
On the Road of Data-driven Discussion: a Comparison
of Open-source Collaboration Platforms
Jerry Andriessen1,†, Tiziano Citro2,∗,†, Thomas Schaberreiter3,† and Luigi Serra4,†

1Wise & Munro Learning Research, Netherlands
2Department of Computer Science, Università degli Studi di Salerno, Italy
3CS-AWARE Corporation, Estonia
4Department of Computer Science, Università degli Studi di Salerno, Italy

Abstract
Collaboration platforms empower teams to discuss, brainstorm and work together with immediate
feedback regardless of location. The purpose of collaboration platforms is to integrate social networking
capabilities into work processes, which can help raise productivity. With this study, we present a
comparison of open-source modern collaboration platforms. It compares open-source platforms, publicly
available on version control systems, such as GitHub or GitLab, regarding features, extensibility on
the developer side, and end-user support regarding documentation. As a result, there is no perfect or
better platform than the others in all cases. All of them are stable, with a community supporting them,
adding new features, and keeping them updated with security patches. Besides discussing the platforms’
assessment and comparison, the article contextualizes this theoretical analysis in a concrete use case in
the context of the Horizon Europe project CS-AWARE-NEXT, which requires a collaboration platform
to perform data-driven discussions, providing users with a continuous view of their data, and enabling
them to effortlessly keep up with messages and reply in context, even on complex topics that involve
significant amounts of data.

CCS CONCEPTS Evaluation, Surveys and overviews

Keywords
Open-source collaboration platforms, comparison, evaluation, assessment, data-driven collaboration

1. Introduction

A collaboration platform is an application that helps teams or groups of individuals accomplish
specific goals collaboratively. Modern collaboration platforms enable contributors to engage
in conversations or dialogues using text, video, audio, and imagery [1]. Contributors can
make posts that are viewable by others, creating a dynamic and interactive environment.
These conversations can be valuable for prompting reflection on topics of interest and sharing
thoughts and information related to those topics. Collaboration platforms foster communication,
knowledge-sharing, and collaboration among individuals and teams [2].

S3C’23: Sustainable, Secure, and Smart Collaboration Workshop, Hosted by CHITALY 2023, SEPTEMBER 20–22, 2023,
TURIN, ITALY
∗Corresponding author.
†
These authors contributed equally.
Envelope-Open jerry@wisemunro.eu (J. Andriessen); t.citro5@studenti.unisa.it (T. Citro); thomas.schaberreiter@cs-aware.com
(T. Schaberreiter); lserra@unisa.it (L. Serra)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:jerry@wisemunro.eu
mailto:t.citro5@studenti.unisa.it
mailto:thomas.schaberreiter@cs-aware.com
mailto:lserra@unisa.it
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org


In today’s digital landscape, the need for effective collaboration platforms has increased in
various contexts. Whether it’s in educational institutions [3], professional settings [2, 4], or
open-source communities [5, 6, 7], the demand for platforms that facilitate the seamless sharing
of materials and meaningful discussions is crucial. These platforms offer a range of features
and capabilities that cover several user requirements and enable collaboration on a global scale.
One critical aspect differentiating collaboration platforms is the level of support they provide to
end users and the extent to which developers can customize and extend their functionalities.
Factors such as the availability of comprehensive user manuals, the flexibility for developers to
adapt and enhance the platform, and an open license can significantly influence the selection
process. Additionally, the existence of an organization, foundation, or entity that supports or
leads the projects is often a good sign of credibility and stability for the project, assuring the
users to adopt the platform.

While existing related works assess collaboration platforms independently or mainly focusing
on a single feature or are limited to enterprise context [8], the literature lacks a comparison
among several platforms that consider both developers’ requirements, such as the ability to start
from an open-source project and customize it according to their specific needs, and end-users
requirements, particularly in terms of support and documentation to facilitate platform adoption
and learning.

This study explores and compares publicly available collaboration platforms hosted on version
control systems, such as GitHub or GitLab. Through an examination of various aspects such as
features architecture, customization, community, and provisioning, a comprehensive evaluation
is performed to determine the strengths and weaknesses of each platform. Furthermore, this
analysis contextualizes the findings within the specific context of the Horizon Europe project CS-
AWARE-NEXT1. This study presents a practical use case of a real-world analysis implementation
by identifying a platform that meets the project’s requirements. In the context of CS-AWARE-
NEXT, the objective was to identify the most suitable platform to serve as the building block
for designing and developing a data-driven collaboration platform. Such a platform equalizes
the importance of communication and the data it revolves around, providing users with a
continuous view of their data and enabling them to effortlessly keep up with messages and reply
in context, even on complex topics that involve significant amounts of data. Key considerations
in this evaluation process of meeting the project’s requirements were the platforms’ capability
for extensive customization to align with our specific needs and their viability for long-term
maintenance. A crucial factor was the inclusion of a chat feature that would facilitate discussions
among users, enabling collaboration around shared data.

