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Abstract
Large-scale pretraining and instruction tuning has facilitated visual language understanding on general
purposes with broad competence. Social media processing will be highly benefit from large visual
languagemodels becausemessages are conveyed through joint reasoning over texts and images. Although
vision-language pretraining has been widely studied, meta vision-language tuning remains under-
explored. Given the ubiquity of visual content in social media, adapting pretrained Visual Language
Models (VLMs) to meta social science is essential avoid extra computational expense on hyper-parameter
search. This paper takes inspiration from cognitive studies to intrinsically and efficiently integrate a
cross-modal reasoning into a method named FLYPE, as the runner up winner in CheckThat! 2023 task
1A. FLYPE integrates visual and text components of multiple tasks with cross-task shared prompts to
guide a frozen VLM to perform as a meta classifier for unseen tasks. We evaluate our model across six
social visual language understanding tasks and perform an ablation study on several modifications to
the architecture. Our empirical study shows the competitive performance and training efficiency of the
method. Using soft prompts can curate biased pretrained attention to focus on more task-related visual
content. We release improved benchmarks with our model at https://github.com/pengbohua/Flype.
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1. Introduction

Designing machine learning with multimodal perception abilities has recently gained significant
attention due to its ubiquity in various computational social science (CSS) tasks such as emotion
recognition, hate speech identification, and fact checking [1, 2]. Reasonably, many linguistic
phenomena practiced in these tasks have visual representations. Furthermore, the environments
where those tasks are more useful, such as social media, favor message conveying in textual
or visual formats. This way, identifying the correlation and contrasts between textual and
visual content to retrieve and classify relevant information is essential. For CSS tasks it is even
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more challenging as it is common to disguise messages by including implicit visual elements or
exploiting linguistic phenomena such as irony and sarcasm.

Although the interplay of how the brain processes images and text is an active area of
research, evidence suggests that different channels analyse them separately toward the final
goal and fusion happens at a later stage [3, 4, 5]. Computational methods for visual language
understanding (VLU) take them as inspiration in the following pipeline [6]. First, the text
associated with the image is analysed to check for expressions related to the final task. Next or
parallel to that, the image is inspected to find task-related concepts. Finally, they are inspected
together to fuse their correlations and predict the final labels. While such a pipeline can be
instantiated with many different components, state-of-the-art VLU relies on transformers and
very large language models [7], which in turn require expensive hardware and a considerable
training time. This urges the development of methods that run on affordable hardware while
still achieving high predictive performance. However, while spreading fake news and hateful
messages are problematic universal behaviors, state-of-the-art multimodal transformers [8] are
hardware-hungry, making them inaccessible to a large population. This urges the development of
methods that can run on affordable hardware while still achieving high predictive performance.

This paper presents FLYPE, an efficient vision-language understanding method targeting
CSS tasks. It adopts two general assumptions for efficiency: (i.) data addressed by different
CSS tasks hold correlated underlying patterns as spreaders of harmful content often rely on
similar visual and linguistic cues to manipulate people and deceive automatic methods, and (ii.)
prompt and prefix-based tuning has demonstrated state-of-the-art results while still requiring
less computational resources than fine-tuning entire models. FLYPE leverages both assumptions
with a novel training regime of multiple-task knowledge distillation by fusing prompts of the
two modalities and sharing prompts among different tasks. Moreover, as an AI-facilitated expert
system, optical character recognition (OCR) [9] has been widely used for aiding understanding
of visual language content [10, 11]. However, a question arises whether OCR is still necessary
given that robust pretrained visual language models [12] can transliterate between images and
texts. We have refurbished six visual language understanding benchmarks with an up-to-date
OCR toolkit using Vision Transformer [13] to investigate that. Experimental results on several
tasks, including emotion recognition, offensive comments, and automatic fact-checking, show
that FLYPE improves parameter efficiency and generalization, particularly in low-resource
settings.

2. Related work

Prompt & Instruction Tuning. Parameter-efficient fine-tuning methods have gained traction
to address ever-increasing training times and computational requirements. One line of methods,
Prompt-Tuning [14, 15], explore continuous prompts in the input space beyond the original
vocabulary. This method aims to improve both parameter and data efficiency of fine-tuning
by automatically searching for effective prompts. Instruction tuning involves fine-tuning
large language models by formulating prompts in natural language [16]. This technique has
demonstrated effective enhancement in zero-shot performance of general natural language
understanding. Notably, Instruction Tuning methods often build on robust PLMs, enabling



faster convergence and yielding substantial improvements in downstream tasks. For example,
Vicuna [17] is an instruction fine-tuned version of a foundation language model, LLaMA [18].
Inspired by these works, we opt to investigate parameter efficient Prompt-Tuning in cross-modal
multitask learning settings.

