
Comparing smart contract vulnerability detection tools
Jarno Ottati1, Giacomo Ibba2 and Henrique Rocha1

1Department of Computer Science, Loyola University Maryland, Baltimore, MD, USA.
2Department of Informatics and Mathematics, University of Cagliari, Cagliari, Italy.

Abstract
Smart contracts are programs stored in the blockchain, and given their use cases mainly
related to the management of digital assets and currency, it is crucial to ensure their security.
Unfortunately, smart contracts may be vulnerable due to unsecured coding patterns that
could be exploited by a malicious user. In this paper, we compared tools used to detect
vulnerabilities within smart contract code. We use a curated dataset to analyze the efficacy
of three tools: Oyente, Osiris, and Slither. Our results show that Slither is the best tool for
detecting reentrancy (100%) and unchecked low-level calls (87%), but Oyente had better
performance detecting Underflow (33%) and Osiris did better on Overflow (53%). These
results indicate that developers may need to use different tools to find more vulnerable
coding patterns and better secure their contracts.

Keywords
Reentrancy, Vulnerability, Coding Patterns, Smart Contract, Solidity, Code Smells

1. Introduction

Blockchain is an emerging technology that helped create digital services such as
cryptocurrency [1] (e.g., Ethereum, Bitcoin) and IBM for food supply chain transac-
tions [2]. This platform operates similarly to a ledger, registering new information on
top of the previous logs without the ability to change registered information [3].
Among the main artifacts stored within the blockchain are smart contracts, pro-

grams simplifying the interaction between users and the chain without the help of
third parties [1, 4]. Blockchain platforms like Ethereum can employ smart contracts
written in Solidity [5] to exchange, transfer, and gather digital assets.
Smart contracts may deal with cryptocurrency, which makes them prime targets

for exploits. Therefore, it is crucial to avoid building blockchain software relying on
contracts with vulnerabilities. However, developing smart contracts without security
leaks requires significant expertise in coding design patterns and cybersecurity. Code
refactoring of vulnerable smart contracts could be pretty difficult too without proper
tools. Even code smells can have more serious consequences in smart contracts.
Therefore, it may be possible for developers to use insecure and vulnerable coding
patterns in smart contracts due to a human error factor. One of the most critical

Benevol’23: The 22nd Belgium-Netherlands Software Evolution Workshop
Envelope-Open jaottati@loyola.edu (J. Ottati); giacomo96ibba@outlook.it (G. Ibba); hsrocha@loyola.edu (H. Rocha)
Orcid 0000-0003-3087-1969 (G. Ibba); 0000-0002-9154-0277 (H. Rocha)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International
(CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

9

mailto:jaottati@loyola.edu
mailto:giacomo96ibba@outlook.it
mailto:hsrocha@loyola.edu
https://orcid.org/0000-0003-3087-1969
https://orcid.org/0000-0002-9154-0277
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

exposures is reentrancy, which gained infamous notoriety due to its role in the DAO
attack. In 2016, an attacker exploited a reentrancy vulnerability to drain 3.6 million
Ether from the DAO contract, with an approximate value of 50 million dollars [6, 7].
The DAO attack raised awareness among developers and Blockchain users about
the risks of coding exposed smart contracts and the dire consequences in terms of
money loss. Indeed, reentrancy is not the only vulnerability that could lead to an
irreversible loss of assets. Denial of Service, for instance, consists of making a smart
contract inoperable, freezing currency, and making it impossible for users to retrieve
their money, and generally, to interact with the smart contract itself.
Researchers have developed several tools to find insecure patterns that lead to

smart contract vulnerabilities, which are the basis for a proper code’s corrective
maintenance. Tools such as Oyente [1], Osiris [8], and Slither [9] can detect potential
coding patterns for vulnerabilities within smart contracts. Each tool takes advantage
of different methodologies to detect vulnerabilities and specific frameworks, making
them different from each other.
In this paper, we compared tools used to detect vulnerabilities within smart con-

tract code. We employed a curated dataset with multiple flawed contracts with
reentrancy and other types of vulnerabilities to test the tools’ efficacy in detecting
the selected vulnerabilities. Our results showed that Slither performed best in de-
tecting reentrancy, while Oyente and Osiris did better for Underflow and Overflow,
respectively. These results indicate that developers may need to use different tools
to better secure their contracts.
The remainder of the paper is organized as follows. Section 2 describes the

vulnerabilities we selected in this study. Section 3 describes the dataset and presents
the tools used in our research. Section 4 shows our results for comparing vulnerability
detection tools. In Section 5, we present related work. Finally, Section 6 presents
our conclusions and outlines future work possibilities.