2. Related Works

Rarely publicly available collaborative platforms are launched by academic contributions. How-
ever, it is pretty standard that their performances are assessed within the literature also contex-
tualized in a specific domain. For instance, Burkert and Federrath [9] conducted a source code
analysis of Mattermost to examine the usage of timestamps for privacy mining. Ćirković et
al. [10] explored the use of Mattermost in learning environments, considering the benefits for

1https://cordis.europa.eu/project/id/101069543

https://cordis.europa.eu/project/id/101069543


both teachers and students. Barde and Raouf [11] presented a case study on Zulip to demon-
strate the effectiveness of their accessibility evaluation approach. Ihle et al. [12] proposed
a cryptographic challenge-response authentication mechanism for portable identities within
Matrix. Long et al. [13] developed a web-based platform virtual world built on top of Matrix.
Ermoshina et al. [14] provided an overview of messaging protocols focusing on end-to-end
encryption, including Matrix as one of the presented protocols.
All the previously reported works focus on the assessment of a single platform. Focusing

on related results that compare collaborative platforms, we can cite Schipper et al. [15], who
conducted a forensic analysis of Matrix and Element (previously known as Riot). Schubert and
Williams [8] conducted a review using a questionnaire to identify the enterprise collaboration
platforms used in a set of organizations, analyzing the types of tools, level of functionality
within tools, and degree of integration between tools.

However, to the best of our knowledge, there is no systematic review of publicly available,
potentially open-source collaboration platforms that compares them against a defined set of eval-
uation criteria. While there is literature studying or comparing specific aspects of collaboration
platforms or protocols, none has provided a comprehensive assessment. Hence, to cope with
this limitation, our study compares publicly available and potentially open-source platforms
via evaluation criteria, including architecture, customization, community, and provisioning, to
assess these platforms comprehensively.

3. Platforms Overview

Collaboration platforms were identified through a combination of methods. Firstly, a compre-
hensive search was conducted on GitHub2 using relevant keywords. The investigation was
performed using the query “collaboration stars:>100” to identify projects on collaboration with
a minimum of 100 stars. This criterion was chosen to indicate the community interest and
facilitated our search process. Due to GitHub’s limitations on result exports, the analysis of
projects had to be done manually. Filtering for projects with at least 100 stars helped to narrow
down the number of platforms to a manageable level for manual analysis. It’s worth noting that
while the minimum requirement was set to 100 stars, most platforms had thousands to tens of
thousands of stars. Platforms with fewer stars were typically prototypes, personal projects, or
not considered production-grade.

Additionally, a search of online forums and discussions was carried out to hand-search other
publicly available collaboration platforms missed through the GitHub search or not available
on GitHub but on other version control systems, such as GitLab3.
Searched platforms were passed through a process of eliminating duplicated results. To

check results were relevant to the study, all the remaining platforms were assessed against
the inclusion and exclusion criteria presented in Figure 1. To be included, platforms had to be
publicly available and offer a certain or potential degree of customization. Additionally, active
community support and the availability of a chat feature were factors for inclusion. Platforms
that did not meet these criteria were excluded from the analysis. Consequently, popular

2https://github.com
3https://about.gitlab.com

https://github.com
https://about.gitlab.com


platforms like Discord4 and Teams5 were not included in this study due to their proprietary
nature as non-open-source software.
As shown in Figure 1, of all the 309 projects (304 from GitHub search and five by hand-

searching), 17 were discarded because they were considered duplicates, and the remaining 292
projects were checked against inclusion and exclusion criteria, resulting in 10 projects being
included and considered for the study. Details related to each platform follow.

Figure 1: Diagram of the search process.

Mattermost Mattermost [16, 17] is a collaboration platform designed explicitly for digital
operations. It offers a chat solution powered up by providing integrated productivity solutions
matched to standard Research and Development processes: planning sprints, managing releases,
resolving incidents, and more. It is open-source, extensible by design, and supported by an
ecosystem of community-driven applications, an open Application Programming Interface
(API), and a framework that allows you to customize and enhance the platform to meet your
needs.

