
Programming Question Generation: An Automated
Methodology for Generating Novel Programming
Assignments with Varying Difficulty Levels
Dhanya E, Nikhila KN

1International Institute of Information Technology Bangalore, India.

Abstract
A comprehensive programming course requires a clearly delineated collection of programming activities
that can help students improve their programming skills. Instructors devote considerable time to
preparing such problems and their corresponding solutions. They often resort to a strategy of using
previously developed materials from prior semesters and drawing upon online resources to facilitate
the preparation of course materials. We are presenting a methodology for generating practice exercises
that cater to students with diverse levels of difficulty. The proposed approach is beneficial for educators
in developing instructional resources and personalised assessments customised to individual students’
programming proficiency.

Keywords
Intelligent tutoring systems, Computing Education, Natural Language Generation, Resource Generation

1. Introduction

Generating programming questions automatically for programming assignments in intelligent
tutoring systems are a rapidly expanding area and has the potential to improve significantly
computer science education. Programming assignments are commonly used to assess a student’s
comprehension and application of programming concepts.

It is necessary for the instructor to prepare programming assignments with varying levels
of difficulty. At the beginning of a course, the assignments should be basic and solvable for a
beginner. The complexity of the assignments should then gradually increase as the students
progress through the course, in order to provide students with an adequate challenge, appropriate
for each skill level. If assignments are too difficult right at the beginning, students may get
demotivated, which could lead to ethically dishonest behaviour as they try to meet assignment
deadlines [? ? ].

In this context, it is useful to personalise programming exercises to the individual knowledge
levels of students. This methodology guarantees that every student is presented with questions
that are appropriate for their existing programming proficiency, thereby facilitating more
efficient practise and fostering confidence. Thus, this customised approach facilitates the
enhancement of their programming proficiency. In addition, furnishing distinctive question sets

Woodstock’21: Symposium on the irreproducible science, June 07–11, 2021, Woodstock, NY
$ dhanya.eledath@iiitb.ac.in (D. E); nikhila.kn@iiitb.ac.in (N. KN)
� 0000-0001-5954-8554 (N. KN)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:dhanya.eledath@iiitb.ac.in
mailto:nikhila.kn@iiitb.ac.in
https://orcid.org/0000-0001-5954-8554
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


to individual students serves as a deterrent against the tendency to plagiarise from their peers’
submissions [? ? ? ]. The learning environment fosters independent thinking and problem-
solving skills among students by discouraging the use of repetitive or identical exercises.

However, creating effective programming assignments and reference solutions can be tedious
and time-consuming, especially when designing questions with varying levels of difficulty. In
addition, the prevalence of academic dishonesty through plagiarism has increased as a result of
the reuse of programming assignment questions across multiple semesters and the availability
of code on the internet, as indicated by research findings [? ]. This highlights the importance
of an automated question generation tool that can generate unique programming assignment
questions, thereby reducing the likelihood of plagiarism and encouraging originality of student
responses.

Automated question generation, which generates high-quality programming questions for
students to work on, can be an effective solution to this issue. This method saves instructors
time and effort as they do not have to manually create each programming question.

Furthermore, tailoring the questions to the student’s level of knowledge provide each student
with an appropriate level of challenge, ultimately resulting in a fair and impartial evaluation of
their knowledge.

2. Relatedwork

In each programming course, programming assignments are a crucial assessment method used
by instructors to evaluate student’s knowledge and understanding of programming concepts [?
]. According to the literature, the significance of programming assignments in programming
courses has been studied for three decades [? ]. And it is clear that setting assignments with
varying degrees of difficulty is essential for maintaining student motivation to learn [? ]. A well-
structured programming assignment is required to help students develop programming skills
and a better understanding of the problem. There exist various challenges in the preparation of
assignment problems and this review aims to emphasize the importance of assignment question
preparation with varying levels of difficulty.

