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Abstract
The increasing reliance on Machine Learning (ML) models for critical decision-making necessitates the development of
trustworthy systems that foster confidence among all relevant stakeholders. To address this need, Explainable Artificial
Intelligence (XAI) aims to improve the transparency of ML models, enabling a better understanding of their decision-making
processes. Concurrently, Uncertainty Quantification (UQ) has emerged as a crucial ML research area, emphasizing the
estimation and communication of uncertainties inherent to model predictions. Despite the importance of both XAI and UQ
in facilitating informed decision-making, there is a noticeable gap in integrating these techniques effectively. This paper
highlights our recent research endeavors to explore the synergy between XAI and UQ for predictive process monitoring. Our
first contribution, submitted to the Decision Support Systems journal, involves leveraging UQ to communicate the uncertainty
present in ML explanations, ultimately promoting trust in the generated course of actions. Our second contribution, submitted
to the Annals of Operations Research, employs XAI techniques to elucidate the factors contributing to ML model uncertainty,
providing valuable insights for refining and enhancing the models. These insights are intended to shape future ML research
in predictive process monitoring, fostering the development of more transparent, robust, and reliable systems.

Keywords
Predictive Process Monitoring, Explainable Artificial Intelligence, Uncertainty Quantification, Trustworthy AI

1. Introduction
Artificial Intelligence (AI) provides a promising avenue
for corporations to transform their business and opera-
tional processes [1]. Recently, we have observed a surge
in successful implementations of data-driven process an-
alytics in different application domains, including but not
limited to insurance, healthcare, manufacturing, public
administration, and service management [2]. However,
upon further examination, it becomes evident that the
prevalent analytical methodologies - those of a descrip-
tive and diagnostic nature - dominate industrial appli-
cations and commercial toolkits [3]. While significant
progress has been made in machine learning-aided busi-
ness process analytics and monitoring, a noticeable gap
exists between academic advancements and their practi-
cal implementation. This lag can be attributed to users’
trust and reliance on such AI-based systems [4].

The acceptance of AI as a credible source of guidance
is still a hurdle to be overcome, signifying the need for
transparency. In response, two promising areas of ML
research have risen to prominence: Explainable Artificial
Intelligence (XAI) and Uncertainty Quantification (UQ).
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XAI aims to demystify complex, opaque AI algorithms,
making them understandable to human users. Various
concepts, methods, and frameworks have been proposed
recently to enhance this collaboration between AI sys-
tems and their human counterparts [5]. These strategies
seek to increase the transparency and interpretability of
the AI models, enabling stakeholders to gain a deeper
understanding of the systems they interact with. Paral-
lel to this, UQ is another intensively explored research
field. Its focus lies in estimating and effectively commu-
nicating the uncertainty associated with an AI model’s
predictions [6]. It can be viewed as a complementary
form of transparency, augmenting the explainability of
solutions proposed for various decision-making tasks.

Despite the significance of both research areas in pro-
moting better-informed decision-making, a gap exists in
developing integrated, trustworthy solutions that com-
bine XAI and UQ. This deficiency is particularly notice-
able in the context of predictive process monitoring prob-
lems. While there is an increasing trend in XAI research
to make predictive process monitoring methods more
explainable [7, 8, 9, 10], and a few studies have begun to
explore how to address uncertainty in this field [11, 12],
the integration of these two aspects remains largely un-
explored.

To address this gap, we have recently focused on the
bidirectional integration of these research fields (see Fig-
ure 1). Our findings and progress in this endeavor are
presented in this short paper. Section 2 discusses our first
contribution, where we employ the chosen UQ approach
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Figure 1: Bilateral Integration of UQ and XAI

to quantify and communicate the uncertainty inherent
in ML explanations. This approach enhances trust and
reliability in AI-powered predictive process monitoring
solutions. Our second contribution, introduced in Section
3, takes a different direction. Here, we utilize XAI tech-
niques to explain the factors contributing to uncertainty
in ML models. This analysis provides valuable insights
for refining and improving these models. Together, these
findings and propositions have the potential to lay the
groundwork for the development of more transparent,
robust, and reliable AI systems for predictive process
monitoring.

2. Communicating Uncertainty in
Machine Learning Explanations

This section summarizes our recently proposed method-
ology for assessing and conveying uncertainty in ML
explanations [13]. The focus of the manuscript1 lies in
examining the effective communication of model uncer-
tainty in the explanations generated through global and
local post-hoc explanation techniques, namely Individual
Conditional Expectation (ICE) plots and Partial Depen-
dence Plots (PDP).

Our proposed approach quantifies the model uncer-
tainty using the Monte Carlo dropout technique, a well-
established method in the deep learning domain. Uti-
lizing this method allows us to not only generate point
estimates from the posterior distributions but also to
calculate corresponding credible intervals for assessing
predictive uncertainties. However, a notable drawback
of this UQ method is the absence of formal guarantees.
To address this limitation, we implement Conformal Pre-
diction, a post-processing technique designed to tackle
this specific challenge [14]. Through conformalization,
we can offer the theoretical guarantees necessary for
ensuring the model’s trustworthiness.