2. Vulnerabilities

Since smart contracts are implemented by developers, they can be subject to hu-
man errors. Possible smart contract exposures derived from typical programming
exposures, such as arithmetic overflows and underflows, and others arise from
blockchain’s inner properties, such as reentrancy, time dependency bugs, and
unchecked low-level calls.

2.1. Reentrancy

The infamous DAO attack of 2016, raised more awareness among developers and
blockchain users. An attacker managed to drain 3.6 million Ether (for a value of
almost 50 million dollars) by exploiting a reentrancy vulnerability [6, 7].
When a smart contract calls a function from another contract, it transfers the

control to the called contract. If the call happened in the middle of the function,

10

then the original code will wait until the call is complete. A malicious user can take
advantage of this scenario by re-entering the original function multiple times before
the original call chain terminates. This procedure, for instance, would allow the
attacker to re-enter a withdraw function, draining all the Ether from a smart contract.
This gives reentrancy its name, by reentering the original code multiple times than
allowed for illicit profit.

1 funct ion withdraw (uint_amount) publ i c {
2 r equ i r e (balances [msg . sender] >= _amount) ;
3 (bool r e su l t ,) = msg . sender . c a l l { value : _amount}(””) ;
4 i f (r e s u l t) balances [msg . sender] -= _amount ;
5 }

Listing 1: Reentrancy example in Smart Contract

Listing 1 shows an example of a Solidity function exposed to a reentrancy vulnera-
bility. In this example, the function withdraw, allows a user to withdraw Ether from
the smart contract’s balance acting as a bank. Therefore, the contract will implement
functions to deposit, withdraw, and transfer Ether. The function withdraw checks
whether the user has enough funds in their balance (line 2). If it is true then the
contract will transfer the required amount to the user’s external address (line 3).
Finally, if the Ether transfer is successful, then the user’s balance is updated (line 4).
An attacker can call withdraw multiple times because the user’s balance changes

(line 4) are made after transferring the money (line 3). When transferring the money,
the control is also transferred to the attacker which can recall the same withdraw
function multiple times, before their balance is updated, letting them drain more
money than the allowed amount.
The correct pattern to avoid reentrancy is called checks-effects-interactions [5].

First, we need to check the validity of the inputs, which Listing 1 example is doing
correctly by verifying the balance before any withdrawal (line 2). Then we should
apply the effects on the current contract and update the balance before interacting
with an external entity. Finally, we could transfer the money which would make an
external call (i.e., interacting with another). This simple reordering of the same code
protects a contract against reentrancy.

2.2. Overflow and Underflow

Arithmetic Overflows and Underflows [8] occur when the result of a mathematical
operation is too large or too small to be represented by the data type of the variable
that is storing the result. Arithmetic Overflow occurs when the result of a mathemat-
ical operation is greater than the maximum value that can be stored in the variable.
When this happens, the result "wraps around" to the minimum value of the variable.
For example, if we add 1 to the maximum value of an unsigned 8-bit integer (255),
the result will be 0. On the other hand, arithmetic Underflow occurs when the result
of a mathematical operation is less than the minimum value that can be stored in the
variable, then it "wraps around" to the maximum.

11

In Solidity [5], the developer can select how many bits (in increments of 8) their nu-
meric variables will occupy in memory. Therefore, to avoid underflows and overflows,
a developer needs to be sure their variables have enough space, or double-check
their results after each operation. Moreover, some libraries like safemath wrap
mathematical operations with safety checks against Underflow and Overflow.

2.3. Unchecked Low-level calls (ULLC)

Unchecked Low-level calls (ULLC) are also called “silent failed sends”. Solidity
offers complex low-level functions call(), callcode(), delegatecall(), and send(). Their
behavior in error handling differs from other functions that transfer control. Instead
of throwing an exception in case of failure, they return a boolean value set to false
and leave the error handling to the developer. Not checking a returned error value
could be considered a simple code smell in other software, but for smart contracts, it
can have more serious consequences like loss of assets.

