
The organizational hurdles of structurally reducing
the energy consumption of software
Roy van der Steen1, Bernard van Gastel1

1Radboud University, Toernooiveld 212, 6525 EC, Nijmegen, The Netherlands

Abstract
Many studies discuss the high energy consumption of software, most of which attempt to measure
it or focus on what software developers can do to reduce it. In contrast, this paper approaches the
problem of energy-inefficient software from an organizational standpoint. It aims to discover why
organizations do not structurally work on reducing the energy consumption of software. This study
portrays a survey with 19 participants, a literature study, and five interviews. It points out several
obstacles hampering organizations, such as the difficulty of measuring Software Energy Consumption
(SEC), the high costs of reducing SEC, a lack of incentives for customers, and a lack of information
dissemination. It furthermore describes potential solutions to resolve these obstructions, like improving
information delivery to practitioners, using software-based measurement tools, more transparency in
the pricing of cloud providers, creating a good business case, and standardization.

Keywords
software energy consumption, green software, sustainable software, organizational hurdles

1. Introduction

Within the last decade, interest in the energy consumption of software has been rising among
practitioners [1] and researchers alike [2, 3, 4]. However, the number of practitioners adopting
published research remains limited [5, 6]. Most recent studies focus on the technical aspect
of energy consumption (i.e., code optimization & energy measurement) and only few on the
development process [3]. Additionally, the target group of most field research is software
developers [7, 1, 6]. It thus seems likely that there is ample technical knowledge available for
Software Producing Organizations (SPOs) to start reducing Software Energy Consumption
(SEC). Therefore, this paper hypothesises that the scarcity of effort on reducing SEC is not
caused by software developers lacking technical ability, but rather by other parties involved
and a lack of accessibility to comprehensible information.

To discover what causes the discrepancy between what is researched and what is used in
practice, this paper formulates the research question: Why are organizations not modifying their
software development process to structurally work on reducing the energy consumption of software?
This question was used to research what SPOs require to reduce their SEC together with the
following sub-questions: (1) What are the obstacles that software developing organizations face
when trying to reduce the energy consumption of their software? ; (2) What can be done to remove

Benevol’23: The 22nd Belgium-Netherlands Software Evolution Workshop, November 27–28, 2023, Nijmegen
$ roy.vandersteen@ru.nl (R. v. d. Steen); bernard.vangastel@ru.nl (B. v. Gastel)
� https://www.sustainablesoftware.info/ (B. v. Gastel)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

25

mailto:roy.vandersteen@ru.nl
mailto:bernard.vangastel@ru.nl
https://www.sustainablesoftware.info/
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


the obstacles that software-developing organizations face when attempting to reduce the energy
consumption of their software? The research is limited to Dutch organizations.

This paper answers these questions using qualitative exploration, and shows focus points
for future efforts to reduce software energy consumption. It adopts a pragmatic, qualitative
research approach, and uses a combination research design consisting of an exploratory part and
explanatory part. In both parts, data was gathered from participants by means of a survey and
interviews respectively. This data was analyzed using thematic analysis with manual coding.

2. Methodology

This paper describes the approach that has three consecutive steps. All quotes and references to
data are translated and anonymized. All survey participants are quoted under the pseudonyms
P01 to P19, and all interviewees are quoted under the pseudonyms I1 to I5.

2.1. Survey

The first phase consists of an exploratory survey with 17 open-ended questions. The survey
has three objectives. First, to discover obstacles and discern what prevents practitioners from
doing more to reduce SEC. Second, to find out what organizations undertake to structurally
work on reducing SEC and how they internally communicate about SEC. Third, to find potential
candidates for the interviews. The survey also gathered participant and organizational demo-
graphics to contextualize the participant’s answers. The survey was distributed on LinkedIn to
find non-developer IT personnel with influence on / knowledge of the development process. In
total, this study uses the results of 19 survey participants.

Initially, all survey results were read through carefully and inductively open-coded. A second
open-coding session used deductive codes based on the now-established data familiarity as
well as new inductive codes. Only the second open-coding session was used for further coding.
Attribute codes were used for background/demographic information and descriptive codes for
the remaining data. Axial coding was used to establish connections between the codes, and
finally, selective coding to identify core ideas present within the survey results.