Gondim et al. [? ] proposed a new teaching approach for introductory programming (CS1),
combining Problem-Based Learning (PBL) with the flexibility of Extreme Programming (XP) to
produce a more collaborative, challenging, and dynamic learning environment. This strategy
aims to improve student’s abilities by applying software engineering best practices and enhanc-
ing code quality. To facilitate the XP-based problem-solving process, the TaskBoard application
was developed to help student groups in the creation, management, and persistence of solutions
and related artifacts. This methodology introduces a novel approach to programming education
that could improve student learning outcomes by fostering a greater active engagement with
programming concepts.

However, the challenge of designing programming assignments that are suitable for students
with diverse levels of prior experience cannot be underestimated. As the range of prior experi-
ences within a cohort becomes more diverse, instructors struggle to produce learning resources
at an appropriate level of difficulty for individuals [? ]. To address this challenge, Flynn et al. [?
] proposed a novel open-source tool for delivering faded parsons problems. Parsons problems



are a popular programming exercise that presents learners with the lines of code for a solution
in a scrambled order. Faded parsons problems present some lines of code with missing portions
that students must fill in. The study evaluated the relative difficulty of three distinct fading
strategies and found that fading conditional statements greatly increases the difficulty of faded
parsons problems. The study’s results could inform future automated approaches for adapting
to the difficulty of such problems.

The majority of instructors are willing to share the results of the time they invest in designing
programming assignments. However, most of the programming assignments are shared ad
hoc through informal channels [? ]. To aid instructors in locating and sharing such materials,
Stephen et al. [? ] proposed a standard format for sharing assignments. This format is simple
for instructors to create, is extensible and flexible enough to accommodate assignments written
in any programming language and at any level of expertise, supports appropriate metadata, and
is easily manipulated by software tools. As more instructors employ automated grading tools to
evaluate student submissions, such an interchange format could lead to a community practice
of sharing resources in a manner that overcomes existing barriers to such reuse.

Sami Sarsa et al. have explored the potential of automated generation of programming
assignment problems, sample solutions, test cases, and explanations using large language models.
In their study [? ], they have detailed the methodology they have used, which involves utilizing
the natural language generation capabilities of pre-trained large language models, specifically
Open-AI’s Codex. Their approach takes inputs such as keywords, problem statements, sample
solutions, and tests for specific programming concepts, and generates new problem statements,
keywords, tests, and sample solutions in natural language.

To evaluate the effectiveness of their approach, the researchers conducted both quantitative
and qualitative studies. The quantitative study aimed to identify the novelty of the generated
problems and the usefulness of the method. The researchers evaluated sensibleness, novelty,
and readiness to use the generated problems and solutions as they were, as well as assessing
whether the generated problems matched with the input priming concepts provided.

The qualitative study involved gathering feedback from a group of experts in programming
and natural language generation. The experts were asked to evaluate the quality of the generated
problems, sample solutions, test cases, and explanations, and to provide feedback on the overall
effectiveness of the approach.

The results of the studies showed that the automated generation of programming assignment
problems, sample solutions, test cases, and explanations using large language models is a
promising approach. The generated problems were found to be sensible, novel, and ready to
use, and they matched well with the input priming concepts. The feedback from the experts
indicated that the generated problems, sample solutions, test cases, and explanations were of
high quality and could be used in programming education and assessment.

Generation of code tracing problems which is also beneficial in programming courses is well
studied [? ]. The authors in the paper introduced an automated generation of code tracing
problems in varying complexity and studied the method’s effectiveness through its usage in the
programming course.

From the literature, it is evident that well-structured programming assignments with varying
levels of difficulty are necessary for students to understand programming concepts and develop
programming skills.



3. Proposed Method

3.1. Problem defintion

In this paper, we propose a methodology that can be used to generate novel programming
problems, the corresponding reference solutions and input-output specifications. The problems
generated using this methodology can be used by instructors to release assignments without
significant investment of time and effort. The use of a large language model holds the potential
in facilitating the creation of reference solutions for the questions generated. At present, our
primary focus is on the creation of the problem set.