1 funct ion withdraw (uint256 _amount) publ i c {
2 r equ i r e (balances [msg . sender] >= _amount) ; // check
3 balances [msg . sender] -= _amount ; // e f f e c t
4 msg . sender . send (_amount) ; // i n t e r a c t i o n
5 }

Listing 2: Low-level call example in Smart Contract

Listing 2 shows an example of a ULLC. This example uses the pattern checks-
effects-interactions but the ULLC introduces another issue. In this example, the
returned value by the send() function remains unchecked (line 4). If for any reason
the money transfers to msg.sender fails, the user will lose those Ether permanently as
the withdraw function already updated his balance (line 3).

3. Study Design

We require a set of curated smart contracts to analyze the efficacy of the vulnerability
detection tools. In this research, the experiments were conducted on contracts from
the Smart Bugs [10] curated version. This dataset collects Solidity smart contracts
flagged with different vulnerabilities, which is ideal for our research since it would
allow us to spot the best tool to patch specific vulnerable code patterns.
Our main goal is to compare the efficacy of tools in detecting vulnerabilities in

Solidity smart contracts. For this research, we selected the following tools: Oyente,
Osiris, and Slither.
Oyente1[1] is one of the first tools designed with the purpose to detect bugs

within smart contracts. Oyente is a symbolic execution tool that works directly
with Ethereum virtual machine (EVM) byte code. This methodology can provide a
systematic and thorough exploration of a program’s behavior, including edge cases
that might be challenging to find using traditional testing techniques. However, the

1https://github.com/enzymefinance/oyente

12

https://github.com/enzymefinance/oyente

main drawback of symbolic execution relies on its potentially high computational
cost to execute programs with too many possible paths to cover. Moreover, programs
including complex data structures and external interactions could be challenging to
symbolic execute.
Osiris2[8] was introduced in order to detect code patterns exposed to arithmetic

bugs effectively in smart contracts. Osiris is based on Oyente, and it takes advantage
of symbolic execution combined with the taint analysis method. Taint analysis
tracks and analyzes the flow of data and helps answer the question of how data
from untrusted or potentially malicious sources can propagate through a program
and reach sensitive areas. This methodology relies on predefined taint policies
that specify how data becomes tainted and what constitutes a security violation.
However, it is a challenge to define these policies and determine what data should
be considered tainted. This technique may not consider the broader context and may
miss vulnerabilities that require a more holistic understanding of the application’s
behavior.
Slither3[9] provides granular information about smart contract code and gives

feedback for better code structure. Slither uses static analysis, which examines
source code, program binaries, or other software artifacts without actually executing
the code. Static analysis can be applied at various stages of the software development
life cycle and is used to improve code quality, security, and reliability. However, static
analysis lacks the context of dynamic behavior, and it may not capture issues that
require runtime information or involve complex program interactions. Apart from
critical exposures, Slither reports general bad programming practices, which makes
it suitable for code refactoring and optimization.
Our experimental design and analysis would benefit from a combination of tools

exploiting different approaches. For this very reason, we understand that the strict
set of tools and techniques used in this analysis creates a threat to validity.

4. Results

Table 1 shows the achieved results in our research project. Each row displays a
vulnerability we tested, and each column presents the tool used. The "Total" column
shows the total amount of contracts we had in the dataset with that vulnerability
flagged (i.e., the maximum possible contracts to detect). For each tool, we present
how many contracts were detected with that vulnerability and the percentage ac-
cording to the total contracts with that vulnerability.
Starting with our main vulnerability tested, we can see that Slither detected

reentrancy in all contracts (100%) used for our test, outperforming the other tools.
This may indicate that Slither is the best tool for reentrancy detection among the
analyzed ones. Oyente and Osiris detected reentrancy on the same 23 contracts
(which is 65%).

2https://github.com/christoftorres/Osiris
3https://github.com/crytic/slither

13

https://github.com/christoftorres/Osiris
https://github.com/crytic/slither

Table 1
Vulnerability Detection Tool Comparison.

