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Abstract
Ontologies have been widely adopted to represent domain knowledge. The dynamic nature of knowledge
requires frequent changes in the ontologies to keep them up-to-date. Understanding and managing these
changes and their impact on other artefacts become important for the semantic web community, due to
the growing volume of data annotated with ontologies and the limited documentation describing their
changes. In this paper, we present a method to automatically detect and classify the changes between
different versions of ontologies. We also built an ontology of changes (DynDiffOnto) that we use to
classify the changes and provide a context that makes them more comprehensible for machines and
humans. We evaluate the algorithm with different ontologies from the biomedical domain (i.e. ICD9-CM,
MeSH, NCIt, SNOMED-CT, GO, IOBC, and CIDO) and we compare the results with COnto-Diff. We
observed that for small ontologies, COnto-Diff computes the Diff faster, but the opposite is observed for
larger ontologies. The higher granularity of DynDiffOnto requires more rules to compute the Diff. It can
partially justify the lower performance for small ontologies, but DynDiff provides a richer documentation
for end-users.
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1. Introduction

The large amount of semantically annotated knowledge publicly available on the Web makes the
need for efficient and automatic solutions to keep this knowledge consistent and updated more
evident. This is especially true for Knowledge Graphs (KGs) that use concepts of ontologies
to define the elements that they describe (objects, events, situations, etc.). In the fields of life
sciences, providers of controlled terminologies quickly adopted ontologies to better represent
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their vocabularies. For instance, there are more than 800 biomedical ontologies published
in Bioportal [1], including SNOMED-CT, ICD9-CM, MeSH, NCIt, gene ontology, CIDO, and
IOBC. They constitute an important source of semantic information for reporting on diagnoses,
medical procedures, medications, body characteristics, etc. and are widely used by healthcare
professionals and institutions involved in providing health services to patients [2, 3, 4]. These
ontologies are also used for data-intensive tasks, such as analysing treatments/drug interactions
[5, 6], enabling semantic interoperability between information systems [7], and combining and
disseminating pandemic information [8], etc. Advances in biomedical knowledge need to be
translated into the underlined ontologies, which requires the addition/removal of information
to clarify or correct the description of existing concepts [9]. The impact of these changes
propagates to all other artefacts that use these modified ontologies. For instance, annotations of
medical reports (metadata) can become invalid or not findable if the concept used is modified
or removed in subsequent versions. The reproduction of experiments can lead to different
outcomes if the metadata of documents are not findable, etc. A significant manual effort is
necessary to keep metadata updated. The three main causes are: the huge size of the ontologies
(e.g. SNOMED CT has more than 340,000 concepts while IOBC has more than 120,000 concepts
and 60,000 individuals); the high frequency of changes; and the lack of machine-understandable
documentation regarding the ontology evolution.

In our previous work, we studied the impact of ontology changes on associated mappings
[10] and semantic annotations [11]. Based on these findings, we have designed methods to
(semi-)automatically maintain mappings [12] and annotations [13] rendered invalid by the
evolution of underlying ontologies. A key element for assuring the quality of the outcomes
of these methods is the Diff tool, a tool used to compute and reason on the changes between
two ontology versions [14, 15, 16]. We looked for tools that provided detailed classification of
changes. The two main goals were: to search for change classification patterns that facilitate
inferring the consequences of these changes on other artefacts; and to recommend maintenance
actions to resolve some critical problems (e.g. broken mappings, invalid semantic annotations,
etc.) caused by these changes. We first based our solution on the outcomes of COnto-Diff,
a flexible and efficient tool to compute Diffs between ontology versions. Other tools were
evaluated during the selection process, like the widely adopted Promptdiff [14] that focuses
on changes in the labels or the work by Gonçalves et al. [16] that focuses on the changes
in axioms. Despite the relevance of their work, their approach did not provide the level of
details that we needed for our analysis nor did their tool were flexible enough to allow new
specific rules to be written to identify more change types. Moreover, we were looking for tools
that accepted inputs in OWL and OBO, provided an outcome in a reasonable time for large
ontologies ( ≤ 70.000 classes), computed diffs between classes and between individuals, could
be specific on the property that was changed within the concept/individual, could present a
more abstract/understandable description of changes (e.g. present a Move concept instead
of two different actions: Del relation + Add relation), and that could decouple deterministic
changes (e.g. addLeaf) from undeterministic changes (based on heuristics, like for a split), giving
end-users the possibility of benefiting from advances in matching heuristics to improve the
Diff outcomes. COnto-Diff was the tool that satisfied almost all our criteria. Inspired by the
best features of COnto-Diff and by the characterization model presented in [17], we decided to
develop DynDiff with the following characteristics:



