, pp. 233–240.

[12] G. Abuoda, D. Dell’Aglio, A. Keen, K. Hose, Transforming RDF-star to Property Graphs: A

Preliminary Analysis of Transformation Approaches, in: QuWeDa, 2022, pp. 17–32.

[13] M. Saleem, A. Hasnain, A. N. Ngomo, LargeRDFBench: A billion triples benchmark for

SPARQL endpoint federation, J. Web Semant. 48 (2018) 85–125.

[14] M. Schmidt, O. Görlitz, P. Haase, G. Ladwig, A. Schwarte, T. Tran, FedBench: A Benchmark

Suite for Federated Semantic Data Query Processing, in: ISWC, 2011, pp. 585–600.

[15] C. Stadler, M. Saleem, Q. Mehmood, C. Buil-Aranda, M. Dumontier, A. Hogan, A.-C.

Ngonga Ngomo, LSQ 2.0: A linked dataset of SPARQL query logs, Semantic Web (2022).

[16] C. Bizer, A. Schultz, The berlin SPARQL benchmark, Int. J. Semantic Web Inf. Syst. 5 (2009)

1–24.

[17] S. Duan, A. Kementsietsidis, K. Srinivas, O. Udrea, Apples and oranges: a comparison of

RDF benchmarks and real RDF datasets, in: SIGMOD, 2011, pp. 145–156.

[18] M. Saleem, G. Szárnyas, F. Conrads, S. A. C. Bukhari, Q. Mehmood, A. N. Ngomo, How

Representative Is a SPARQL Benchmark? An Analysis of RDF Triplestore Benchmarks, in:

WWW, 2019, pp. 1623–1633.

[19] R. Angles, P. A. Boncz, J. L. Larriba-Pey, I. Fundulaki, T. Neumann, O. Erling, P. Neubauer,

N. Martínez-Bazan, V. Kotsev, I. Toma, The linked data benchmark council: a graph and

RDF industry benchmarking effort, SIGMOD Rec. 43 (2014) 27–31.

[20] P. A. Boncz, LDBC: benchmarks for graph and RDF data management, in: B. C. Desai, J. L.

Larriba-Pey, J. Bernardino (Eds.), IDEAS, 2013, pp. 1–2.

[21] S. S. Sahoo, O. Bodenreider, P. Hitzler, A. Sheth, K. Thirunarayan, Provenance Context

Entity (PaCE): Scalable provenance tracking for scientific RDF data, in: SSDBM, 2010, pp.

461–470.

[22] V. Nguyen, O. Bodenreider, A. Sheth, Don’t like RDF reification? Making statements about

statements using singleton property, in: WWW, 2014, pp. 759–770.

[23] J. Frey, K. Müller, S. Hellmann, E. Rahm, M. Vidal, Evaluation of metadata representations

in RDF stores, Semantic Web 10 (2019) 205–229.

[24] F. Orlandi, D. Graux, D. O’Sullivan, How many stars do you see in this constellation?, in:

ESWC 2020 Satellite Events, 2020, pp. 175–180.

[25] S. Harris, A. Seaborne, SPARQL 1.1 Query Language, W3C Recommendation, W3C, 2013.

URL: https://www.w3.org/TR/sparql11-query/.

[26] Apache Software Foundation, Apache Jena, 2023. URL: https://jena.apache.org/, Accessed

July 24 2023.

[27] T. Pellissier Tanon, Oxigraph, 2023. URL: https://doi.org/10.5281/zenodo.7669346. doi:10.
5281/zenodo.7669346.

[28] Ontotext, Graphdb, 2023. URL: https://graphdb.ontotext.com/, Accessed July 24 2023.

[29] Cambridge Semantics, AnzoGraph, 2023. URL: https://cambridgesemantics.com/

anzograph/, Accessed July 24 2023.

[30] B. Thompson, M. Personick, M. Cutcher, The bigdata® rdf graph database, in: Linked

Data Management, Chapman and Hall/CRC, 2016, pp. 221–266.

16

https://www.w3.org/TR/sparql11-query/
https://jena.apache.org/
https://doi.org/10.5281/zenodo.7669346
http://dx.doi.org/10.5281/zenodo.7669346
http://dx.doi.org/10.5281/zenodo.7669346
https://graphdb.ontotext.com/
https://cambridgesemantics.com/anzograph/
https://cambridgesemantics.com/anzograph/

	1 Introduction
	2 Related Work
	3 Background
	4 StarBench Design
	4.1 Baseline Queries
	4.2 Modification Strategies
	4.3 StarBench Queries
	4.3.1 Category P Queries
	4.3.2 Category S Queries
	4.3.3 Category C Queries

	5 StarBench in Action
	5.1 Support for RDF-star and SPARQL-star
	5.2 Correctness of the query answers
	5.3 Queries timing out
	5.4 Query Performance

	6 Conclusion and Future Work