Vulnerability Oyente Osiris Slither Total
Reentrancy 23 (65%) 23 (65%) 35 (100%) 35
Underflow 5 (33%) 3 (20%) 0 (0%) 15
Overflow 7 (46%) 8 (53%) 1 (6%) 15
ULLC – – 28 (87%) 32

After testing reentrancy, we expanded our set of vulnerabilities because they can be
just as serious and cause damage to smart contract security. The next vulnerabilities
we tested were Overflow and Underflow. In this test, Oyente performed best detecting
5 out of 15 contracts (33%) flagged with Underflow. Meanwhile, Osiris performed
better in detecting Overflow and catching 8 out of 15 contracts (46%). Slither, our
best-performing tool for Reentrancy, underperformed in this experiment, detecting
0% and 6% for Underflow and Overflow, respectively. It’s worth noting that the
best-performing tool results for Underflow and Overflow are a superset of other tools,
i.e., the best tools detected all contracts detected by the others, and more.
In our last vulnerability test, Unchecked low-level calls (ULLC), were only detected

by the tool Slither. Both Oyente and Osiris can’t detect this type of vulnerability.
We also compared the average execution time (AET) of the three tools. Slither

outclasses the other two taking just an average time of 0.54 seconds to scan the smart
contract and report potential vulnerabilities. Osiris with an AET of 51.5 seconds is
the slowest in terms of scanning and reporting vulnerabilities, while Oyente takes
an average execution time of 18.2 seconds. However, the execution time is not
the primary feature to evaluate these vulnerability detection tools, since it may be
possible that despite being fast, a tool could produce a significant number of false
positives and negatives.
Based on the results, we can see that within a specific vulnerability, the tools

are not complementary. The best-performing tool detected all contracts the other
tools did. This was unexpected, and we initially thought different tools would detect
different contracts within the same vulnerability. This could indicate the methods
for detecting vulnerabilities are similar, and consequently, the best tool will always
achieve a superset of the others.
However, even though the tools do not have complementary results within the

same vulnerability, the best tool differs for each vulnerability. Therefore, based on
our results, the tools are complementary as a suite to detect different vulnerabilities
together. Moreover, by using multiple tools we will have more confidence in the
security of a smart contract against vulnerabilities.

5. Related Work

Luu et al. [1] investigate several security problems within smart contracts with the
goal of gaining profit. Introducing problems like Transaction-Ordering dependence,

14

Timestamp dependence, Mishandled exceptions, and Reentrancy. They also provide
a tool called Oyente with the goal of detecting bugs and vulnerabilities, working with
Ethereum virtual machine bytecode. The results provided by their tool on 19,366
contracts say that at least 8,333 contracts were susceptible to these bugs.
Torres et al. [8] introduce the tool Osiris with the goal of detecting integer bugs in

EVM bytecode. Introducing potential bugs due to the behavior of integer operations
within EVM and Solidity in specific scenarios. Leading to Arithmetic bugs, Truncation
bugs, and Signedness bugs. They proposed their approach to detecting these bugs
through Osiris. Using a dataset previously used by Zeus, another tool that detects
integer bugs, to test its efficiency. Testing a total of 883 contracts where 711 are safe
and 172 unsafe from arithmetic bugs, demonstrating its unique approach compared
to Zeus which aims to be more complete.
Feist et al. [9] introduce their tool Slither an open-source static analysis frame-

work. This tool provides important information about Ethereum smart contracts
and displays critical properties like any static framework. Slither also uses its own
intermediate representation, SlithIR, designed to make static analyses on Solidity
code straightforward.

6. Conclusion

Vulnerabilities in smart contracts, like reentrancy, can jeopardize the security and
reliability of blockchain software as demonstrated by the DAO attack. Therefore, the
use of vulnerability detection tools to ensure smart contracts’ security is paramount.
We used a curated dataset and ran experiments on three vulnerability detection

tools: Slither, Oyente, and Osiris. Considering reentrancy, Slither detected 35 of
35 contracts (100%) outperforming Oyente and Osiris which detected 23 out of 35
contracts (65%).
Concerning Underflow, Oyente detected in 5 out of 15 contracts (33%), outperform-

ing Osiris (20%) and Slither which detected none (0%). For Overflow, Osiris did best
by detecting 8 out of 15 contracts (53%) compared to Oyente (46%) and Slither (6%).
For Unchecked Low-Level Calls, Slither detected 28 out of 32 contracts (87%),

being the only tool capable of detecting this type of vulnerability.
The results highlight the importance of using a solid set of vulnerability detection

tools to scan smart contracts. Indeed, our findings depict that the tools are not
complementary with the same vulnerability, and they must used jointly to perform
an accurate analysis. This finding aligns with best practices for securing smart
contracts.
For future work, we plan to expand our experiments, add more tools (e.g., Securify,