4https://discord.com
5https://www.microsoft.com/en-us/microsoft-teams

https://discord.com
https://www.microsoft.com/en-us/microsoft-teams


Mattermost implements collaboration around channels that connect people, processes, and
tools. They allow direct, private, and group messaging, meetings, calls, and file sharing within
searchable channels. Kanban-style boards enable teams to manage projects and tasks that
integrate with channel-based collaboration and playbooks: collaborative checklists with channel-
based communication, automation, and reporting.

Matrix Matrix [18, 19] is an open standard for interoperable, decentralized, real-time com-
munication. It is maintained by the non-profit Matrix.org Foundation, whose aim is to create
an independent open platform for communication. It is interoperable because it is designed
to interoperate with other communication systems, and it is an open standard because it is
easy to understand how to interoperate with it. Decentralization is achieved by having no
central point, meaning anyone can host their server and control their data. In Matrix, users
connect to a server, which becomes their homeserver. Users can participate in rooms on any
homeserver since each server federates with the others. Recently, the community released a
new beta feature inspired by the Discord server model, introducing spaces: a way to group
rooms together.

Element Element [20, 21] is an open-source platform built by the community behind the
Matrix project. It is built on top of Matrix with the idea of being a light skin of customization
on top of the underlying Matrix protocol. The platform allows for direct and group messaging,
meetings, and calls.

Cinny Cinny [22, 23], just like Elements, is a platform built on top of Matrix, focusing on
simplicity and a modern user interface designed to give a pleasant and calm feeling. The primary
focus is on the web experience, which means no mobile application is available. Collaboration
happens via direct messages and channels.

Gitter Gitter [24, 25] is an open-source collaboration and networking platform that helps to
create, manage, grow, and connect communities throughmessaging and discovery. Communities
are organized in channels that can also be accessed via any other Matrix client since Gitter has
become part of the Matrix project.

Zulip Zulip [26, 27] is an open-source team collaboration platform with topic-based threading
that combines features of email and chat to address the lack of organization and context in
usual channels, which leads to searching hundreds of messages daily to find relevant content.
Zulip channels are called streams and provide the benefits of real-time communication while
being great at asynchronous communication. Zulip is inspired by the email’s highly effective
threading model: a stream’s message has a topic, just like every message in an email has a
subject line. Topics enable cohesive conversations and an efficient catch-up on messages and
replying in context, even to old discussions.

Twake Twake [28, 29] is an open-source collaboration platform with all the essential features:
team chats in channels, file storage, team calendar, and tasks manager. Twake channels allow



team members to exchange messages in real-time, have video calls, share files, and collaborate
on documents with a built-in file manager called Drive, which allows for standard operations:
versioning, editing, etc.

Rocket.Chat Rocket.Chat [30, 31] is an open-source collaboration platform with integration
with multiple conversation channels, such as emails, Facebook, Twitter, WhatsApp, and many
more, to build a single view of communication that helps in reducing the time needed to switch
between the tools.
In Rocket.Chat conversations are organized across different topics via rooms or channels

because it is the most used room type. There are five different types of rooms:

1. Channels: public or private chat rooms designed to fasten communication.
2. Teams: digital workspaces where team members can collaborate and work together by

sharing and managing multiple channels.
3. Discussions: a logical separation between conversations of larger topics in a team or

channel.
4. Direct Messages: confidential one-on-one or one-to-many conversations;
5. Threads: conversations with a specific message as a starting point on a specific topic in a

team or channel.

Corteza Corteza [32, 33] is a high-performance open-source collaboration platform designed
for team productivity and to facilitate secure communication with other organizations or
customers. In Corteza, teams can work together through public or private channels organized
by topic and group messages into threads. Each channel can be managed with customized rules
using a role-based access control system for better security and privacy.

Revolt Revolt [34, 35] is an open-source platform where collaboration happens in servers,
similar to the more popular Discord. It allows teams to collaborate using topic-based channels,
share files, and engage in video calls. It is not released for all operating systems because it
misses an IOS application.

3.1. Features Summary

A comparison of the features offered by each platform is summarized in Table 1. We identified
nine core features defined as follows.
Channels, direct messages, threads, calls, and file sharing. These are essential features
expected from modern collaboration platforms to accommodate users’ needs. It is important to
note that terminology may differ across platforms, with variations such as rooms, groups, or
other terms used to describe channels.
Teams. This feature refers to the capability of organizing discussions into separate and isolated
namespaces. It is important to note that each platform uses different terminology for this feature.
For example, they are called spaces in Matrix, while Revolt uses the term servers.
Task management. The platform offers features designed to assist teams in organizing and
managing their tasks effectively, thereby enhancing overall productivity.