The pivotal step in integrating UQ with XAI in this
study lies in constructing uncertainty profiles. These

1submitted to Decision Support Systems

profiles are generated by processing conformalized cred-
ible intervals. Initially, the widths of these intervals
are sorted in ascending order. Subsequently, the cho-
sen thresholds are employed to categorize them, often
determined through percentile-based estimations such
as the 25th and 75th percentiles. In our specific use case,
this methodology yields three distinct uncertainty pro-
files—low, medium, and high—that indicate the model’s
varying confidence levels. These profiles enhance the
interpretability of PDP and ICE plots. Each profile is
represented by a different color, offering a more nuanced
understanding of the model’s confidence in its predic-
tions.

For ICE plots, the approach is based on a local expla-
nation method that focuses on a single observation from
the underlying dataset and a single predictor of interest.
For each unique value of the predictor of interest, a copy
of the selected observation is created, and the original
value of the predictor in the copy is replaced with the
unique value. The model predictions for this modified
observation are then computed using the adopted UQ
approach. The calculated conformalized credible interval
for the model prediction is used to identify the uncer-
tainty profile to which the observation belongs. This
process is repeated for all unique values of the predic-
tor. The pairs of predictor values and model predictions
are then plotted to create the ICE plot, with each pair
colored according to the uncertainty profile to which it
belongs (see Figure 2). Additionally, conformalized cred-
ible intervals are incorporated in the same fashion and
color-coding.

For uncertainty-aware PDPs, we consider a set of se-
lected predictor variables. For each unique value of these
selected predictors, a copy of the training dataset is gen-
erated with the original values replaced by this unique
value. The average model prediction for this adjusted
dataset is then computed. Concurrently, for each data
point corresponding to a specific predictor value, a series
of stochastic forward passes is performed to calculate
credible intervals for model predictions. After confor-
malization, these credible intervals serve as the basis for
identifying uncertainty profiles in PDP. Subsequently,
we count the number of allocations to each uncertainty
profile and place the majority profile for the examined
predictor value, which is used to define the color in the
PDP. This process is repeated for all unique values of
the predictors. The pairs of predictor values and average
model predictions are plotted to create the PDP, with each
point being colored according to the majority uncertainty
profile. Additionally, averaged conformalized credible
intervals are integrated similarly to ICE plots and color-
coded according to the predominant uncertainty profile
for each point. Further visualizations, such as uncon-
formalized credible intervals or pie charts representing
uncertainty profile memberships for each predictor value,



Figure 2: Uncertainty-aware ICE plot[13]

are introduced for a more comprehensive understanding
of the uncertainty distribution.

The study includes expert interviews to assess the suit-
ability of the proposed approach and designed interface
for a predictive process monitoring problem in the man-
ufacturing domain.

3. Explaining the Machine
Learning Uncertainty

Our second manuscript2 employs an XAI technique to
elucidate the factors contributing to ML model uncer-
tainty [15]. The study revolves around a comprehensive,
multi-stage ML methodology that interconnects informa-
tion systems and AI to enhance decision-making within
operations research (OR). The framework addresses com-
mon limitations of existing solutions, such as the lack of
data-driven estimation for crucial production parameters,
the generation of point forecasts without considering
model uncertainty, and the absence of explanations for
such uncertainties. The approach integrates various key
technical elements to address these issues.

The study uses supervised learning to probabilistically
estimate a production-related parameter, specifically the
processing time of production events. This aspect of
the method involves collecting and preparing process
event data fromManufacturing Execution Systems (MES),
which coordinate and track operational processes. The
problem is treated as a predictive process monitoring
problem, necessitating specific preprocessing, encoding,
and feature engineering techniques to alignwith business
and operational process data requirements.

To tackle model uncertainty, the study proposes using
Quantile Regression Forests (QRF), an extension of the
traditional Random Forests technique. QRF is designed
for estimating conditional quantiles for high-dimensional
predictor variables, offering a non-parametric and pre-
cise approach for estimating prediction intervals. An
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Figure 3: SHAP Dependence Plots for different Uncertainty
Profiles [15]

interval-based representation provides valuable insights
into the uncertainty of model outcomes, facilitating a
deeper comprehension of the model’s predictive capabil-
ities and inherent limitations.

To ensuremodel explainability, the study utilizes SHap-
ley Additive Explanations (SHAP), which provide local
and global post-hoc explanations of the model’s uncer-
tainties (see Figure 3). Our methodology represents a
departure from traditional practices. Instead of relying
on point predictions, we use prediction intervals as the
output. This shift enables a more comprehensive analysis
of how feature values influence prediction intervals. As
a result, we can directly attribute features to the model’s
uncertainty. The explanations are refined to a granu-
lar level, offering a focused understanding of the factors
contributing to uncertainty.

The proposed approach is demonstrated to be effective
through a real-world production planning case study,
highlighting the use of prescriptive analytics in refin-
ing decision-making procedures. The paper emphasizes
the importance of fully leveraging the extensive data
resources available for informed decision-making.

4. Conclusion
This short paper presents our two recent research contri-
butions concerning the bidirectional integration of UQ
and XAI. To the best of our knowledge, our study is the
first to merge UQ and XAI within the context of predic-
tive process monitoring problems. We are confident that
this work lays the foundation for developing responsible
AI solutions for this domain. Future research can further
enhance these studies by incorporating insights from rel-
evant related research areas, such as privacy-preserving
AI, algorithmic fairness, reliability, and safety, as well as
human-centered design. By amalgamating these diverse
perspectives, we hope to contribute to the development



of more robust, ethically sound, and user-oriented AI
systems. This integrated approach aims to address not
just the technical aspects of AI development but also the
ethical and societal implications, leading to more holistic
and beneficial AI solutions.
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