Manticore, Honeybadger, Mythril) to the analysis, and assess their efficacy. We also
envision expanding the vulnerable code patterns lists and despite the several tools
detecting different kinds of vulnerabilities, we aim to investigate whether is possible
to detect common patterns between different tools. For instance, despite already
knowing that Honeybadger does not detect reentrancy vulnerabilities, it detects

15

money flows and balance disorders. Therefore, we expect that where Slither (for
instance) detects a reentrancy vulnerability, Honeybadger spots a money flow and
balance disorder. Additionally, we aim to confront the number of false positives
and negatives produced by the different tools and the number of missed exposures.
As a final contribution, we aim to detect the best configuration of tools to scan
projects such as decentralized applications. Finding a configuration of tools covering
a wide range of vulnerabilities would allow to widely improve code maintenance and
refactoring.

References

[1] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, A. Hobor, Making smart contracts
smarter, in: ACM SIGSAC Conference on Computer and Communications
Security, CCS ’16, ACM, NY, USA, 2016, p. 254269. doi:10.1145/2976749.2978309.

[2] J. Joo, Y. Han, An evidence of distributed trust in blockchain-based sustainable
food supply chain, Sustainability 13 (2021). doi:10.3390/su131910980.

[3] J. Kolb, M. AbdelBaky, R. H. Katz, D. E. Culler, Core concepts, challenges, and
future directions in blockchain: A centralized tutorial, ACM Comput. Surv. 53
(2020). URL: https://doi.org/10.1145/3366370. doi:10.1145/3366370.

[4] S. Bragagnolo, H. Rocha, M. Denker, S. Ducasse, SmartInspect: Solidity smart
contract inspector, in: International Workshop on Blockchain Oriented Software
Engineering (IWBOSE), 2018, pp. 9–18. doi:10.1109/IWBOSE.2018.8327566.

[5] Ethereum Foundation, Solidity documentation release 0.8.21, https://docs.
soliditylang.org/_/downloads/en/v0.8.21/pdf/, 2023.

[6] S. Demeyer, H. Rocha, D. Verheijke, Refactoring solidity smart contracts to
protect against reentrancy exploits, in: T. Margaria, B. Steffen (Eds.), Lever-
aging Applications of Formal Methods, Verification and Validation. Software
Engineering, Springer Nature Switzerland, Cham, 2022, pp. 324–344.

[7] N. Atzei, M. Bartoletti, T. Cimoli, A survey of attacks on ethereum smart
contracts (SoK), in: M. Maffei, M. Ryan (Eds.), Principles of Security and Trust,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2017, pp. 164–186.

[8] C. F. Torres, J. Schütte, R. State, Osiris: Hunting for integer bugs in ethereum
smart contracts, in: 34th Annual Computer Security Applications Conference,
ACSAC ’18, ACM, NY, USA, 2018, p. 664676. doi:10.1145/3274694.3274737.

[9] J. Feist, G. Greico, A. Groce, Slither: A static analysis framework for smart
contracts, in: 2nd International Workshop on Emerging Trends in Software
Engineering for Blockchain (WETSEB), IEEE Press, 2019, pp. 8–15. doi:10.1109/
WETSEB.2019.00008.

[10] T. Durieux, J. F. Ferreira, R. Abreu, P. Cruz, Empirical review of automated
analysis tools on 47,587 Ethereum smart contracts, in: 42nd International
Conference on Software Engineering (ICSE), 2020, pp. 530–541.

16

http://dx.doi.org/10.1145/2976749.2978309
http://dx.doi.org/10.3390/su131910980
https://doi.org/10.1145/3366370
http://dx.doi.org/10.1145/3366370
http://dx.doi.org/10.1109/IWBOSE.2018.8327566
https://docs.soliditylang.org/_/downloads/en/v0.8.21/pdf/
https://docs.soliditylang.org/_/downloads/en/v0.8.21/pdf/
http://dx.doi.org/10.1145/3274694.3274737
http://dx.doi.org/10.1109/WETSEB.2019.00008
http://dx.doi.org/10.1109/WETSEB.2019.00008

	1 Introduction
	2 Vulnerabilities
	2.1 Reentrancy
	2.2 Overflow and Underflow
	2.3 Unchecked Low-level calls (ULLC)

	3 Study Design
	4 Results
	5 Related Work
	6 Conclusion