Vision-Language Models CLIP proposes a simple yet powerful foundation model for gen-
eral visual language representation learning. The model achieves this goal with large scale
contrastive image-text alignment. This model significantly enhances the performance of multi-
modal downstream tasks because the generalizable representations aligned during pretraining
can substantially improve visual content retrieval and visual grounding with its surprisingly
pleasant zero-shot predictions. Frozen [19] extends Prompt-Tuning to the cross-modal setting by
grounding a frozen large language model. Instead of learning soft text embedding, this approach
efficiently tunes the visual tokens, corresponding to the convolutional layers of the model,
presenting strong few-shot performance. Flamingo [6] proposes gated cross attention to fuse
interleaved visual and language data, allowing for superb few-shot visual language generation
which can be more aligned with real-world applications. BLIP-2 [7] introduces a Q-Former,
which uses a bidrectional encoder [20] for cross-modal query tensor encoding. The approach
essentially learns soft visual tokens to bootstrap visual features from the frozen visual encoder
for visual question answering tasks. These visual tokens incorporate task information that
regularize text generation search space, mitigating the image-to-text generation loss observed
in Frozen or Flamingo. We extend the above ideas to the multitask visual language learning by
fusing task-specific prompts with high order matrix decomposition methods.

Multimodal Social Computing Multimodal social computing aims to learn the patterns of
human understanding about social media. However, some social bias, e.g., hatefulness, can be
less perceptible hidden in multiple modes of information, including texts and images. These
biased data can pose ethical threats to certain population and therefore should be curated before
training any AI models.

3. Method

In Figure 1, we provide an overview of our cross-modal prompt tuning method, FLYPE, for
social media understanding. The method consists of two stages: a task-targeting prompt tuning
stage and a prompt fusion stage.

Task-targeted Prompt Tuning. Inspired by [21, 1], task-targeted prompt tuning aims to
adapt a pretrained VLM to maximizing cross-modal semantic consistency of a specific CSS task.
To this end, we pass the prompts through the first few layers of the decoder to understand
entities and their relations through LLM reasoning. Then the prompt goes through a modality
connector and enter Qformer to bootstrap the most conducive visual representations from
the frozen visual backbone. Then visual tokens are compared with the last hidden state after
”answer” from the decoder by reusing cross-attention.
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Figure 1: An overview of our multitask learning method. The FLYPE approach incorporates a Q-former and an
LLM decoder. The Q-former collaborates with the decoder using cross-modal prompts to facilitate social media
understanding. These soft prompts guide a static VLM to measure consistency between text and image modalities.
FLYPE makes predictions based on alignment between task-related visual content and extracted from the Q-former
and the last prompted token from a LLM decoder. Prompt fusion aggregates different task instructions into a
shared prompt. This shared prompt allows FLYPE to perform multiple tasks with the same model architecture and
generalize to data of unseen tasks, e.g., extrapolating from the hatefuness detection labels 𝑌1, checking worthiness
𝑌2 to misinformation detection labels 𝑌4.

In the text channel, we organize the texts as ”(instruction, OCR and text)” to emulate the
cross-modal consistency reasoning, a cognitive process for data collection, described in [22, 23].
In general, the reasoning process requires human annotators to first analyses the textual
description of the image and checks for task semantic clues. Next, they inspect the image
looking for task-oriented concepts. Finally, they connect both scrutinized components to
predict the final label.

To emulate the process, we sequentially process the soft prompts, optical characters and text
description with the causal self-attention mechanism of a frozen text decoder. The causal mask
can enforce the self-attention to proceed from left to right, and the output probability indicates
surprisal of entailment, which will be fused into the final decision. In the image channel, we
use the same set of soft prompts but change their dimensions to bootstrap visual tokens. These



soft prompts bring task information to visual tokens, and the latter becomes input features for
classification. The process maximize a visual entailment probability, with the log-likelihood
written as follows,