2.2. Literature Study

The second phase consists of a literature study with two objectives. First, to ascertain if the
obstacles mentioned by the survey participants indeed are a cause of hinder or that there might be
more to the problem. Second, to increase validity of the obstacles by confirming their occurrence
in other studies. An exploratory search was conducted to identify relevant literature, including
other surveys and interviews. Using the Google Scholar search engine, the following terms were
searched: “software energy consumption”,“software energy consumption survey”,“software energy
consumption interview”,“measure software energy consumption”,“hardware to measure software
energy consumption”,“software energy consumption awareness”,“software energy consumption
user”,“sustainable software customer”,“sustainable software energy profiling”,“profiling software
energy efficiency costs time”1.

1All search terms that include “energy” were also searched with “power” instead

26



Google, Google Scholar, GitHub, and GitLab were searched for software-based tools to
measuring SEC. For Google Scholar, the previously mentioned terms were used. For GitHub
and GitLab, the following terms were searched: ‘software energy consumption’, ‘measure energy
consumption’, and ‘code energy consumption’1. Additionally, Google, GitHub, and GitLab were
also searched for the tools mentioned in papers found with Google Scholar. To be included
in this study, a tool: 1) must have development activity after 20152 2) must not be officially
deprecated/abandoned 3) must have at least a ‘beta’ version available online 4) must be able to
run on Linux 5) must have an open-source repository.

2.3. Interviews

During the third phase, in-depth, semi-structured interviews were held with willing survey
participants. The interviews are explanatory, based on an interview guide [9], and have two
objectives. First, to obtain more details on the obstacles found by the survey. Second, to ascertain
the viability of potential solutions devised from the survey and literature study and possible
solutions from the interviewees. The interview questions are based on the survey results and
questions from previous research[7, 6].

There are five interviewees, each of whom participated in a single interview with only
one interviewer. The interviews were audio recorded on an encrypted drive, with participant
permission, and lasted between 45 and 75 minutes. The interviews took place online, using the
Microsoft Teams environment of Radboud University. To further inform them about the study,
interviewees were sent additional information via email, which included information about the
purpose of the study, the location, duration, and interview procedures, as well as information
on the processing and storing of interview data. At the start of each interview, before recording,
the interviewee was asked for their consent for the recording of audio and the other procedures
mentioned in the information email. The recordings were manually transcribed and inductively
open-coded. Codes from the survey were not transported to the interviews, to prevent results
from the survey potentially affecting the analysis of the interviews. Then axial coding was used
to establish connections between the codes, and finally, selective coding to identify core ideas
within the interview results.

3. Results

The participants were all male, mostly aged 30-39 (8) and 40-49 (8). Their tasks were: manage-
ment, strategy development, architecture, programming, meetings, and customer interaction.

3.1. The state of SEC within organizations

To better understand the current position of organizations, the participants were asked how
they have tried to reduce SEC, the actions their organizations take and the communication
about SEC within their organizations. One notable finding is that seven participants spoke
of performance optimization as a means to reducing SEC. When asked if they had conducted

2The year 2015 was chosen for the development activity requirement because Jagroep et al. tested available
tooling in this year to be too inaccurate for proper measurements [8].

27



energy measurements, P02 mentioned “Monitor tools for unused server/data capacity.” and
P04 “IDE Performance Profilers.” In a related question, P17 said to “detect inefficient code with
heat-maps” and P01 simply mentioned “Performance optimization” as a means to reduce SEC.

Communication about SEC, and sustainable IT in general, remains limited. Only four par-
ticipants mentioned any form of communication about these topics within their organization.
P02 said there is “internal communication” and “workshops” to inform their developers. P03
vaguely answered “knowledge sharing” whilst P13 specified to “explain choices to interns to
create awareness” and that they “work in small teams with constant consultation and collabora-
tion.” Five participants showed signs that something is structurally done by their organization,
but in only two cases concrete examples were given. P18 mentioned that they choose to use
“energy efficient datacenters, running on renewable energy” to deploy their software. Two other
participants, likely from the same organization, both said their organization guides its decisions
with a book that is developed in-house. “This book expands upon ISO 25010 with sustainability
as a separate quality attribute, which can be used as a basis for non-functional requirements.”

3.2. Obstacles hindering organizations

3.2.1. A lack of information dissemination

The survey participants and the interviewees mention that customers, organizations, and
developers lack awareness. However, this may also be interpreted as a symptom of a lack of
information dissemination; because there is not enough information brought to the attention
of IT practitioners, not enough awareness has been created. There are multiple signs of a lack
of information dissemination. For example, three interviewees mentioned that the education
landscape does not teach students about the sustainability of IT. I3, who frequently works with
interns, explained that “students are almost completely ignorant.”

