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Abstract
Prescriptive process monitoring methods seek to improve the performance of a process by selectively
triggering interventions at runtime (e.g., offering a discount to a customer) to increase the probability of
a desired case outcome (e.g., a customer making a purchase). The backbone of a prescriptive process
monitoring method is an intervention policy, which determines for which cases and when an intervention
should be executed. Existing methods rely on predictive models to define intervention policies; specifically,
they consider policies that trigger an intervention when the probability of a negative outcome exceeds a
threshold. However, the probabilities computed by a predictive model often come with low confidence,
leading to unnecessary interventions and wasted effort, which is problematic when the resources available
to execute interventions are limited. To tackle this shortcoming, this paper outlines an approach to
extend existing prescriptive process monitoring methods with conformal predictions, i.e., predictions
with confidence guarantees. A preliminary evaluation using real-life public datasets shows that conformal
predictions enhance the net gain of prescriptive process monitoring methods under limited resources.
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1. Introduction

Prescriptive process monitoring (PrPM) is a family of methods to optimize business processes by
triggering runtime interventions with the goal of improving the percentage of cases that lead to
a desired outcome [1]. For example, in a lead-to-order process, a PrPM method may recommend
offering a discount (the intervention) to achieve sales (desired outcome). In contrast, in an
unemployment benefits assessment process, a PrPM system may allocate a problematic case to
a senior case handler (intervention) to avoid an appeal (undesired outcome).

Existing PrPM approaches [2, 3, 4, 5, 6] typically comprise at least two components: (i)
a predictive model that estimates the probabilities that a case ends in a desired (𝑑𝑜𝑢𝑡) or an
undesired outcome (𝑢𝑜𝑢𝑡); and (ii) an intervention policy, which determines for which ongoing
cases an intervention should be triggered in view of optimizing a gain function. This gain
function considers the benefit of more cases ending with a desired outcome (e.g., higher revenue
from more cases ending in a sale) and the cost of the interventions (e.g., the discounts).

Typically, existing PrPM approaches rely on policies that trigger interventions when the
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probability of a negative outcome exceeds a threshold [7, 5]. A shortcoming of this approach
is that the probabilities computed by predictive models often come with low confidence. This
leads to unnecessary interventions and, thus, wasted effort. This wasted effort is particularly
problematic in settings where the resources available to execute interventions are limited, which
means that allocating a resource to intervene in a case (based on a low-confidence probability)
may result in this resource being unable to intervene in other cases.

This paper addresses the above shortcoming by outlining an approach to integrate conformal
prediction methods [8] into a PrPM system. Conformal prediction methods allow us to asso-
ciate confidence guarantees with predictions, thus tackling the abovementioned shortcoming
regarding triggering unnecessary interventions. The paper reports on an empirical evaluation
to test the hypothesis that the use of conformal predictions leads to a higher net gain from
interventions in a resource-constrained PrPM system.

2. Related Work

PrPM techniques can be classified into three groups based on intervention policy and improving
business value [9]. The first group focuses on control flow for optimal action recommenda-
tions [10, 11, 4]. The second group prioritizes resource allocation decisions [12, 13]. The third
group combines control flow and resources to mitigate undesired outcomes [14, 6, 2, 5]. This
paper falls into the third group.

Studies in the third group use predictive models trained on historical process data (event logs)
to determine when and for which cases interventions should be triggered. Fahrenkrog et al. [5]
propose a PrPM approach based on predictions from an outcome-oriented model [15]. These
methods trigger interventions if the probability of an undesired outcome exceeds a threshold.
The threshold is determined through empirical thresholding, which explores multiple thresholds
over a subset of the event log to maximize a reward function. However, these techniques
overlook the inherent uncertainty in prediction models.

Metzger et al. [2] propose using reliability estimates, prediction scores, and other features
in an online RL method. However, their reliability estimates lack confidence guarantees, and
their black-box policy learned through neural networks lacks explainability. Additionally, their
approach involves online RL, while we focus on offline policy discovery based on past data.