Given a programming concept and its complexity, the model outputs a programming descrip-
tion, consisting of the question and sample input-output set related to this question. Below, we
show an example programming problem description generated by the model when fed with the
inputs: programming concept - recursion and the level of difficulty - easy.
Concept: Recursion
Difficulty: Easy
Problem Description:

Write a generator function that returns a generator object which yields the
fibonacci sequence. The fibonacci sequence is defined by the relation
Xn = Xn-1 + Xn-2.
The first few numbers of the series are 0, 1, 1, 2, 3, 5, 8, 13.

Example 1:
Input: callCount = 5
Output: [0,1,1,2,3]

3.2. System architecture

In our work, we leverage the knowledge gained by pre-trained Large Language Models (LLM)
(trained on large amounts of data) for a specific downstream task. The downstream task in our
case is to generate programming descriptions related to a particular programming concept.

Large language models are capable of doing a variety of language-related activities, including
conversing, translating languages, answering questions, composing essays, summarising data,
and summarising knowledge. We use this potential of Large language models in our automated
question generation tool to assist instructors. There are several large language models available
such as T5 [? ], OpenAI’s GPT-3.5 [? ].

The approach that we propose is of two kinds:

1. Use large language models as it is without fine-tuning. We make use of GPT-3.5 [? ] in
our first phase of experimentation as it best suits our problem definition.

2. In our second phase, we use pre-trained models like T5 [? ] as our upstream model and
further fine-tune this model using our task-specific dataset (as shown in Figure 1). The fine-
tuned model is later used to generate programming descriptions, given a programming
concept and difficulty level.



CEURART/images/wf.png

Figure 1: Pipeline showing the training and fine-tuning stage of our proposed system.

3.3. Dataset details

The datasets used in the experiments were created by collecting programming questions and their
corresponding tags from HackerRank and LeetCode [? ? ]. We collected a total of 596 problem
sets from Lead Code and 1600 problem sets from HackerRank. Additionally, we are presently
considering strategies to extend and enhance these datasets for subsequent investigations, with
the objective of constructing a moderately robust framework for question generation. The
problem description collected from HackerRank and LeetCode platforms includes additional
information. The specifications of the expected implementation include input-output constraints
and running time constraints etc. The information mentioned earlier has not been used for the
purpose of training our model. Consequently, it was necessary to perform preprocessing on
the problem description that was downloaded. The sole components used in our approach are
the problem description, example input and output, difficulty level, and concept tags. All other
additional information has been eliminated to standardise the format of all problem sets within
the dataset.



3.4. Implementation and experiments

This research involves developing a model to generate programming assignment questions
and analysing its output to assess whether it meets the desired criteria, including novelty and
difficulty level.

Recent research efforts have however shown that it is possible to fine-tune LLMs without
updating all of the parameters [? ? ? ? ? ]. These techniques are useful for producing outcomes
that are as close to the model with all the parameters set as possible. Any of the following
approaches can be taken into consideration for the model’s fine-tuning for the experiments in
this project.

• Prompt Tuning - Either Hard prompt tuning or soft prompt tuning
• Prefix Tuning

In the initial phase of our experimentation, we used OpenAI’s GPT-3.5 model through their
API [? ]. The model exhibits the capacity to produce natural language output via prompt
tuning. The experiments were conducted using prompt tuning techniques, with a prescribed
stop sequence for the model set at a maximum of 75 words. The generative capacity of the
model is regulated by the temperature parameter. Throughout the experiment, the model’s
temperature value remained at 0.7. Figure 2 presents the sample output produced by the model.
The prompt has been designed to accept programming concepts of varying levels of complexity
as input, which are then processed by the API to generate a corresponding programming
problem description.

Large language models are trained on millions of text corpora and are capable of generating
texts. Using these models for a specific task without fine-tuning can compromise the expected
accuracy [? ], whereas the process of fine-tuning a model by updating all of its parameters is
expensive and necessitates a significant amount of data. Therefore, in the first phase of the
implementation process we resort to a non-finetuning approach.

In our second approach, we fine-tune an existing large language model, 𝑇5, with the aim of
generating novel programming questions. The fine-tuning process entails leveraging features
such as problem title, tags(which represent programming concepts), and difficulty level, with
the programming description serving as ground truth for training purposes.