3.2.2. Measuring SEC is vital yet difficult

The analyzed survey results report that measurements may help verify supplier sustainability
claims, provide a starting point to reduce SEC and ascertain the impact of software changes
on SEC. The interviewees add that measurements are also helpful in creating more awareness,
comparing software products, improving communication about SEC, and helping ascertain the
economic viability of reducing SEC.

However, participants found it challenging to measure SEC. I4 stated that it demands skills
that most software developers lack, while I3 said that the complexity of IT devices is a more
significant problem. Interestingly, these difficulties indirectly hint that the interviewees were
unaware of currently available measurement tools such as PowerJoular, Scaphandre, and
codecarbon. Additionally, I4 said that “There are standard solutions from Azure and AWS to
provide insight into the power consumption of an instance.” Further study reveals that the
three largest cloud providers (Google, Azure, and AWS3) provide insights in energy use and
estimated CO2 emissions4. Possibly, a lack of information dissemination is (partly) to blame for
the difficulty developers have measuring SEC.

3According to Statista
4AWS, Azure, and Google have published information about their respective dashboards

28

https://github.com/joular/powerjoular
https://github.com/hubblo-org/scaphandre
https://github.com/mlco2/codecarbon
https://www.statista.com/statistics/967365/worldwide-cloud-infrastructure-services-market-share-vendor/
https://aws.amazon.com/blogs/aws/new-customer-carbon-footprint-tool
https://www.microsoft.com/en-us/sustainability/emissions-impact-dashboard
https://cloud.google.com/carbon-footprint


3.2.3. Reducing SEC lacks a business case

According to the survey results, reducing SEC is expensive because it costs substantial develop-
ment time. Moreover, I1 explained that it also increases maintenance costs because “optimizing
software will likely mean adding more code.” and “When looking at textbook examples of code
optimizations, the resulting code is quite unreadable. This makes the code more sensitive to
maintenance, and you will always need a very experienced developer to maintain it.” Addi-
tionally, I5 claimed that “To switch to better-optimized alternatives, more training is necessary.
Which can be a huge investment for an organization.” Opposingly, I3 said it does not have to
be expensive: “I find it shortsighted when people say it takes too much development time. I
would say it only takes a few hours of thinking on an architectural level.” Other interviewees
also mentioned that it is better to start with architectural changes. According to I5, the costs
do not matter much as long as the benefits outweigh them: “You’re still talking about costs.
Even at minimal costs, I think it will be very low on the priority list of companies.” I1 claimed
something similar: “I expect much more from a business case.”

3.2.4. The Cloud

One theme that did not surface from the survey results, but is present within the interviews, is
the influencing role of cloud providers. The performance gained by optimizing code for SEC
can be easier and cheaper achieved with cloud up-scaling. The resulting issue was most clearly
explained by I1: “How do those costs weigh up against a bit more energy consumption? Or, in
this case, cloud costs? The cheaper the cloud costs are, the faster that comparison results in
scaling up.” In addition, I2 explained that up-scaling is effortless, and the ecological impact is
often left unnoticed. Several answers also signify that the developers using the instances are
not getting insights on costs or electricity usage and thus remain unaware of their influence.

3.2.5. Customers lack incentive

Several survey participants mention a lack of time/priority as an obstacle, which may be caused
by a lack of incentives for organizations. However, in most cases, customers determine task
priority. Sadly, there is also little to no incentive for these customers. P11 explained that
“Customers are not/hardly interested. All they want is that the software provides value and is
maintainable with in-house knowledge.” To incentivize these customers, P16 said that more
insights are needed: “Customers have little insight into the emissions, making it difficult to show
the effects of energy saving measures.” Moreover, cultivating demand for sustainable software
among customers can lead to organizations being incentivized. When enough customers desire
sustainable software, organizations will want to meet new market demand.

3.3. Solutions to the obstacles

3.3.1. Spreading information

The information available on SEC is not reaching IT practitioners. Sharing guidelines, hand-
books, and tools will help organizations with policy making. Furthermore, cloud providers
should clearly state the proportion of their pricing attributed to electricity consumption. This

29



improved clarity will increase awareness of software electricity consumption and associated
CO2 emissions. Cloud dashboards showing costs and electricity usage should be available to an
organization’s developers (and thus not only the organization’s administration) so they realize
the effects of their behavior. To better inform developers, current available tools should be more
actively promoted. Lastly, educational institutions should incorporate IT sustainability. For
example, computing science studies can teach students how to keep their code efficient.