• Rule-based system: It is based on specific change detection rules, which make up a
change language that classifies the changed entities into different categories. These rules
are created by a revision of the state-of-the art, aiming to gather the strongest points
from existing approaches [15, 17].

• Human and machine-interpretable: The classification of changes provided by our ap-
proach is intuitive for humans while at the same time being granular enough to be useful
for the machines. This classification is represented as an ontology of changes (DynDif-
fOnto) and is made available to the community at <https://git.list.lu/dynaccurate/change-
ontology>.

• Decoupled from heuristic semantics: End-users have the possibility of configuring
the matching algorithm used to compute some types of changes. This option allows
a detachment from heuristic strategies that add a randomness to the results and allow
end-users to benefit from the latest advances in the domain without changing the DynDiff
code.

• Scalable and robust: The solution is able to work with different sized inputs (i.e. amount
of ontological elements) and outputs (i.e. quantity of change types) in an efficient manner.
Our experiments show that DynDiff is able to compute Diffs between large ontologies in
a reasonable time (less than 1,000 sec to compute more than 70,000 changes)

Based on these characteristics, we made the following contributions:

1. A change language that extends those proposed by Hartung et al. and Papavasileiou
et al. [15, 17] by proposing rules for individuals and making the distinction between
the properties of type relationships and attributes. As evoked, many tools are restricted
to classes only, limiting the exploitation of the data. The proposed change language is
presented as an ontology of changes (DynDiffOnto) and the instantiation of the ontology’s
classes represents the changes that were detected between the different versions.

2. A change detection algorithm that provides a classification of changes based on DynDif-
fOnto classes. This structure provides transparency for the user in terms of the description
of the results.

The remainder of the paper is structured as follows: In Section 2, we describe the various
notions that are necessary to understand this work and we review related works. Section 3
presents our approach for comparing large ontologies. We start by introducing the DynDiff
approach and continue with a description of the ontology we have designed to define the
changes and the method used to identify them. Section 4 contains the experimental evaluation
of our approach and Section 5 comprises concluding remarks and outlines future work.

2. Background

The granularity of the description of the changes is an important aspect that provides rich
information about the evolution of the ontology. The change description can be low-level,
when composed of add and remove changes only, or high-level, when low-level changes are
regrouped in order to report a more intuitive interpretation of these changes. In DynDiffOnto,



the Basic changes class belongs to the low-level changes. These are easier to detect and provide
detailed information for machine processes. However, the quantity of basic changes can easily
grow and overwhelm human users with details that are not easy to interpret. Thus, we propose
combining some of these basic changes to compose two types of high-level changes: Complex
changes and Heuristic changes. These describe more concise deltas in an understandable format.
The main challenge of this approach is to make the distinction between structural changes (e.g.
add a sub-graph) and semantic changes (e.g. splitting a concept). In DynDiffOnto, all high-level
changes that can be detected using logical rules are grouped into Complex changes and the other
changes, detected based on non-deterministic methods, are grouped into Heuristic changes. In
the next section, we detail the problem and the notations used.