𝑝′𝑡 = argmax
𝑝𝑡∈ℝ𝑐×𝑑

𝔼[log 𝑃(𝑌𝑡 ∣ 𝐼𝑡, 𝑝𝑡, 𝑂𝑡, 𝑋𝑡)] (1)

where 𝑝′𝑡 is the task-oriented prompt and 𝑝𝑡 is the prompt before augmentation. 𝐼𝑡, 𝑂𝑡, and 𝑋𝑡
denote input images, OCR results, and text description, respectively. 𝑌𝑡 are the labels.
Linear Prompt Fusion. Conducting independent prompt tuning for each task can be a chal-
lenging and time-consuming process. However, [24] introduced an approach called Multitask
Prompt Tuning based on knowledge distillation for text categorization tasks. This method
incorporates task-independent components and shared prompts within its soft embedding. By
utilizing shared prompts, zero-shot learning becomes possible even for unseen tasks. Never-
theless, when dealing with heterogeneous data in multimodal CSS tasks, the complexity of the
MPT task weights can make hyperparameter searching more difficult.

To address this issue, we propose a method that leverages Higher-Order Singular Value
Decomposition (HOSVD) [25] to maximize the mutual information of task instruction through
prompt fusion. This approach allows us to reuse the computation results obtained from task-
target prompts, thereby minimizing additional computations while obtaining a shared prompt
and a meta classifier. As shown in Figure 1, the algorithm first calculates the covariance

Algorithm 1 Prompt fusion algorithm for FLYPE
Helper: HOSVD - High order singular value decomposition function takes three-way arrays and
outputs singular value 𝑔 ∈ ℝ𝕕 with corresponding singular vectors (𝑢, 𝑣 , 𝑤);
Input: 𝑋 - List of unique combinations of 3 flatten prompts [(𝑝𝑠, 𝑝𝑡, 𝑝𝑟), ...];
Input: 𝜖 - Error tolerance for high order singular value decomposition (HOSVD);
Output: 𝑐𝑜𝑟𝑒 - The share prompt fused from task-targeted prompts;
Output: 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 - The codebook for task-specific prompt decoding;
𝑐𝑜𝑟𝑒 ← [0]𝑑
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 ← [0]𝑡×𝑑
for (𝑝𝑠, 𝑝𝑡, 𝑝𝑟) in 𝑋 do

𝑐𝑜𝑣𝑎𝑟 𝑖𝑎𝑛𝑐𝑒_𝑚𝑎𝑡𝑟 𝑖𝑥 ← 𝑐𝑜𝑣𝑎𝑟 𝑖𝑎𝑛𝑐𝑒(𝑝𝑠, 𝑝𝑡, 𝑝𝑟)
𝑔, (𝑢, 𝑣 , 𝑤) ← HOSVD(𝑐𝑜𝑣𝑎𝑟 𝑖𝑎𝑛𝑐𝑒_𝑚𝑎𝑡𝑟 𝑖𝑥, 𝜖)
for each dimension 𝑔𝑖 in 𝑔 do

if 𝑔𝑖 > 𝑐𝑜𝑟𝑒[𝑖] then
𝑐𝑜𝑟𝑒[𝑖] ← 𝑔𝑖
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛[𝑠, 𝑖] ← 𝑢[𝑖], 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛[𝑡, 𝑖] ← 𝑣[𝑖], 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛[𝑟 , 𝑖] ← 𝑤[𝑖]

end if
end for

end for

matrix of every three-task-combo because the maximum dimensionality is three as we write this
paper. Covariance matrix is computed on flatten prompts. For each covariance matrix, we apply
higher-order singular value decomposition. For each dimension, we take the largest singular
value (mode) and singular vectors to preserve and discard the rest. The proposed linear fusion
method is shown in Algorithm 1. The algorithm can also be considered as learning a codebook
to encode task-specific instructions as a joint instruction in a task-instruction space.