In previous work [14, 6], we presented a PrPM technique that considers the tradeoff between
triggering an intervention now versus later when resources are limited. This technique relies on
estimates including the intervention effect (or conditional average treatment effect, i.e., 𝐶𝐴𝑇𝐸),
total uncertainty (determined as the entropy of the average prediction from an ensemble of
machine learning (ML) classifiers), and the probability of undesired outcomes. However, these
uncertainty estimates do not come with confidence guarantees. This latter approach is used as
a baseline in the empirical evaluation reported later in this paper.

3. Approach

In line with existing ML approaches, the method consists of three phases, as illustrated in Fig. 1:
Training, Calibration, and Testing, which we discuss below in turn.
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3.1. Training phase

During training, the event log is used to train predictive and causal models after data cleaning
and enrichment. The predictive model estimates the probability of an ongoing case resulting in
an undesired outcome (P(𝑢𝑜𝑢𝑡)). In contrast, the causal model measures the effect of triggering
an intervention on the probability of a positive outcome (𝐶𝐴𝑇𝐸). The training process is
described in our previous work [14, 6] and is summarized below.
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Figure 1: An overview of the proposed approach.

3.1.1. Event Log Enrichment

This step includes data preparation, prefix extraction, enrichment, and encoding. In data prepa-
ration, we clean the event log by removing incomplete traces and outliers (e.g., events with
abnormal timestamp values). We extract prefixes of length 𝐾 from each case to simulate real-life
scenarios. The prefixes are enriched with attributes related to temporal context and inter-case
information. Finally, the prefixes are encoded into a fixed-size feature vector using an aggregate
encoding method [15] for training machine learning algorithms. The output is a preprocessed
dataset containing tuples ((𝑋𝑖, 𝑇𝑖, 𝑌𝑖)), each consisting of a feature vector 𝑋𝑖 (original and
enriched features), and an intervention 𝑇𝑖 that can positively impact the outcome 𝑌𝑖. The dataset
is then divided into three folds: 𝐷𝑡𝑟𝑎𝑖𝑛,𝐷𝑐𝑎𝑙,𝐷𝑡𝑒𝑠𝑡 with 𝑁 = 𝑛𝑡𝑟𝑎𝑖𝑛 +𝑛𝑐𝑎𝑙 +𝑛𝑡𝑒𝑠𝑡 samples. Each
fold is used in the training, calibration, and testing phases, respectively.

3.1.2. Predictive Model

The predictive model aims to estimate the probability of an ongoing case ending in an undesired
outcome based on its corresponding prefix. To train the predictive model, a gradient-boosted
tree algorithm is applied to the training fold 𝐷𝑡𝑟𝑎𝑖𝑛. The objective is to minimize a loss function
ℒ(𝑌,𝑌 ), where 𝑌 represents the actual outcome, and 𝑌 represents the predicted outcome.
The result is a predictive model (𝑓 ) that generates a prediction score (probability) for both the
undesired outcome, P(𝑢𝑜𝑢𝑡), and the desired outcome, P(𝑑𝑜𝑢𝑡).
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3.1.3. Causal Model

The causal model determines the impact of the intervention, i.e., 𝐶𝐴𝑇𝐸. It represents the
percentage increase in the probability of achieving the desired outcome when the intervention
is applied. For example, in a lead-to-order process with an initial sales probability of 0.4, an
𝐶𝐴𝑇𝐸 of 0.3 indicates that the intervention would raise the sales probability to 0.7. To estimate
the 𝐶𝐴𝑇𝐸, a causal model is trained to predict the probabilities of undesired outcomes with
and without the intervention (𝑇 = 1 and 𝑇 = 0). The difference between these probabilities,
considering the current case state characterized by 𝑋 , provides the 𝐶𝐴𝑇𝐸.