2.1. Problem statement

Ontology Diff approaches look for a set of rules or heuristics that enable the detection and
description of changes between two versions of the same ontology Diff(𝑂𝑜𝑙𝑑,𝑂𝑛𝑒𝑤). In our
work, an ontology is a set of RDF triples

𝒯 = U×U× (U ∪ L)

[17] where U denotes resources (all things described by RDF) and L denotes literals (values
such as strings and integers). The general problem that we address in our work can be described
as follows: Given two versions of an ontology (𝑂𝑜𝑙𝑑 and 𝑂𝑛𝑒𝑤), we search for:

1. Determining the set of all basic changes 𝐵𝐶 computed according to the definition given
by [17]:

𝐵𝐶 = {𝑡 ∈ 𝒯 |𝑡 ∈ (𝑂𝑛𝑒𝑤 ∖𝑂𝑜𝑙𝑑) or 𝑡 ∈ (𝑂𝑜𝑙𝑑 ∖𝑂𝑛𝑒𝑤)} (1)

2. Determining the sets of complex changes 𝐶𝐶 ⊆ 𝐵𝐶 and heuristic changes 𝐻𝐶 ⊆ 𝐵𝐶
where 𝐶𝐶 and 𝐻𝐶 are disjoint, i.e. 𝐶𝐶 ∩𝐻𝐶 = ∅.

3. Determining the subsets of basic changes 𝐵𝐶* that has all basic changes that were not
used to compose neither 𝐻𝐶 nor 𝐶𝐶 .

2.2. Related work

The Diff problem is not new and has already being approached in different ways. Logging or
structural diff [18, 19, 20] is the simplest and most used diff method. The logging method makes
use of a log file, often generated manually by experts, where changes are added incrementally.
The file is updated every time a new modification takes place, and the changes can be searched
for by using temporal queries in this log file. An automatic log generator was also proposed,
where the changes were calculated a posteriori in two input versions. This solution solved
some inconsistency problems detected in the manual log generation process. One of the first
implementations of this type of approach was PromptDiff [14], where changes are computed
by inputting the two versions of the ontology and applying a set of rules. The outcomes are
presented as instances of the Changes and Annotation Ontology (ChAO) [21], but this ontology
was designed to facilitate collaborations between humans and to generate a manual annotation
of users’ actions (e.g. whether s/he accepted a change and providing a way of commenting on



why), a lot of information was expressed in the comments, and types of changes were limited
to just a few classes. This format was widely adopted by Protégé users, but the format (i.e.,
semantics of changes) remains proprietary since there is no consensus on a standard description
language for the changes. Another type of approach proposes using the axioms of the ontologies
to detect the consequences of the changes in the semantics of the new version of the ontology
[16]. The resulting changes are complementary to the previous approaches, but they are still not
intuitive for end-users. The size of the ontologies and the frequency of changes push for more
elaborated solutions to compute the Diff. COnto-Diff (Complex Ontology Diff) [15] is a tool
that proposes a two-phase diff approach; during the first phase, there is a matching algorithm
to determine conceptual mappings between versions. The second phase makes use of these
mappings to generate the high-level changes (e.g. merges and splits). The authors evaluated the
tool with ontologies described in OWL and OBO, demonstrating the efficiency of the tool to
detect changes in these languages. Another relevant approach is presented by Papavasileiou
et al. [17]. Their work was designed to compute the diff between RDFS datasets. The authors
propose a language of changes with 132 change actions, complete application semantics and the
proof of completeness, consistency, uniqueness and non-overlapping classes. Their algorithm
starts by computing a simple delta to identify all triples that change (i.e., added and deleted
triples) and then regroups these triples to compose more human-representative changes (Basic,
Composite, and Heuristic Changes). The approach prevents triples being re-used to compose
more than one type of change. One of the innovative aspects of this language is that it takes
into account the schema (i.e. classes and properties), instance level (i.e. individuals) and group
of these schema entities (i.e. meta-classes and meta-properties). These five groups allow them
to focus on the nodes rather than the edges of the graph and they consider that this makes the
language more human-intuitive. The approach was designed to apply to RDFS, limiting its use
to more sophisticated axioms like those provided by OWL. The matcher is an optional feature
to map the changes and establish potential semantic links between them.