Table 1
Platforms’ features overview.

Te
am

s

Ch
an
ne
ls

D
ire

ct
m
es
sa
ge
s

Th
re
ad
s

Ca
lls

Fi
le
sh
ar
in
g

Ta
sk

m
an
ag
em

en
t

To
pi
c o

rie
nt
at
io
n

D
isc

ov
er
y

Mattermost ! ! ! ! ! ! ! ~
Matrix ! ! ! ! ! ! ~ !

Element ! ! ! ! ! ! ~ !

Cinny ! ! ! ! ~ !

Gitter ! ! ! ! ! ! ~ !

Zulip ! ! ! ! ! !

Twake ! ! ! ! ! ! ! ~
Rocket.Chat ! ! ! ! ! ! ~
Corteza ! ! ! ! ~
Revolt ! ! ! ! ! ! ~ !

Topic orientation. Most platforms enable users to organize their conversations based on
topics of interest. However, in most platforms, there is no strict enforcement of a designated
topic for each discussion or individual message, as indicated by the tilde (~) in Table 1. The
enforcement of a topic is unique to Zulip, which draws inspiration from the email threading
model and assigns a topic to every message, ensuring structured conversations.
Discovery. This refers to a feature that enables users to explore, join, and collaborate with
online communities within the collaboration platform. Similar to the discovery functionality
found in popular platforms like Discord, this feature allows users to search for communities
based on specific interests, topics, or keywords. With the help of this feature, users can discover
new communities, connect with like-minded individuals, and expand their network.

4. Platforms Evaluation

We evaluated the platforms against four predefined criteria: architecture, customization, com-
munity, and provisioning. By assessing each platform against these criteria, we could make an
informed decision that aligns with our objectives and requirements.

4.1. Criteria

Each criterion has a score of 1 to 5, the lowest and the highest possible scores, respectively. The
four criteria definitions are as follows.
Architecture. Understand the what and why of each component in the system.
Rating.

• 5: Excellent architecture. The platform is exceptional in terms of structure and organization.
Components are highly cohesive and modular, fostering flexibility and reusability. The



architecture is great in scalability, maintainability, and extensibility.
• 4: Good architecture. The platform has a well-defined structure and organization. Com-
ponents are clearly defined and integrated, leading to efficiency and effectiveness. The
architecture supports scalability, maintainability, and extensibility.

• 3: Adequate architecture. The platform has a reasonable structure and organization.
Components are well-defined and fulfill their intended purposes. The architecture allows
for scalability, maintainability, and extensibility to a certain extent.

• 2: Below average architecture. The platform has some structure, but it lacks clarity and
cohesiveness. Components are somewhat defined, but there are inconsistencies. There
are limitations in scalability, maintainability, and extensibility.

• 1: Limited architecture. The platform lacks structure and organization. Components
are poorly defined, leading to inefficiency. There is little consideration for scalability,
maintainability, and extensibility.

Customization. Identify challenges in making changes to the platform to extend existing
functionalities.
Rating.

• 5 Excellent customization. The platform has great customization capabilities to adapt and
extend the system to specific needs. The platform supports comprehensive customization
mechanisms, such as APIs, plugins, Software Development Kits (SDKs), andmore, enabling
extensive integration and customization possibilities.

• 4: Good customization. The platform provides extensive customization options and
flexibility. It is possible to change various aspects, and advanced customization options,
such as APIs or plugins, are available to enable deep customization and integration with
external systems.

• 3: Adequate customization. The platform offers moderate customization capabilities.
Certain aspects of the platform can be customized, but the scope of customization may
still be limited, and more advanced modifications may require significant effort.

• 2: Below average customization. The platform provides some basic customization options,
limited in scope and flexibility. Advanced customization is not supported.

• 1: Limited customization. The platform offers minimal or no options for customization.

Community. Analyzing documentation quality and community activity.
Rating.

• 5: Excellent community. The platform has a strong and large community that actively
drives the platform’s development, growth, and support. Users can find a highly active
community with extensive discussions and valuable resources.

• 4: Good community. The platform has a large community with high engagement, partici-
pation, and support. Users can find a wealth of resources.