3.2. Calibration phase

In this phase (Fig. 2), we use an Inductive Conformal Prediction (ICP) algorithm [16, 8, 17]. ICP
methods can be applied as a post-processing step to any predictive model, such as random
forests or gradient-boosting, to provide predictions with confidence guarantees.

The ICP method uses a user-defined significance level (𝛼) and a predictive model (𝑓 ) to create
a prediction set (𝐶 that contains the actual outcome with a confidence level of 1 − 𝛼 . For
example, if the user desires a confidence level of 90%, then they would set 𝛼 to 0.1. This 𝛼 value
isn’t for hyperparameter optimization in total gain but reflects the user’s preferred level of
conservatism, indicating their willingness to act on less certain predictions.

Reducing the significance level increases confidence but also enlarges the prediction set to
encompass all possible outcomes. In our context, we aim to create prediction sets exclusively
containing only the undesired outcome to ensure high certainty that a case will end undesirably
before allocating costly resources. Accordingly, we adopt a conservative approach for risk-averse
users, triggering interventions only when we’re highly confident of the undesired outcome.
This leads to prediction sets consisting solely of the undesired outcome. In contrast, risk-prone
users may opt for intervention even when positive outcomes are possible without it.

.

predictive
modeling
method

non-conformity
scoring method

Prediction 
scores

Figure 2: The inductive conformal prediction method.

An ICP method consists of two steps, as shown in Fig. 2. In the first step, non-conformity
scores (𝑆) and a non-conformity quantile (�̂�) are calculated. The predictive model assigns
outcome probabilities (prediction scores) to the calibration data, and a non-conformity scoring
method generates non-conformity scores 𝑠 ∈ (𝑆𝑖)𝑛𝑐𝑎𝑙

𝑖=1 for each sample. Higher non-conformity
scores indicate greater uncertainty. The non-conformity quantile �̂� is determined based on the
significance level (𝛼) as per Eq. 1.

�̂� = 𝑄((𝑆𝑖)𝑛𝑐𝑎𝑙
𝑖=1 ,

[︂(𝑛𝑐𝑎𝑙 + 1)(1 − 𝛼)⌉︂
𝑛𝑐𝑎𝑙

) (1)
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In the second step, the value of �̂� determines the outcomes included in the prediction set.
Using the marginal coverage guarantee property [18]. ICP generates a prediction set with
1 − 𝛼 confidence. This property ensures that the actual outcome 𝑌𝑡𝑒𝑠𝑡 will be included in the
prediction set 𝐶(𝑋𝑡𝑒𝑠𝑡) with 1 − 𝛼 confidence. A higher confidence level increases the size of
the prediction set to accommodate all possible outcomes. In outcome-oriented PrPM tasks, the
focus is on identifying 𝐶(𝑋𝑡𝑒𝑠𝑡) = {𝑢𝑜𝑢𝑡} with greater certainty to allocate resources efficiently.
For example, if the desired outcome is the actual outcome and 𝛼 = 0.2, Eq. 2 guarantees that 𝑑𝑜𝑢𝑡
will be included in 𝐶 with at least 80% confidence. Lower 𝛼 values indicate higher confidence
but also result in larger prediction sets. In a PrPM task, the main goal is to confidently identify
𝐶(𝑋𝑡𝑒𝑠𝑡) = {𝑢𝑜𝑢𝑡}, indicating a higher certainty of an undesirable outcome.

P(𝑌𝑡𝑒𝑠𝑡 ∈ 𝐶(𝑋𝑡𝑒𝑠𝑡)) ≥ 1 − 𝛼 (2)

ICP methods differ in how they calculate the non-conformity score and how they use the
non-conformity quantile �̂� to determine the prediction set. Below, we describe the specific ICP
methods we employ in our approach.

