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Abstract. We refer to explainability as a system’s ability to provide sound and human-
understandable insights concerning its outcomes. Explanations should accurately reflect causal
relations in process executions [1]. This abstract suggests augmenting process discovery (PD)
with causal process discovery (CD) to generate causal-process-execution narratives. These nar-
ratives serve as input for large language models (LLMs) to derive sound and human-interpretable
explanations. A multi-layered knowledge-graph is employed to facilitate diverse process views.
Background. Process discovery (PD) summarizes an event log 𝐿 into a graph model 𝑀 that
represents activities and control-flow dependencies [2]. Most PD algorithms construct edges
in 𝑀 that indicates to which subsequent activities process control “flows to”. This relation is
derived from traces by computing “temporally precedes” (<) and “directly precedes” (⋖) relations
over activity names, and then discarding 𝑎 < 𝑏 iff 𝑎 ⋖ 𝑏 and 𝑏 ⋖ 𝑎 [3].
Advancements in Machine Learning (ML) have made ML models more complex, sacrificing

explainability and resulting in “black box” models. This led to the emergence of external
explanation frameworks, known as XAI, to enhance understandability [4]. XAI frameworks are
predominantly applied post-hoc, after the ML model’s training [5].
Causal discovery [6] infers causal graphs from data by exploring relationships like 𝐴

𝑐
−→ 𝐵

where changes in 𝐴 entail changes in 𝐵. In this work, we used the Linear Non-Gaussian Acyclic
Model (LiNGAM) [7] for CD as in [1]. Inspired by[8], which highlights LLMs’ ability to provide
interpretable explanations, we aim to demonstrate that CD can enhance explanations of process
execution outcomes when used as input for LLMs. LLMs are deep-learning models trained on
text data, adept at few-shot and zero-shot learning using prompt-based techniques [9].
Approach. Our research aims are combining PD, CD, and XAI to generate narratives for
improved process outcome explanations using LLMs. As a proof-of-concept (POC), we show
how CD helps to leverage LLMs for more sound explanations.
We use a multi-layered knowledge graph stored in a Neo4j database as infrastructure. We

model the data using labeled property graphs in which each node and each relationship (directed
edge) is typed by a label. Fig. 1 shows the graph schema. Each Event node has a timestamp, and
is correlated to one case; the directly-follows relations describe the temporal order of all events
correlated to the same case. These concepts allow modeling any event log in a graph [10].
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Figure 1: Graph schema

Table 1
Data distributions for different combinations of dough and toppings (sauce was added in all cases)

# of cases Dough
(duration) Dough_type Toppings

(duration) Toppings_type Sauce
(duration)

800 20-30 Thin 10-35 0 7-17
4800 20-30 Thin 15-40 +1 7-17
2400 20-30 Thin 20-45 +2 7-17
200 15-25 Thick 10-35 0 7-17
1200 15-25 Thick 15-40 +1 7-17
600 15-25 Thick 20-45 +2 7-17

The graph schema can be extended with additional nodes and relations for the derivation of
a variety of views. For example, the schema can be extended with an Entity node to enable a
multi-dimensional view of the process [11]. In our case, we extended the schema (blue color)
with the activity node and the flows-to and causes relations for two activity-level inferred views:
• Process view - we infer activities and directly-follows ordering of activities by aggregation from
events [10]. Accordingly, we infer the flows-to relation through process discovery, e.g., [3].

• Causal view - we infer the causes relationship as a causal-execution-dependency as in [1].
Accordingly, we infer the causes relation among the activities as annotated.

Illustrative Example. Using a simulated pizza-line dataset of 10𝐾 cases, our objective was to
explain delivery delays. The process includes order acceptance, pizza assembly that combines
sauce with a selection of dough thickness and number of toppings, baking, and boxing. Delays
beyond a threshold trigger customer compensation. Start times have a 5-minute exponential
distribution, and activity durations have uniform distributions as listed in Table1. The Heuristics
Miner [12] PD algorithm yields the model in Fig.2.

Figure 2: Heuristics Miner model

Following our approach, we applied the LiNGAM CD algorithm to generate the causal view
for the process. We partitioned the event log into the entire dataset and a subset containing late
cases. Fig. 3 shows the causal models for both. For each of the two views, causal and process, a
narrative was generated to reflect their structure and dependencies, “causes” and “flows-to”.



(a) All cases (b) Late cases

Figure 3: Causal model results

Preliminary Results. As presented in [1], the causal view supplements the process view,
as a powerful tool for the purpose of process explainability. This work examines the use of
LLMs to facilitate inquiries about process outcomes. For example, in Fig. 4 we show a brief
interaction with ChatGPT, an LLM based chatbot (https://chat.openai.com/chat), where the user
queries about the activities impacting the decision to compensate the customer for delays. In
the left-hand column, the user provides the process narrative before the query, while in the
right-hand column, the causal narrative precedes the query. The left-hand column reply is
based on the process structure, including all activities leading up to the compensation decision.
However, the right-hand column list excludes the “knead dough” and “fetch sauce” activities, as
they are not part of the causal route leading to the decision, as shown in Fig. 3(b).

We also employed a conventional XAI approach using supervised ML for training a decision-
tree (DT) binary classifier to distinguish between late and on-time executions using the same
dataset for its training, and a second one for testing. Model input consisted of two choice
variables: number of toppings and dough type. Accuracy scores (𝐹1) for the training and testing
sets were 0.9887 and 0.9896, respectively. The feature importance values were 0.9982 for number
of toppings and 0.0017 for dough type. While this result aligns with the causal view in Fig. 3(b)
by emphasizing the significant influence of the number of toppings, it does not rule out the
possibility that the choice of dough type has an effect on the outcome from a causal perspective.
Such insights can only be obtained with the assistance of causal views.
Conclusions and Outlook. State-of-the-art explanations of process execution outcomes
include the application of XAI techniques over given event logs. This work is a first step towards
the use of causal discovery and LLMs’ prompt engineering for the sake of getting more sound
and human-interpretable explanations. At this stage, we relied on a one-off, out-of-the-box
execution of ChatGPTwith no further model tuning (i.e., few-shot learning) to train the language
model to interpret the input narratives, with a focus on explanations that arise from causal
process execution dependencies. Next steps will extend the experiments to include LLM model
tuning, real data sets, and conducting a broad analysis of the different techniques employed.

https://chat.openai.com/chat


Figure 4: ChatGPT with respect to the two narratives: process view and causal view
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