Regarding existing work reviewed in this section, our approach differs in the following way.
On the one hand, we are going beyond the capabilities offered by COnto-Diff in the sense that
DynDiff is able to consider Properties and Individuals while COnto-Diff focused on Concepts.
Moreover, DynDiff shows more stability regarding its execution time independently of the
ontology given as input which improve the scalability of the algorithm. On the other hand,
our approach added more granularity in the changes’ classification (or change actions) for the
same amount of change triples (e.g. we do not only report addRelationship but this is split into
addSubClass, addSubProperty and addOtherRelationship) than the approach of Papavasileiou et
al. [17]. In the following section we will detail our method and compare it experimentally with
related work.

3. DynDiff for comparing large and dynamic ontologies

In this section we describe our approach for comparing large and dynamic ontologies and
producing the change actions. We start by introducing the main concepts of DynDiffOnto. It
is an ontology that we defined to represent the semantics of detectable change actions. Later,
we will describe the DynDiff algorithm. The outcomes of this algorithm are the instances of



DynDiffOnto.
The DynDiffOnto represents 60 different change actions (9 abstract classes and 51 leaf

classes). The selection process started by applying two different methods that compute Diffs (i.e.
those presented in [17, 15]) to a set of biomedical ontologies. We compared the outcomes and
regrouped the changes with the same semantic meaning. This first set of changes all becomes
part of DynDiffOnto. For the others, we analysed them one-by-one and select the classes
according to the precision of the changes or its intuitiveness. The main inspiration comes from
the work of Papavasileiou et al. [17], and we extended the definitions of some rules according
to the work of [15], and added new rules according to our own experience of evaluating the
impact of changes in other artefacts presented in [12, 11]. Table 1 presents part of the outcomes
of our analysis and Figure 1 illustrates the organization of DynDiffOnto. A complete table of
change actions and the ontology can be downloaded from the project repository1.

Figure 1: Illustration of the main classes of DynDiffOnto

As figure 1 shows, the change actions were grouped into three different classes: Basic,
Complex, and Heuristic changes.

• Basic changes: this is the set of the low-level changes that are meant to be simple and
straightforward to be machine-understandable. Examples would be addition of Concept
(abbreviated as addC).

• Heuristic changes: It is composed of at least one basic change and the main characteristic
of these high-level changes are that they depend on the mappings (see Fig. 2) outputted
by the user-selected matcher, which is based on heuristics which gives them their name.
An example of these changes would be a split concept (abbreviated as splitC ) operation
which required there to have a mapping between the origin concept and the other concept
nodes its split into. As their name implies, this changes highly depend on the matcher
used and thus are non-deterministic depending on this variable.

1https://git.list.lu/dynaccurate/change-ontology



Change Action [Papavasileiou,2013] [Hartung,2013]
addC Add_Type_Class addC
addLeafC – addLeaf
addLeafP – –
addSupC Add_Superclass ⊆ addR
addComment Add_Comment ⊆ addA
addOtherA ⊆ Add_Property_Instance ⊆ addA
renI Rename_Individual –
mergeC Merge_Classes ⊆ merge
mergeP Merge_Properties –
changeOtherA – ⊆ chgAttValue
moveC ⊇Move_Classes move
pullUpC Pull_up_Class –
reclassIHigher Reclassify_Individual_Higher –
toObs – toObsolete

Table 1
A subset of DynDiffOnto’s change actions and the closest change actions from [17, 15]. The symbol “⊆”
indicates a more general definition and “⊇” indicates a more specific definition.

• Complex changes: in contrast to the previous, these high-level changes are deterministic,
independent of the matcher, and equally apply rules over to compose basic changes. This
is why we separated them from the heuristic changes, as it would make the determinism
more transparent to the user. A type of change to highlight here would be the subgraph
related changes.