3.2.1. Naive method

Fundamentally, in the outcome-oriented task, the predictive model approximates P(𝑌 = 𝑜𝑢𝑡 ⋃︀
𝑋 = 𝑥) ∀ 𝑜𝑢𝑡 ∈ {𝑑𝑜𝑢𝑡, 𝑢𝑜𝑢𝑡}. For example, given an instance of a given case 𝑥, what is the
probability of it belonging to 𝑜𝑢𝑡? Then we perform a naive calibration step by setting the
non-conformity score (𝑆𝑛) to be one minus the prediction score of the actual outcome, as shown
in Eq. 3, to obtain {(𝑠𝑖)}𝑛𝑐𝑎𝑙

𝑖=1 . Then calculate �̂� according to Eq. 1.

𝑆𝑛 = 1 − 𝑓(𝑋𝑐𝑎𝑙)𝑜𝑢𝑡𝑡𝑟𝑢𝑒 ∀ 𝑋𝑐𝑎𝑙 ∈𝐷𝑐𝑎𝑙 (3)

𝐶𝑛(𝑋𝑡𝑒𝑠𝑡) = {𝑜𝑢𝑡 ∶ 𝑓(𝑋𝑡𝑒𝑠𝑡)𝑜𝑢𝑡 ≥ 1 − �̂�} (4)

Then, the prediction set is constructed based on Eq. 4, where 𝑋𝑡𝑒𝑠𝑡 is known, but 𝑌𝑡𝑒𝑠𝑡 is
not. This means the prediction set will only include one outcome, desired or undesired, when
the prediction score for one outcome satisfies the condition in Eq. 4., and the other outcome
does not. For example, when �̂� = 0.7, the P(𝑢𝑜𝑢𝑡) = 0.72, and the P(𝑑𝑜𝑢𝑡) = 0.28, then the
𝐶(𝑋𝑡𝑒𝑠𝑡) = {𝑢𝑜𝑢𝑡}. Otherwise, the level of certainty about the prediction becomes insufficient
to retain only one outcome and either include both or none.

3.2.2. Outcome-balanced method

This scoring (𝑆𝑜𝑏) method’s principle is the same as the former; however, here, we perform the
calibration step for each outcome separately to achieve outcome-balanced coverage, especially
when the outcome of cases is imbalanced; thus, it guarantees (5) instead of (2). Hence, defining
the non-conformity scores and non-conformity quantile for each outcome, as shown in Eq. 5.,
means we stratify by the outcome.

P(𝑌𝑡𝑒𝑠𝑡 ∈ 𝐶(𝑋𝑡𝑒𝑠𝑡) ⋃︀ 𝑌𝑡𝑒𝑠𝑡 = 𝑜𝑢𝑡) ≥ 1 − 𝛼, ∀ 𝑜𝑢𝑡 ∈ {𝑑𝑜𝑢𝑡, 𝑢𝑜𝑢𝑡} (5)
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�̂�(𝑜𝑢𝑡) = 𝑄((𝑆(𝑜𝑢𝑡)𝑖 )𝑛𝑐𝑎𝑙(𝑜𝑢𝑡)
𝑖=1 ,

[︂(𝑛𝑐𝑎𝑙(𝑜𝑢𝑡) + 1)(1 − 𝛼)⌉︂
𝑛𝑐𝑎𝑙(𝑜𝑢𝑡)

) (6)

According to the outcome-balanced scoring method, the prediction set is determined by Eq. 7.,
where we iterate over desired and undesired outcomes. Then it retains or not each outcome
according to its quantiles. For example, assume �̂�(𝑑𝑜𝑢𝑡) = 0.7, �̂�(𝑢𝑜𝑢𝑡) = 0.4, the P(𝑢𝑜𝑢𝑡) = 0.3,
and the P(𝑑𝑜𝑢𝑡) = 0.7. Then the prediction set examines each outcome with its prediction score
and �̂�. Hence, the P(𝑢𝑜𝑢𝑡) = 0.3 is not greater than 1 minus 0.4; accordingly, the prediction set
will discard the undesired outcome. Conversely, the P(𝑑𝑜𝑢𝑡) = 0.7 is greater than 1 minus 0.7;
thus, the prediction set will retain the desired outcome, meaning 𝐶(𝑋𝑡𝑒𝑠𝑡) = {𝑑𝑜𝑢𝑡} only.