4. Conclusion

This paper presents the significance of incorporating programming practice questions of diverse
difficulty levels in a programming course. Furthermore, experiments were conducted regarding
the natural language generation ability of the GPT model. The main feature of our methodology
resides in its capacity to generate questions of varying degrees of complexity. The problems
that are generated have demonstrated their usefulness for both students and instructors, as
they facilitate the improvement of programming skills for students and support instructors in
developing course materials and assignment problems. As a continuation of this work, we aim
to expand our experimentation to include an alternative open-source large language model and
compare its performance to that of the GPT model, which serves as our baseline. In addition,



CEURART/images/gpt-output.jpeg

Figure 2: Output generated from the model gpt-3.5-turbo.

we would like to conduct a user study involving domain experts and students to investigate the
efficacy of the generated programming questions.

References

[] A. Lipson, N. McGavern, Undergraduate academic dishonesty at mit. results of a study of
attitudes and behavior of undergraduates, faculty, and graduate teaching assistants. (1993).

[] E. Roberts, Strategies for promoting academic integrity in cs courses, in: 32nd Annual
Frontiers in Education, volume 2, 2002, pp. F3G–F3G. doi:10.1109/FIE.2002.1158209.

[] M. Dick, J. Sheard, C. Bareiss, J. Carter, D. Joyce, T. Harding, C. Laxer, Addressing
student cheating: Definitions and solutions, in: Working Group Reports from ITiCSE on
Innovation and Technology in Computer Science Education, ITiCSE-WGR ’02, Association

http://dx.doi.org/10.1109/FIE.2002.1158209


for Computing Machinery, New York, NY, USA, 2002, p. 172–184. URL: https://doi.org/10.
1145/960568.783000. doi:10.1145/960568.783000.

[] R. C. Hollinger, L. Lanza-Kaduce, Academic dishonesty and the perceived effectiveness of
countermeasures: An empirical survey of cheating at a major public university, NASPA
Journal 46 (2009) 587–602. URL: https://doi.org/10.2202/1949-6605.5033. doi:10.2202/
1949-6605.5033. arXiv:https://doi.org/10.2202/1949-6605.5033.

[] I. Albluwi, Plagiarism in programming assessments: A systematic review, ACM Trans.
Comput. Educ. 20 (2019). URL: https://doi.org/10.1145/3371156. doi:10.1145/3371156.

[] H. W. A. S. Gondim, A. P. L. Ambrósio, F. M. Costa, Taskboard - using xp to implement
problem-based learning in an introductory programming course, in: A. Sillitti, O. Hazzan,
E. Bache, X. Albaladejo (Eds.), Agile Processes in Software Engineering and Extreme
Programming, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 162–175.

[] M. C. Linn, M. J. Clancy, The case for case studies of programming problems, Com-
mun. ACM 35 (1992) 121–132. URL: https://doi.org/10.1145/131295.131301. doi:10.1145/
131295.131301.

[] F. Fromont, H. Jayamanne, P. Denny, Exploring the difficulty of faded parsons problems
for programming education, in: Proceedings of the 25th Australasian Computing Educa-
tion Conference, ACE ’23, Association for Computing Machinery, New York, NY, USA,
2023, p. 113–122. URL: https://doi.org/10.1145/3576123.3576136. doi:10.1145/3576123.
3576136.

[] S. H. Edwards, J. Börstler, L. N. Cassel, M. S. Hall, J. Hollingsworth, Developing a common
format for sharing programming assignments, SIGCSE Bull. 40 (2008) 167–182. URL:
https://doi.org/10.1145/1473195.1473240. doi:10.1145/1473195.1473240.

[] S. Sarsa, P. Denny, A. Hellas, J. Leinonen, Automatic generation of programming exer-
cises and code explanations using large language models, in: Proceedings of the 2022
ACM Conference on International Computing Education Research - Volume 1, ICER
’22, Association for Computing Machinery, New York, NY, USA, 2022, p. 27–43. URL:
https://doi.org/10.1145/3501385.3543957. doi:10.1145/3501385.3543957.