By combining the idea of having the class change attributes (from [15]) and the classes
change label and comments (from [17]), we created the BasicChangeAttributes and Heuristic-
ChangeAttributes classes that regroup the changes that can be made into comments, labels,
and other attributes describing classes, individuals, or properties. For instance, assuming that
the following modifications were made in the old version of an ontology: adding the property
rdfs:comment and assigning a textual description to comment each class, DinDiff will detect
two different types of change actions: (1) the addP (add property) from the BasicChangeProp-
erties; and (2) the addA (add the text describing the class) from the BasicChangeAttribute. If
one existing comment is slightly modified in a future version of the ontology, then DinDiff
will detect a HeuristicChange (i.e., changeComment). These distinctions are important when
we want to analyse the impact of changes in Semantic Mappings and Semantic Annotations
because we use lexical and semantic similarity measures for this analysis [13]. The lexical
similarity measures use information from attributes while semantic similarity measures take the
relationships into account. We are currently working on a new representation format for the
history of an ontology [22] that tracks changes in OtherA and OtherR classes of DynDiffOnto.

Figure 2 gives an overview of how DynDiff works and Algorithm 1 shows the sequence
of actions implemented. In this work we mainly implemented the algorithms proposed by
Papavasileiou et al. [17] to generate the low-level triples, basic changes and complex changes.
We adopted the approach of Hartung et al. [15] to compute the heuristic changes. This decision
ensures that all proofs presented in [17] also apply to this work. Readers can find a detailed



Figure 2: DynDiff overview. 𝑉𝑜𝑙𝑑 and 𝑉𝑛𝑒𝑤 are used to identify the changed triples. The matcher build
mappings between triples that are used to detect heuristic change actions. Deterministic rules are used
to compute basic and complex change.

explanation of the algorithm in their respective referenced articles. In this paper, we will
introduce our algorithm and explain in more detail the experiments we did and the comparison
with other approaches.

The blue box (figure 2) represents the set of low-level changes, computed as described
by Equation (1) (algorithm 1, line 1). This set includes all added and removed triples and is
implemented in the same way that is described in the work by Papavasileiou et al.[17]. These
triples are used as the input for the Matcher (algorithm 1, line 3) and to compute the basic
changes (algorithm 1, line 4). The Basic changes box consumes the triples to compose simpler
changes (e.g. add class or instance). The set of basic changes is reduced when some of them have
been consumed by more complex changes (algorithm 2, line 9). This follows the principle of
unambiguity (avoiding overlapped changes) proposed by Papavasileiou et al. [17]. The Matcher
searches for potential links between the set of triples and expresses these links as Mappings.
For this work, we adopted the same Matcher used by COnto-Diff, but with a small modification
that will also allow mappings to be generated for properties and instances. The reasons for
adopting the same Matcher are: (1) To compare the performance of both approaches fairly; (2)
To demonstrate good efficacy during our analysis. The comparison of Matchers is out of the
scope of this paper (to respect the page limit), but we intend to publish it at a later date. We
note that the difference in the mapping rule is:

COnto-Diff rule: 𝑟 ∈ 𝑅(𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝𝑠)∧ 𝑎, 𝑟 ∈ 𝑂𝑜𝑙𝑑 ∧ 𝑏 ∈ 𝑂𝑛𝑒𝑤 ∧ 𝑟𝑠𝑜𝑢𝑟𝑐𝑒 = 𝑎∧ 𝑟𝑡𝑎𝑟𝑔𝑒𝑡 =
𝑏 ∧ 𝑟 ∈ {“𝑝𝑎𝑟𝑡_𝑜𝑓 ′′, “𝑖𝑠_𝑎′′, “𝑠𝑦𝑛𝑜𝑛𝑦𝑚′′} → match(a,b)

DynDiff rule: 𝑎 ∈ 𝑂old ∧ 𝑏 ∈ 𝑂new ∧ 𝑚𝑎𝑡𝑐ℎ𝐶(𝑎, 𝑏) ∧ 𝑎 ̸= 𝑏 ∧¬𝑖𝑠𝑂𝑏𝑠𝑜𝑙𝑒𝑡𝑒(𝑎) ∧
¬𝑖𝑠𝑂𝑏𝑠𝑜𝑙𝑒𝑡𝑒(𝑏)→ create [mapC(a, b)]

Similar DynDiff rules for properties and instances were defined. Since COnto-Diff uses the
OBO format to compare ontologies, the restriction on the relationships is justified. DynDiff
uses subsumption relationships defined by RDFS (e.g. rdfs:subClassOf) and several formats for
synonyms (e.g. skos:altLabel).