𝐶𝑜𝑏(𝑋𝑡𝑒𝑠𝑡) = {𝑜𝑢𝑡 ∶ 𝑓(𝑋𝑡𝑒𝑠𝑡)𝑜𝑢𝑡 ≥ 1 − �̂�(𝑜𝑢𝑡)} (7)

3.2.3. Adaptive method

Unlike previous methods (𝑆𝑛 and 𝑆𝑜𝑏) that consider only the prediction score for the actual
outcome, this scoring method (𝑆𝑎) considers all possible outcomes until the sum of their
prediction scores exceeds the 1 − 𝛼 confidence. Eq. 8., shows how the non-conformity scores
are calculated, where 𝜋(𝑥) is the permutation of all possible outcomes that orders 𝑓(𝑋𝑡𝑒𝑠𝑡)
from the most likely outcome to the less likely. The next step is to compute �̂� as (2), and the
prediction set is formed according to Eq. 9.

𝑆𝑎 =
𝑜𝑢𝑡

∑
𝑖=1

𝜋(𝑋𝑐𝑎𝑙)𝑖 (8)

𝐶𝑎(𝑋𝑡𝑒𝑠𝑡) = {𝑜𝑢𝑡 ∶ 𝑆𝑎 ≥ �̂�} (9)

Based on this scoring method, there is no empty prediction set because the prediction set
will retain only one outcome when the level of certainty about it is high. Otherwise, it will
retain both outcomes but with different orders. Specifically, we add outcomes one by one to
the prediction set until the sum of their prediction score exceeds the �̂�. For example, assume
�̂� = 0.8, P(𝑢𝑜𝑢𝑡) = 0.45, and the P(𝑑𝑜𝑢𝑡) = 0.55. We first sort the prediction scores from the
most likely to the least, e.g., P(𝑑𝑜𝑢𝑡) = 0.55, followed by P(𝑢𝑜𝑢𝑡) = 0.45. Then we add the most
likely outcome to the prediction set if its prediction score does not exceed �̂� = 0.8, meaning
P(𝑑𝑜𝑢𝑡) = 0.55 < 0.8. Next, we sum the next outcome in order to the previous one, and if their
sum does not exceed the �̂� = 0.8 will include it; otherwise, we stop and not adding any other
outcomes to the prediction set. Since 0.45 + 0.55 is greater than �̂� = 0.8, the prediction set will
not include the second outcome in the prediction set; thus 𝐶(𝑋𝑡𝑒𝑠𝑡) = {𝑑𝑜𝑢𝑡}.

3.3. Testing phase

At runtime, the approach collates events for ongoing cases into case prefixes using a prefix
collator, resulting in a stream of trace prefixes. For each incoming trace prefix (𝑋𝑡𝑒𝑠𝑡), estimates
of P(𝑢𝑜𝑢𝑡), 𝐶𝐴𝑇𝐸, and 𝐶(𝑋𝑡𝑒𝑠𝑡) are obtained. These estimates are then used to filter ongoing
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cases, identify intervention candidates, and rank them based on a gain function that considers
the benefits of achieving desired outcomes and the costs of interventions.

To identify candidate cases for intervention, we check three conditions: (1) P(𝑢𝑜𝑢𝑡) is above
a threshold, determined empirically, (2) 𝐶(𝑋𝑡𝑒𝑠𝑡) = {𝑢𝑜𝑢𝑡}, and (3) 𝐶𝐴𝑇𝐸 > 0. The candidate
case with the highest gain is chosen, calculated as the benefit of avoiding an undesired outcome
(𝐶𝑢𝑜𝑢𝑡 multiplied by 𝐶𝐴𝑇𝐸, minus the intervention cost 𝐶𝑖𝑛, see Eq. 10.