[] E. Stankov, M. Jovanov, A. Madevska Bogdanova, Smart generation of code
tracing questions for assessment in introductory programming, Computer Ap-
plications in Engineering Education 31 (2023) 5–25. URL: https://onlinelibrary.
wiley.com/doi/abs/10.1002/cae.22567. doi:https://doi.org/10.1002/cae.22567.
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cae.22567.

[] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, P. J. Liu,
Exploring the limits of transfer learning with a unified text-to-text transformer, 2020.
arXiv:1910.10683.

[] OpenAI, Language models are few-shot learners (2021). URL: https://arxiv.org/abs/2105.
14103. arXiv:2105.14103.

[] Hackerrank, https://www.hackerrank.com/, ???? Online; accessed [24-02-2023].
[] Leetcode, https://leetcode.com/, ???? Online; accessed [24-02-2023].
[] J. Devlin, M. Chang, K. Lee, K. Toutanova, BERT: pre-training of deep bidirectional

transformers for language understanding, CoRR abs/1810.04805 (2018). URL: http://arxiv.
org/abs/1810.04805. arXiv:1810.04805.

[] V. Lialin, V. Deshpande, A. Rumshisky, Scaling down to scale up: A guide to parameter-

https://doi.org/10.1145/960568.783000
https://doi.org/10.1145/960568.783000
http://dx.doi.org/10.1145/960568.783000
https://doi.org/10.2202/1949-6605.5033
http://dx.doi.org/10.2202/1949-6605.5033
http://dx.doi.org/10.2202/1949-6605.5033
http://arxiv.org/abs/https://doi.org/10.2202/1949-6605.5033
https://doi.org/10.1145/3371156
http://dx.doi.org/10.1145/3371156
https://doi.org/10.1145/131295.131301
http://dx.doi.org/10.1145/131295.131301
http://dx.doi.org/10.1145/131295.131301
https://doi.org/10.1145/3576123.3576136
http://dx.doi.org/10.1145/3576123.3576136
http://dx.doi.org/10.1145/3576123.3576136
https://doi.org/10.1145/1473195.1473240
http://dx.doi.org/10.1145/1473195.1473240
https://doi.org/10.1145/3501385.3543957
http://dx.doi.org/10.1145/3501385.3543957
https://onlinelibrary.wiley.com/doi/abs/10.1002/cae.22567
https://onlinelibrary.wiley.com/doi/abs/10.1002/cae.22567
http://dx.doi.org/https://doi.org/10.1002/cae.22567
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cae.22567
http://arxiv.org/abs/1910.10683
https://arxiv.org/abs/2105.14103
https://arxiv.org/abs/2105.14103
http://arxiv.org/abs/2105.14103
https://www.hackerrank.com/
https://leetcode.com/
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805


efficient fine-tuning, 2023. arXiv:2303.15647.
[] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière,

N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, G. Lample, Llama: Open
and efficient foundation language models, 2023. arXiv:2302.13971.

[] R. Zhang, J. Han, A. Zhou, X. Hu, S. Yan, P. Lu, H. Li, P. Gao, Y. Qiao, Llama-adapter: Efficient
fine-tuning of language models with zero-init attention, 2023. arXiv:2303.16199.

[] X. L. Li, P. Liang, Prefix-tuning: Optimizing continuous prompts for generation, 2021.
arXiv:2101.00190.

[] S. Dathathri, A. Madotto, J. Lan, J. Hung, E. Frank, P. Molino, J. Yosinski, R. Liu, Plug
and play language models: A simple approach to controlled text generation, 2020.
arXiv:1912.02164.

http://arxiv.org/abs/2303.15647
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2303.16199
http://arxiv.org/abs/2101.00190
http://arxiv.org/abs/1912.02164

	1 Introduction
	2 Relatedwork
	3 Proposed Method
	3.1 Problem defintion
	3.2 System architecture
	3.3 Dataset details
	3.4 Implementation and experiments

	4 Conclusion