Training parameter efficiency. We analyze the theoretical training efficiency of Model
Souping [26], task targeted prompt tuning and prompt fusion with regard to self-attention
mechanism. Model Souping is a meta fientuning method that averages 𝑘𝑇 fully finetuned model
weights with k-fold cross-validation on 𝑇 tasks, the complexity is 𝑂(𝑇 × 𝑘 × 𝑛2 × 𝑑 × 𝑚), where n
is the input sequence length, d is the number of dimensions of transformer embeddings, and
m is the average number of validation samples in each held-out dataset. In the task-targeted
prompt tuning, the complexity is reduced to 𝑂(𝑇 × 𝑘 × 𝑝 × (𝑛 + 𝑝) × 𝑑 × 𝑚), where only 𝑝
prompt tokens need to be tuned. In FLYPE, the HOSVD prompt fusion has a complexity of
𝑂((𝑇 × 𝑘)3 × 𝑑). But since 𝑇 < 𝑘 << 𝑑, it can be considered as 𝑂(𝜀 × 𝑑). There is no need for
redundant cross-validation as the meta classifier shares hyper across all tasks. The complexity
is therefore 𝑂((𝑘 × 𝑝 × (𝑛 + 𝑝) × 𝑚 + 𝜀) × 𝑑). HOSVD has explicitly enforced mutual information
maximization across different social tasks. The hyper-parameter search space of the meta
classifier is also reduced because the prompt length of the meta classifier is fixed. The parameter
efficiency of prompt fusion is superior to Model Souping and task targeted prompt tuning.

4. Experimental Setup

Table 1
Dataset size of image and text proportions across train, validation and test sets combined.

Dataset Text Image Classes
EmoRecCom 6,064 6,064 8
CheckThat! 3,911 3,911 2
SER30K 5,886 30,739 7
MAMI 11,000 11,000 2

HatefulMemes 16,428 16, 428 2
COSMOS 454,185 204,458 2

Tasks and Datasets. The statistics of the datasets used in our experiments can be found in
Table 1. Emotion Recognition on Comic Scenes (EmoRecCom) is a competition dataset
designed to tackle the task of recognising emotions based on comic panels, text in speech
balloons or captions, and onomatopoeia [22]. CheckThat! 2023 subtask 1A explores whether
tweets are worth fact-checking. Each instance is an image and a tweet, used to determine check-
worthiness [27]. SER30K classifies the emotion conveyed by stickers and accompanying text, if
present, used in online conversations [28]. Multimedia Automatic Misogyny Identification
(MAMI) classifies whether text-image examples are misogynistic and then further classifies
into a misogyny type [29]. Here we explore the binary setting only. HatefulMemes tackles
the spread of toxic content in memes [30, 31]. Catching Out-of-Context Misinformation
using Self-Supervised Learning (COSMOS) tries to classify images that have been used out
of context to mislead a reader [32]. All the datasets we are using are benchmarks from shared
task competitions and ethical issues were already tackled there, to the best of our knowledge.
Implementation details. We select the VQA foundation model, BLIP-2 [7], with ViT [38] as
the visual encoder and OPT [39] as the text encoder for CSS classfication tasks. We employ the



Table 2
Results of FLYPE and baselines across multimodal computational science datasets.

EmoRecCom [33] CheckThat! [34] SER30K [28]Model AUROC F1 Accuracy
Zero-shot BLIP-2 0.228 0.449 0.124
CLIP - 0.628 -
Zero-shot FLYPE 0.601 0.611 0.549
Task Best Performer 0.630 0.712 0.710
FLYPE (ours) 0.779 0.717 0.744

MAMI [35] HatefulMemes [36] COSMOS [37]Model Avg. F1-Macro AUROC Accuracy
Zero-shot BLIP-2 0.486 0.516 0.587
CLIP 0.704 0.610 -
Zero-shot FLYPE 0.703 0.612 0.729
Task Best Performer 0.731 0.765 0.850
FLYPE(ours) 0.745 0.804 0.892

largest model that can fit into one RTX3090 to leverage the power of scale in prompt tuning.
To avoid overfitting, we randomly mask 20% of patches to avoid overfitting. Instead of using
the provided validation sets, we apply 10-fold cross-validation for hyperparameter search of
the current task and reuse the resulting prompts for fusion. Ideally, more folds will result in
better results because the estimated covariance matrix will also be more precise. To compute
HOSVD [40], we follows the implementation of TensorToolbox [41]. Additional experimental
details and hyper-parameters are in Appendix B.
Results. Table 1 shows the performance of FLYPE and zero-shot FLYPE compared with baselines
including finetuned CLIP and frozen BLIP-2. Task Best Performers are winning models of each
challenge, with concrete architecture detailed in A. FLYPE tunes task-targeted prompts. Zero-
shot FLYPE fuses task-targeted prompts into a shared prompt and plug it into the frozen VLM,
testing the model with unseen data from held-out tasks. Compared with CLIP, FLYPE uses
cross-modal prompts to bootstrap image content into vision tokens with cross attention, and
then fuses them with self-attention, which can be considered as a multi-stage fusion technique.