𝑔𝑎𝑖𝑛 = 𝐶𝐴𝑇𝐸 ∗𝐶𝑢𝑜𝑢𝑡 −𝐶𝑖𝑛 (10)

The parameters 𝐶𝑢𝑜𝑢𝑡 and 𝐶𝑖𝑛 are user-defined and can vary between different processes.
Tab. 1 provides an example of costs and gains for six case prefixes in an unemployment benefits
process. The undesired outcome is when the customer lodges an appeal. Different decisions
are made depending on the cost of creating an appeal and giving a discount. For example, in
𝐶𝑎𝑠𝑒𝐼𝐷 = 𝐶 , giving a discount is preferred when its cost is lower than creating an appeal,
while in 𝐶𝑎𝑠𝑒𝐼𝐷 = 𝐸, accepting the appeal is preferred.

Table 1
An example of costs and gains.

𝐶𝑎𝑠𝑒𝐼𝐷 P(𝑢𝑜𝑢𝑡) > 𝜏=0.5 𝐶𝐴𝑇𝐸 𝐶(𝑋𝑡𝑒𝑠𝑡) 𝐶𝑢𝑜𝑢𝑡 𝐶𝑖𝑛 𝑔𝑎𝑖𝑛
A 0.52 5 {uout} 6 6 24
B 0.54 -1 {dout} - - -
C 0.7 6 {uout} 10 5 55
D 0.7 3 {} - - -
E 0.55 3 {uout} 2 12 -6
F 0.76 4 {uout} 10 5 35

Also, in Tab. 1, we have six cases with different P(𝑢𝑜𝑢𝑡), 𝐶𝐴𝑇𝐸 and 𝐶(𝑋𝑡𝑒𝑠𝑡). 𝐶𝑎𝑠𝑒𝐼𝐷 = 𝐵
and 𝐶𝑎𝑠𝑒𝐼𝐷 =𝐷 are excluded due to their negative intervention effects and empty prediction
sets. With only one available resource for a phone call, we allocate it to the case with the highest
gain, which is 𝐶𝑎𝑠𝑒𝐼𝐷 = 𝐶 .

4. Evaluation

We report on an evaluation that addresses the following questions:

RQ1. What significance level (𝛼) is appropriate for each non-conformity scoring method to
align with the preferences of a risk-averse user?

RQ2. To what extent does conformal prediction improve the total gain w.r.t. existing baselines?

4.1. Datasets

We experimented with two real-life event logs from the banking industry: BPIC20171 and
BPIC20122. These logs represent the loan origination process and provide clear definitions
for desired and undesired outcomes. They are large enough regarding the number of loan
applications and include interventions that can reduce the probability of undesired outcomes.
Table 2 provides an overview of the key characteristics of these logs.

1https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
2https://data.4tu.nl/articles/dataset/BPI_Challenge_2012/12689204/1
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Table 2
Descriptive statistics of the loan application dataset.

dataset # applications
min

length
max

length
last

activity
outcome

intervention
activity

BPIC2017 31,413 10 180
A_pending desired -
A_Canceled
A_Declnied”

undesired Creat_Offer

BPIC2012 13,087 15 175
A_Approved desired -
A_Canceled
A_Declnied

undesired Creat_Offer

The logs contain diverse case and event attributes. We use them in our experiments in addition
to other extracted attributes, e.g., the number of sent offers, monthly loan interest, and temporal
features, to enrich the logs. Then, we define outcomes according to each case’s last activity
and determine the intervention according to the Creat_Offer activity for cases labeled with
undesired outcomes, as shown in Tab. 2. To avoid lengthy cases, we extract prefixes up to the
90th percentile. An aggregate encoding method is applied to capture maximum information from
the logs, outperforming other techniques, as shown in previous research [15]. The resulting
fixed-size feature vector serves as input for training the machine learning algorithms.