3.3.2. Energy measurements

Developers struggle to measure SEC but argue for its necessity. Fortunately, existing tools can
assist with this issue, but most developers are unaware of them. In addition, the interviewees
said a lot can be done without measurements. For example, I2 said “As a developer and as an
organization you can definitely reduce SEC without measuring. You can get a long way with
common sense.” Steps such as turning off unnecessarily running cloud instances or reducing file
sizes are examples given by the interviewees. Considering SEC at the architectural level does
not require energy measurement and is argued to have a greater impact than code changes.

3.3.3. A good business case

Minimizing costs is not a good solution on its own. Instead, it may be better to look at business
cases. As I1 put it: “There is not much use to it without a business case.” To clarify, a business
case is “a justification for a proposed project or undertaking based on its expected commercial
benefit” [10]. To help organizations create business cases for reducing SEC, this paper believes
that it is important to (1) Decrease investment costs. (2) Increase potential commercial benefits.
(3) Develop tooling to more accurately estimate the potential commercial benefit.

3.3.4. Standardization and auditing

I4 expressed a need for a guideline, “something like WCAG.” I1 also expressed the same need:
“That can be done perfectly fine with such an ISO standard. But then you’ll have to add very
concrete numbers so that you communicate about what you’re actually being audited for.”
Standardizing methods can help organizations get started and create the opportunity to certify
organizations on the sustainability of their IT. As said by I3, “It is the responsibility of external
organizations to check others and verify that what they say is true.”

4. Related Works

In their 2015 study, Pang et al. [6] conducted a survey with 122 participants and found that
programmers had limited knowledge of SEC. Their study and others indicate that any form of
SEC quantification will likely drive an increased awareness among people [6, 11]. Chowdhury
et al. summarize that “the measurement of software energy consumption is expensive in terms
of hardware and difficult in terms of expertise.” There also exists methods to predict SEC using
a hardware model, such as in [2, 3, 4]. These methods do not need measurement set-ups, but
the results might be more difficult to interpret than measurement data for one specific run of

30



a program, that is similar to what existing profilers produce. [12] on the other hand, Jagroep
et al. say that software-based profilers can not be used to estimate SEC yet, but can be used
to get a sense of the energy consumption habits of software.” [8] The surveys and interviews
from the studies by Ournani et al. [7] and Manotas et al. [13] show that practitioners give low
priority to SEC. A 2021 study by Cico et al. shows that customers do not value environmental
sustainability much in their software projects either [14].

5. Threats & validity

The number of survey and interview participants was low. Surveys and interviews from other
papers were cross-checked to reduce the effect this has on the paper’s validity. However, its
generalizability remains affected. Furthermore, the participants were approached through
LinkedIn. This could create a snowball process of recruiting more participants by followers of
followers, potentially causing community bias. The codes also have a potential bias; despite not
transferring codes from survey to interviews, all coding was done by the same individual.

6. Conclusion

This paper aims to discover why Dutch organizations are not modifying their software de-
velopment process to structurally work on reducing the energy consumption of software. To
achieve this goal, data on Dutch organizations, their efforts to reduce SEC, and related problems
were gathered using 19 survey completions and five interviews. This paper shows that the
organizations of the participants lack a structured approach to reducing SEC. The obstacles
identified are the difficulty of measuring SEC, the high costs of reducing SEC, a lack of customer
incentives, and a lack of information dissemination.

Potential solutions were derived from the survey responses, literature analysis, and interviews.
The primary solution is to bring currently available information to the attention of practitioners.
In addition, developers can use software tools to measure SEC. Despite their lower accuracy, they
should suffice in most cases. Furthermore, a good business case is required for organizations to
take action. Hence, investment costs should be minimized and the commercial benefit maximized.
Additional tooling to calculate expected costs and savings may also help. Cloud providers need
to become more transparent about how much of their pricing consists of electricity costs,
to increase awareness among their customers. Lastly, standardization and auditing might
increase the commercial potential of SEC by providing proof of software sustainability, and
help organizations get started on reducing SEC. If successful, these solutions will likely lead to
SEC requirements in software projects, affecting the field of software evolution.

References

[1] G. Pinto, F. Castor, Y. D. Liu, Mining questions about software energy consumption, in:
Proceedings of the 11th Working Conference on Mining Software Repositories, 2014, pp.
22–31.