Table 3
Training efficiency comparison on the Check Worthiness dataset. |𝑝𝑡| denotes the prompt length.

Methods #parameters (MB) #memory (GB) #training time F1
FLYPE (|𝑝𝑡| = 1) 0.003 11.966 9min + 46s 0.562
FLYPE (|𝑝𝑡| = 5) 0.013 15.830 10min + 13s 0.717
FLYPE (|𝑝𝑡| = 10) 0.026 19.682 12min + 10s 0.704
FLYPE (|𝑝𝑡| = 20) 0.051 22.055 13min + 19s 0.683
Tuning CLIP 151.281 64.015 15min + 3s 0.628
Tuning Q-former 188.144 33.812 22min + 56s 0.682
Fully Finetuning 3744.710 - - -

Table 3 shows the improvement of FLYPE on training parameter efficiency. The table also shows
that the number of training parameters increases linearly with the prompt length. Compared



Table 4
Ablation study on CheckThat! subtask 1A. The dataset has more negative samples than positive samples. High F1
and recalls are encouraged in the check worthiness task. Texts and soft prompts are more important components
compared to pretrained visual tokens, which can be replaced by random noise during tuning.

Evaluation TestCombination F1 Acc. Prec. Recall F1 Acc. Prec. Recall
soft prompts + ocr + visual tokens 0.75 0.80 0.62 0.93 0.72 0.78 0.68 0.77
ocr + visual tokens 0.65 0.69 0.51 0.90 0.65 0.67 0.56 0.82
soft prompts + visual tokens 0.71 0.81 0.63 0.87 0.70 0.75 0.65 0.76
replace image with noise 0.68 0.75 0.58 0.82 0.69 0.76 0.66 0.72
replace text with noise 0.56 0.57 0.41 0.86 0.62 0.58 0.47 0.91
replace visual tokens with noise 0.74 0.80 0.63 0.90 0.70 0.76 0.67 0.73

to fine-tuning a Q-former, FLYPE reduces the number of training parameters from 188MB
to 0.01MB, significantly reducing the memory usage without loss of precision. Lengthy soft
prompts improve the expressiveness of the model, but can lead to unexpected overfitting or
noise injection to the visual tokens. The length of soft prompt is essential for CSS tasks, where
each class sometimes only has a few hundred labeled samples, and overfitting can easily happen.

To understand other components of FLYPE, we perform an ablation of a number of techniques
on the MAMI and CheckThat! datasets, as shown in Tables 4- A. The expert system, OCR, is still
helpful for solving CSS tasks with visual language foundation models. As the pretrained fusion
layers, the Q-former’s pretrained self-attentions are biased towards visual question answering,
which are curated by soft prompts tuned for CSS tasks. This is demonstrated by unnoticeable
performance drop of replacing visual tokens with noise.

(a) (b) (c) (d)

Figure 2: Comparison of layer-wise relevance propagation (LRP) saliency maps of prompts with protective
attributes. (a) and (b) analyze bias against race. (a) ”Being an Asian, Arabic fact checking texts.”; (b) ”Being a White,
the same texts.”. (c) and (d) analyze bias against species. (c) ”Being a human, hateful texts.”; (d) ”Being a dog, the
same hateful texts.”. The correct prompts surprisingly activate relevant salient facial features and optical character
features. By contrast, the biased prompts have much less salient activation, or rather sparse activation.

Cross-modal Bias Figure 3 shows the saliency map for a check worthiness sample and a
hatefulness detection sample. We implement the salient feature detection with LRP[42] to the
image pixels. If certain claims can be inferred from the image, the relevant image regions will be
activated and considered for classification. The saliency maps validate our hypothesis. BLIP is
converting CSS tasks into visual entailment tasks. Figure 3 compares the false negative equality
difference of groups with protective attributes for the emotion recognition task. The adult
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Figure 3: False negative equality difference for the protective attributes of age and race on the EmoRecCom
dataset. (a) and (c) are results for samples with hard prompts, ”Being a [protective attribute], multimodal emotion
recognition context.”. (b) and (d) are results for the same samples with soft prompts. Dark lines over the bars
denotes the standard deviation.

group shows consistently lower false precision rate, which means their emotions are less likely
to be wrongly classified as positive. Words with protective attributes may intrigue cross-modal
bias when using hard prompts. By contrast, soft prompts can curate the potential bias from
pretraining tasks. The use of soft prompts can contribute to making the deployment of LLMs
safer and more ethical.