4.2. Experimental Setup

The experimental setup involves dividing the log into three categories: training (60%), calibra-
tion (20%), and testing (20%). The training set is used for model training, the calibration set is
used to create the prediction set, and the testing set evaluates the intervention policy.

We use Catboost [19], a GBDT algorithm, to train the predictive model for estimating the
probability of undesired outcomes (P(𝑢𝑜𝑢𝑡)). For estimating 𝐶𝐴𝑇𝐸, we employ the Orthogonal
Random Forest (ORF) algorithm from EconMl3. Both methods have shown good accuracy in
predicting undesired outcomes and estimating intervention effects [15, 14].

During runtime, ongoing cases are filtered to identify candidates based on P(𝑢𝑜𝑢𝑡) > 0.5,
𝐶𝐴𝑇𝐸 > 0, and 𝐶(𝑋𝑡𝑒𝑠𝑡) = {𝑢𝑜𝑢𝑡}. These estimates help prioritize cases likely to have
undesired outcomes and be influenced by the intervention. Then we set the 𝐶𝑢𝑜𝑢𝑡 = 20,
relatively high, to 𝐶𝑖𝑛 = 1 to estimate the expected gain from resource allocation.

We evaluate the proposed approach using metrics such as 𝐴𝑈𝐶 and 𝐹 − 𝑠𝑐𝑜𝑟𝑒 to assess
the ICP methods’ performance. These metrics are suitable for imbalanced data and provide an
unbiased evaluation. Additionally, we examine the number of cases in 𝐶(𝑋𝑡𝑒𝑠𝑡) containing
only the undesired outcome, targeting confident predictions of undesirable outcomes.

We evaluate the intervention policy with limited resources based on the total gain and the
(accuracy/resource) ratio. The total gain represents the cumulative gains achieved per available
resource. In contrast, the accuracy per resource ratio indicates the proportion of correctly
allocated resources to undesired cases out of the total allocated cases.

4.3. Results

We analyze the impact of the user-defined significance level (𝛼) on the prediction set ( RQ1)
and examine the improvement in total gain with finite resources using the intervention policy

3https://github.com/microsoft/EconML
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based on conformal prediction ( RQ2).

Figure 3: The histograms where 𝐶(𝑋𝑡𝑒𝑠𝑡) = {𝑢𝑜𝑢𝑡} and related metrics.

In Fig. 3, we present the impact of different non-conformity scoring methods on the retention
of an undesired outcome in the prediction set, addressing RQ1. In other words, for a risk-averse
user, we aim to find which significance level maximizes the number of cases in which the
prediction set contains only a negative outcome. Our findings indicate that for the naive and
outcome-balanced methods, the optimal significance levels (𝛼) for maximizing the number
of cases belonging to the prediction set, while retaining only undesired outcomes, are 0.4
for BPIC2012 and 0.2 for BPIC2017. Conversely, the adaptive method achieves the maximum
retention at 𝛼 = 0.9 for both logs. This disparity can be attributed to the construction of the
prediction set in each method. The naive and outcome-balanced methods demonstrate less
conservatism towards including a specific outcome in the prediction set as �̂� approaches zero.
In contrast, the adaptive method exhibits the opposite behavior. Moreover, we observe that
these significance levels yield the highest F-score and (AUC) compared to other levels (detailed
in the supplementary material4). As a result, for risk-averse users, an extreme alpha value must
be selected, and these levels are used to assess the enhancement of conformal methods in terms
of total gain and accuracy/resource.

To investigate RQ2, we analyze different approaches for improving the intervention policy.
Firstly, we compare pure predictive methods targeting cases with P(𝑢𝑜𝑢𝑡) > 0.5 [5], with and
without a threshold of 𝑇𝑜𝑡𝑎𝑙𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 < 0.75 [14]. We then evaluate the performance of
predictive methods combined with the inductive conformal prediction (ICP), specifically when
𝐶(𝑋𝑡𝑒𝑠𝑡) includes only undesired outcomes. This analysis is presented in Fig. 4, where the
gain from interventions using 𝐶𝐴𝑇𝐸 is examined. Additionally, Fig. 5 compares the predictive
approach (P(𝑢𝑜𝑢𝑡) > 0.5 and the 𝑇𝑜𝑡𝑎𝑙𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 < 0.75) combined with 𝐶𝐴𝑇𝐸 (when it is
above 0) [3] and conformal prediction.