Giving the mappings and the basic changes, the Heuristic changes box can be computed
(algorithm 1, line 5). These mappings are used to identify probabilistic (underterministic)
relations between the basic changes in order to represent more abstract changes such as split,
merge, change label, etc. (algorithm 2, line 6). The Complex changes box consumes the basic
changes according to a set of deterministic rules in order to represent more abstract change



actions (e.g. moveC consumes addSupC and delSupC) (algorithm 2, line 8). The set of all rules
used in this project can be downloaded from the project repository. The algorithms below will
show how these rules were used to implement DynDiff.

Algorithm 1 Compute diff:
Input: 𝑉𝑜𝑙𝑑, 𝑉𝑛𝑒𝑤

Output: diff (BC, HC, CC)
1: 𝑇 ← 𝐿𝑜𝑤𝑙𝑒𝑣𝑒𝑙𝐶ℎ𝑔𝑠(𝑉𝑛𝑒𝑤, 𝑉𝑜𝑙𝑑)
2: 𝐵𝐶,𝐻𝐶,𝐶𝐶 ← ∅
3: 𝑀 ←𝑀𝑎𝑡𝑐ℎ𝑒𝑟(𝑉𝑛𝑒𝑤, 𝑉𝑜𝑙𝑑)
4: 𝐵𝐶 ← 𝑓𝑖𝑛𝑑𝐵𝑎𝑠𝑖𝑐𝐶ℎ𝑎𝑛𝑔𝑒𝑠(𝑇,𝑀)
5: (𝐵𝐶,𝐻𝐶,𝐶𝐶)← 𝑓𝑖𝑛𝑑𝐻𝑖𝑔ℎ𝐿𝑒𝑣𝑒𝑙𝐶ℎ𝑎𝑛𝑔𝑒𝑠(𝐵𝐶,𝑀)

Algorithm 2 Finding High-Level Changes
Input: 𝐵𝐶 , 𝑀
Output: findHighLevelChanges (𝐻𝐶 ; 𝐶𝐶 , 𝐵𝐶)

1: import 𝑐ℎ𝑎𝑛𝑔𝑒_𝑅𝑢𝑙𝑒𝑠 ◁ this is our rules’ library
2: 𝑟𝑢𝑙𝑒_𝑡𝑦𝑝𝑒𝑠 = [ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐_𝑐ℎ𝑎𝑛𝑔𝑒_𝑅𝑢𝑙𝑒𝑠, 𝐶𝑜𝑚𝑝𝑙𝑒𝑥_𝑐ℎ𝑎𝑛𝑔𝑒_𝑅𝑢𝑙𝑒𝑠]
3: for 𝑇𝑅𝑢𝑙𝑒 ∈ 𝑟𝑢𝑙𝑒_𝑡𝑦𝑝𝑒𝑠 do
4: for 𝑟𝑢𝑙𝑒 ∈ 𝑐ℎ𝑎𝑛𝑔𝑒𝑅𝑢𝑙𝑒.𝑇𝑅𝑢𝑙𝑒 do ◁ each rule from this type
5: if TRule = ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐_𝑐ℎ𝑎𝑛𝑔𝑒_𝑅𝑢𝑙𝑒𝑠 then
6: 𝐻𝐶, 𝑢𝑠𝑒𝑑_𝑏𝑎𝑠𝑖𝑐_𝑐ℎ𝑎𝑛𝑔𝑒𝑠← 𝑎𝑝𝑝𝑙𝑦𝑅𝑢𝑙𝑒(𝑟𝑢𝑙𝑒,𝐵𝐶,𝑀)
7: else
8: 𝐶𝐶, 𝑢𝑠𝑒𝑑_𝑏𝑎𝑠𝑖𝑐_𝑐ℎ𝑎𝑛𝑔𝑒𝑠← 𝑎𝑝𝑝𝑙𝑦𝑅𝑢𝑙𝑒(𝑟𝑢𝑙𝑒,𝐵𝐶,𝑀)