31



[2] B. van Gastel, R. Kersten, M. van Eekelen, Using dependent types to define energy aug-
mented semantics of programs, in: M. C. J. D. van Eekelen, U. D. Lago (Eds.), Foundational
and Practical Aspects of Resource Analysis - 4th International Workshop, FOPARA 2015,
London, UK, April 11, 2015, Revised Selected Papers, volume 9964 of Lecture Notes in
Computer Science, 2015, pp. 20–39. doi:10.1007/978-3-319-46559-3_2.

[3] S. Ergasheva, I. Khomyakov, A. Kruglov, G. Succil, Metrics of energy consumption in
software systems: a systematic literature review, in: IOP Conference Series: Earth and
Environmental Science, volume 431, IOP Publishing, 2020, p. 012051.

[4] B. van Gastel, Assessing sustainability of software - Analysing Correctness, Mem-
ory and Energy Consumption, Ph.D. thesis, Open University, 2016. URL: https://www.
sustainablesoftware.info/docs/thesis-met-cover.pdf.

[5] E. Jagroep, G. Procaccianti, J. M. van der Werf, S. Brinkkemper, L. Blom, R. van Vliet, et al.,
Energy efficiency on the product roadmap: an empirical study across releases of a software
product, Journal of Software: Evolution and process 29 (2017) e1852.

[6] C. Pang, A. Hindle, B. Adams, A. E. Hassan, What do programmers know about software
energy consumption?, IEEE Software 33 (2015) 83–89.

[7] Z. Ournani, R. Rouvoy, P. Rust, J. Penhoat, On reducing the energy consumption of software:
From hurdles to requirements, in: Proceedings of the 14th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM), 2020, pp. 1–12.

[8] E. Jagroep, J. M. E. van der Werf, S. Jansen, M. Ferreira, J. Visser, Profiling energy profilers,
in: Proceedings of the 30th annual ACM symposium on applied computing, 2015, pp.
2198–2203.

[9] S. E. Hove, B. Anda, Experiences from conducting semi-structured interviews in empirical
software engineering research, in: 11th IEEE International Software Metrics Symposium
(METRICS’05), IEEE, 2005, pp. 10–pp.

[10] O. Languages, The Oxford English Dictionary, 2023. URL: https://www.oed.com/.
[11] E. Jagroep, J. Broekman, J. M. E. Van Der Werf, P. Lago, S. Brinkkemper, R. Blom, Leen

anfd Van Vliet, Awakening awareness on energy consumption in software engineering,
in: 2017 IEEE/ACM 39th International Conference on Software Engineering: Software
Engineering in Society Track (ICSE-SEIS), IEEE, 2017, pp. 76–85.

[12] S. A. Chowdhury, A. Hindle, Greenoracle: Estimating software energy consumption with
energy measurement corpora, in: Proceedings of the 13th international conference on
mining software repositories, 2016, pp. 49–60.

[13] I. Manotas, C. Bird, R. Zhang, D. Shepherd, C. Jaspan, C. Sadowski, L. Pollock, J. Clause,
An empirical study of practitioners’ perspectives on green software engineering, in:
Proceedings of the 38th international conference on software engineering, 2016, pp. 237–
248.

[14] O. Cico, L. Jaccheri, A. N. Duc, Software sustainability in customer-driven courses, in: 2021
IEEE/ACM International Workshop on Body of Knowledge for Software Sustainability
(BoKSS), IEEE, 2021, pp. 15–22.

32

http://dx.doi.org/10.1007/978-3-319-46559-3_2
https://www.sustainablesoftware.info/docs/thesis-met-cover.pdf
https://www.sustainablesoftware.info/docs/thesis-met-cover.pdf
https://www.oed.com/

	1 Introduction
	2 Methodology
	2.1 Survey
	2.2 Literature Study
	2.3 Interviews

	3 Results
	3.1 The state of SEC within organizations
	3.2 Obstacles hindering organizations
	3.2.1 A lack of information dissemination
	3.2.2 Measuring SEC is vital yet difficult
	3.2.3 Reducing SEC lacks a business case
	3.2.4 The Cloud
	3.2.5 Customers lack incentive

	3.3 Solutions to the obstacles
	3.3.1 Spreading information
	3.3.2 Energy measurements
	3.3.3 A good business case
	3.3.4 Standardization and auditing


	4 Related Works
	5 Threats & validity
	6 Conclusion