5. Conclusion

In this paper, we investigate visual language reasoning problem and introduces FLYPE, a cross-
modal meta prompt tuning method, which efficiently enhances visual language understanding.
Our extensive experiments on six benchmark datasets demonstrate the effectiveness of this
method for unseen dataset. The efficiency-wise comparison shows the training efficiency of
this method. Through bias analysis, our work finds hard prompts can activate cross-modal bias
which can raise ethical concerns. In our future work, we aim to categorize these cross-modal
bias and address them with efficient approaches for safer deployment of large visual language
models.



Ethical Disclaimer

FLYPE, developed with various public datasets, may generate outputs that are not factually
accurate. Users should exercise caution for factual correctness. FLYPE is a research prototype,
not intended for any commercial activities. Additionally, due to ethical issues of LLMs [43], any
use of FLYPE on human cognition, psychology, and related fields is prohibited without explicit
permission from the corresponding author.
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Appendix
A. Explanation of Task Best Performers

To provide further clarification on the model comparison, we present the Task Best Performer
for each task as follows:

• Check-worthiness (CheckThat!): [44] submitted an ensemble BERT classifier based on
Model Souping. Model Souping is a meta-learning technique that aims to provide a better
zero-shot classifier by averaging the weights of multiple independently fine-tuned models.
The averaging process requires finetuning with k-fold cross-validation on each task, and
the averaged models are further merged across tasks, leading to a meta classifier similar
to FLYPE.

• Emotion Recognition (EmoRecCom): S-NLP used ResNet as image encoder and RoBERTa
as text encoder. Both early and late level fusion are performed and combined in the
final submission. In the early fusion stage, RoBERTa merges static image embedding and
learnable text embeddings with finetuning. This model, however, requires much more
training memory than prompt tuning an early stage fusion encoder, e.g., Q-former, as
used in our work.

• Cheap Fake Detection (COSMOS): Boosting Image Captioning for Global Context [37]
employs pretrained image caption models to describe images and predicts labels based on
text description and context. Themethod essentially leverages the semantic understanding
ability acquired through the next sentence prediction task of BERT’s pretraining. The
model further measures if two sentences are logically connected from the perspective of
fake news detection.

• Hatefulness Detection (HatefulMemes): Hate-CLIPper [36] extracted image and text
features independently with a frozen CLIP encoder. Then it computed cross-modal
correlation scores with a bilinear pooling layer, and the the outer products are used for
classification.

• Sticker Emotion Recognition (SER30K): The method used multi-stage fusion with Pyramid
Vision Transformer (PVT), which is similar to visual feature extraction of BLIP-2. The
method applied a spatial-reduction attention mechanism, where tokens are selected based
on their attention scores with the CLS token. This actually models a recursive probability
conditioned on a global latent variable.

• Gender Bias Misogyny Identification (MAMI): [45] finetuned late stage fusion layers on
static image and text features extracted by a CLIP encoder with domain-adversarial loss,
and used robust features to finetune a task specific classifier.

B. Additional Implementation Details

For image preprocessing, ViT randomly resized and cropped inputs to 224 × 224, and further
cropped them to 16 × 16 non-overlapping patches. We search the optimal prompt token length
from {5, 10, 20}. We use a batch size of 16, a learning rate of 1 × 10−3 for AdamW [46] with



learning rate warm-up [47]. We train FLYPE with the weighted cross-entropy loss for 5 epochs,
which empirically guarantees convergence.

C. Visualization of Shared Prompt Performance on CSS tasks
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Figure A: The radius of the circle denotes 100% model performance. The blue lines are the performance
of task-targeted prompts and the orange lines are the performance of the shared prompt.

Table A
Ablation study on MAMI.

Evaluation TestCombination F1 Acc. Prec. Recall F1 Acc. Prec. Recall
soft prompts + ocr + visual tokens 0.84 0.85 0.82 0.84 0.75 0.71 0.66 0.91
ocr + visual tokens 0.79 0.81 0.77 0.82 0.74 0.69 0.64 0.88
soft prompts + visual tokens 0.81 0.83 0.79 0.84 0.74 0.69 0.63 0.89
replace image with noise 0.77 0.78 0.71 0.84 0.64 0.59 0.57 0.74
replace text with noise 0.79 0.78 0.68 0.93 0.72 0.63 0.58 0.94
replace visual tokens with noise 0.82 0.84 0.82 0.82 0.73 0.69 0.65 0.86
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