9: 𝐵𝐶 ← 𝑢𝑝𝑑𝑎𝑡𝑒𝐵𝐶(𝑢𝑠𝑒𝑑_𝑏𝑎𝑠𝑖𝑐_𝑐ℎ𝑎𝑛𝑔𝑒𝑠) ◁ avoid reusing a BC

4. Experimental evaluation

DynDiff has been experimentally evaluated on large ontologies. Our goal was to assess the
performance of the algorithm on state-of-the-art tools in terms of execution time, as well as its
ability to identify the right change actions.

4.1. Materials

During this evaluation, we used seventy-three versions from seven different ontologies. Table
2 provides some general information about them, such as the average number of classes (C),
properties (P), individuals (I), subsumption relationships (R) and attributes (A).

We collected these ontologies from BioPortal [1]. For each of the dataset versions, the initial
and last ID used are listed in the “versions” column, as well as the number of versions (between
parentheses). We used the notation AA to indicate that for these ontologies we selected the
latest version published in January of each year. For GO, IOBC, and CIDO we indicate in the



Acronym Versions (#)
Average number of

C P I R A
ICD9CM 2005AA - 2016AA (12) 21,765 2 0 21,765 54,572

MESH 2005AA - 2016AA (12) 25,820 2 0 34,899 215,971
NCIT 2005AA - 2016AA (12) 70,396 2 0 79,525 179,983

SNOMEDCT 2005AA - 2016AA (12) 309,572 2 0 496,084 800,158
GO 01072017 - 21072020 (4) 52,574 54 0 492,651 395,285

IOBC 1.0.0 - 1.4.0 (7) 115,114 84 59,346 707,970 904,443
CIDO 01262020 - 06142020 (14) 3,599 165 294 15,368 25,407

Table 2
Average number of concepts C, properties P, individuals I, subsumption relationships R and attributes
A in the different versions of each of the datasets. The Versions column also shows the number of
versions collected.

table the first and last version used. We will only present the comparison with COnto-Diff,
since the execution time of COnto-Diff was shorter than the approach of Papavasileiou et al.
[17] for all ontologies.

4.2. Experimental method and metrics

We executed DynDiff and COnto-Diff algorithms on the same computing environment and used
the following metrics to analyse the results obtained.

• Execution time: The objective was to analyse the behaviour and find trends in the execu-
tion time, given the characteristics (e.g. input size, output size and results composition in
terms of changes) of the ontology; The aim of this analysis was to evaluate the scalability
of the algorithm.

• % change tool comparison: The following metric was used to compare the results of the
DynDiff with that of COnto-Diff [15]:

%𝐶ℎ𝑎𝑛𝑔𝑒𝑇𝑜𝑜𝑙𝑠𝑡𝑦𝑝𝑒 =
𝐴𝑉 𝐺(𝑁𝑃𝐴,𝑡𝑦𝑝𝑒 −𝑁𝐶𝑂,𝑡𝑦𝑝𝑒)

𝐴𝑉 𝐺(𝑁𝐶𝑂,𝑡𝑦𝑝𝑒)
(2)

where type ∈ {𝐵𝑎𝑠𝑖𝑐, 𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒} (which includes both complex and heuristic), N is
the number of changes of a given tool. The COnto-Diff serves as a ground-truth given that
it was also tested against other existing solutions like Promptdiff. We thus compared the
execution time metric and evaluate the proposed %changeTools metric. The aim of this
last analysis will also to find an explanation for the differences in the high-to-low-level
ratio.