For the BPIC2012 log, the total gain (on the left-hand side) improves when we combine
any conformal method with pure predictive in Fig. 4 and 𝐶𝐴𝑇𝐸 in Fig. 5. In particular, when

4https://zenodo.org/record/7380386
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Figure 4: Pure predictive VS predictive plus conformal. X-axis: range of available resources, Y-axis:
achieved total gain and accuracy per resource (left and right figures respectively).

B
PI
C
20
17

B
PI
C
20
12

Figure 5: Predictive plus CATE VS Predictive plus CATE plus Conformal. X-axis: range of available
resources, Y-axis: achieved total gain and accuracy per resource (left and right figures respectively).

resources are minimal, with a remarkable accuracy/resource compared to non-conformal methods.
Also, the adaptive conformal method outperforms other methods w.r.t the total gain, and similar
to other methods, w.r.t accuracy/resource. This is because the adaptive method’s defined �̂� is
much higher than the naive and outcome-balanced methods; accordingly, more conservative in
adding outcomes to the prediction set.

Moreover, when resources are not restricted, which is different from the situation in practice,
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we find that non-conformal methods achieve good gains with reasonable accuracy per resource
as conformal methods. However, the conformal methods are more conservative since they
constrain the allocation of resources.

For the BPIC2017 log, the adaptive method significantly improves the total gain with high
accuracy in both limited and relaxed resource scenarios. In contrast, when resources are limited,
the naive and outcome-balanced methods achieve comparable gains to non-conformal methods.
Nevertheless, all conformal methods outperform non-conformal w.r.t accuracy per resource.

In summary, the proposed PrPM approach demonstrates superior performance compared to
baselines regarding total gain and accuracy per resource, as shown in Fig. 4 and Fig. 5. Moreover,
our approach outperforms the previous work [14], as indicated in the supplementary material.
The use of conformal prediction to construct an intervention policy with limited resources
further enhances the performance of PrPM methods, benefiting business processes.

5. Conclusion and Future Work

We studied the hypothesis that the use of conformal predictions can enhance the effectiveness
of prescriptive process monitoring methods by preventing interventions from being triggered
unnecessarily when the level of confidence is insufficient.

The empirical evaluation shows that intervention policies with conformal predictions outper-
form classic non-conformal methods, particularly when the number of resources available for
performing the interventions is limited. The reported evaluation relied on two real-life event
logs from the same domain (banking). We acknowledge that further experiments with a larger
and more diverse array of datasets are required to achieve generalizability.

The proposal assumes that only one type of intervention is available (e.g., giving a customer
discount). Also, it assumes that this intervention can only be triggered at most once in a case. In
practice, cases may be subject to multiple interventions of different types (e.g., giving a discount,
offering an upgrade, or a voucher for future purchases, etc.). Thus, a direction for future work is
to extend the current approach to a multi-intervention setting, for example, using multi-armed
bandit approaches. Another direction is to study the problem where the case outcome is not a
categorical variable (e.g., positive vs. negative) but a numerical variable (e.g., cost, time).

In this paper, we’ve employed conformal prediction techniques to identify cases likely to
result in a negative outcome. However, an intriguing avenue for further exploration involves
applying conformal prediction to the CATE values themselves, thereby enhancing the overall
prediction and decision-making process. Furthermore, we could expand upon this work by
exploring the application of reinforcement learning, both with and without conformal methods,
as an alternative to the rule-based approach for learning intervention policies.

Reproducibility. The source code required to reproduce the experiments can be found at:
https://github.com/mshoush/conformal-prescriptive-monitoring.
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