4.3. Results

DynDiff was designed to have a balanced set of changes, avoiding a very detailed set (as for [17]),
but with more detail than that of COnto-Diff. Thus, DynDiff is not a technical improvement of
COnto-Diff, since they produce different outcomes (impacting the execution time). Before the
analysis, we expected that the execution time for COnto-Diff to be lower.



Fig. 3 shows the average execution time of ten iterations of COnto-Diff and DynDiff for all
versions of each ontology described in table 2. A polynomial trend of degree 5 (dashed lines),
with their respective 95% confidence interval bands, show the possible adjusted behaviour of
the algorithm. The model can be considered significant as 𝜌 ⩽ 0.05 and R-squared is close to 1.
On average, COnto-Diff fluctuates more than DynDiff for the different computations. This is
more evident for larger ontologies. There are also very evident outliers, as was observed when
parsed ontologies were used. We only used OWL ontologies in this analysis, which required
us to transform some ontologies that were originally in OBO into OWL. This transformation
added some noises that impacted on the COnto-Diff algorithm. As we expected, both algorithms
presented good results and close execution times, with a small advantage for COnto-Diff in
the later criterion for small ontologies. However, the higher number of change actions did not
avoid DynDiff outperforming COnto-Diff for larger ontologies.

Figure 3: Comparison of average execution time (secs) vs total number of changes

From this analysis, we briefly conclude that COnto-Diff potentially performs better with
small and middle-sized ontologies (≤ 70K classes), but it shows a high variability in performance
when dealing with larger and parsed ontologies, as was the case for GO. This shows the ability
of DynDiff to be scalable and provide robust results for ontologies of any size.

As a measure of accuracy, we used %𝑐ℎ𝑎𝑛𝑔𝑒𝑇𝑜𝑜𝑙𝑠𝑡𝑦𝑝𝑒 rate to compare DynDiff with COnto-
Diff (see Fig. 4 and 5). From the basic change analysis (Fig. 4), we observed that the results are
equivalent for almost all ontologies that we evaluated (i.e., the rate is close to 0%). Exceptions
are observed for IOBC and CIDO. This can be explained by the inability of COnto-Diff to process
labels in Japanese or to identify changes in individuals and properties. DynDiff can handle diffs
of instances and properties encoded in non-utf-82 format.

2Universal Coded Character Set Transformation Format – 8-bit.



Figure 4: Comparison of the computed basic changes by DynDiff vs COnto-Diff

We compared the tools wrt heuristic and complex changes (see Fig. 5). The conclusions are
similar to the previous analysis, i.e. the performance of both tools is close, except for CIDO and
IOBC. The slight differences of 2-4% for the ontologies that contain almost no properties or
instances result from the difference in levels of granularity of each approach.

Figure 5: Comparison of the computed composite changes by DynDiff vs COnto-Diff.

Furthermore, negative percentages are due to the capacity of DynDiff to represent more
abstract changes (e.g. PullUpC), which reduces the total number of composite changes. This
highlights that the way the information is presented and grouped has an effect on the comparison
between tools and the interpretability of the results by humans.



5. Conclusion

Computing ontology diff in a scalable and efficient manner is still a problem, especially for
the ever-growing size of ontologies. In this paper, we presented DynDiffOnto, an ontology
that defines a balanced set of change actions to support the interpretation of how ontologies
evolve. We also present the DynDiff tool designed to compute the Diff between versions of
ontologies and classify them according to DynDiffOnto. Our analysis show that DynDiff is
efficient for handling large ontologies, even those with dynamic instances and properties. We
finally compared our approach with the state-of-the-art tools used in this field and observed
a very close performance in terms of execution time and capacity to identify changes. This
tool was evaluated with ontologies from the medical domain; we are now evaluating it with
ontologies from other domains and plan to review DynDiffOnto in order to also meet the needs
of other domains.
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