• 3 Adequate community. The platform has an active community. Users can find helpful
resources, seek help and find relevant information quite easily.

• 2: Below average community. The platform has a growing community. Users can find some
support and resources, but the community may still be less active than other platforms.



• 1: Limited community. The platform has a small community with minimal participation
and support. There is a lack of resources available. Users may find it challenging to seek
help or find relevant information.

Provisioning. Understand the challenges in provisioning and configuring the platform.
Rating.

• 5: Excellent provisioning process. The platform provides a seamless provisioning process
that makes setting up and configuring the platform easy. The process is well-documented,
streamlined, and requires minimal intervention to get up and running without encounter-
ing significant obstacles.

• 4: Good provisioning process. The platform offers a streamlined provisioning process, so it
is quick to set up and configure it using comprehensive documentation.

• 3: Adequate provisioning process. The platform has a good provisioning process that is
relatively straightforward and well-documented. Clear instructions can be followed to
set up and configure the platform.

• 2: Below average provisioning process. The platform has a moderately challenging provi-
sioning process. While some documentation is available, there may still be difficulties
during the setup and configuration.

• 1: Limited provisioning process. The platform has a complicated and challenging provi-
sioning process. It may lack clear documentation, making setting up and configuring the
platform difficult.

4.2. Results

The study results have been summarized in Table 2, which presents an overview of the platforms’
performance based on our evaluation criteria. The table also includes a score column, which
provides a summarized view of the results based on the average of all the scores given for each
evaluation criterion to each platform.

Table 2
Result table based on evaluation criteria.
(*) means the score is the same as Matrix because architecture is based on the Matrix’s.

Architecture Customization Community Provisioning Score
Mattermost 5 4.5 5 5 4.9

Matrix 5 5 4.5 4 4.6
Element 5* 1 3 4 3.2
Cinny 5* 1 2 4 3
Gitter 4 2 3 3.5 3.1
Zulip 3 3 4 3 3.3
Twake 4 3.5 2 3.5 3.3

Rocket.Chat 4 4 4 4 4
Corteza 4 1 2 3.5 2.6
Revolt 5 2 2 4 3.3



Mattermost Mattermost architecture is designed to be highly operable and scalable and
offers the flexibility to separate and manage some components separately. While customization
is rated at 4.5, it can be seen as a 5 with the detraction because Matrix offers greater flexibility
but at the cost of a significant effort to build everything from scratch. Mattermost stands out as
one of the best choices for community and provisioning. It offers high-quality documentation,
a reference architecture for local and fully managed clusters, a Kubernetes operator, and other
features that make it easier to provide the platform.

Matrix One of the best advantages of Matrix architecture is its decentralized conversation
store. Matrix is a building block with all the necessary features for a collaboration platform. It
can be extended by developing other services to run alongside the homeserver to meet specific
requirements. This gives the flexibility to design a user interface that best fits needs, but
this advantage comes with a trade-off as it requires a significant effort. Matrix community
and documentation receive a slightly lower rating than Mattermost, as the latter has better
documentation. While provisioning Matrix is easy, it lacks the simplification provided by
Mattermost, such as a reference architecture or a Kubernetes operator.

Element and Cinny Element is built on top of the Matrix architecture, with its architecture
serving as a user interface. However, customization options for Element are limited, and
changing the source code is the only way to customize the user interface. While Element has a
large community, there is a lack of documentation, particularly on self-hosting and extending
the code base without incurring additional costs. The provisioning process for Element is similar
to Matrix but with a user interface to manage.

Cinny follows a similar pattern, with limited customization options and a lack of documenta-
tion. However, Cinny’s disadvantage is its smaller community compared to Element.

Gitter Gitter architecture is robust, but customization options are limited. The platform offers
some options we would build from scratch on other platforms. However, the Gitter community
does not provide high-quality documentation.

Zulip Zulip architecture is similar to Gitter’s. A single server handles most features, providing
less decoupling than other platforms. Customization is limited to changing the source code, as
with Element and Cinny. However, Zulip has well-written documentation that explains almost
all the steps required to introduce and maintain a new feature. Zulip benefits from a large
community and well-written documentation. Unfortunately, the Docker image provided by the
community is still experimental, and there are rough edges to keep in mind when provisioning
the platform.

Twake Twake architecture stands out for its emphasis on security, a top priority for the
platform’s community. While Twake’s features can be extended without modifying the source
code by using some built-in options, these are limited, and more complex functionalities may
require coding changes. Unfortunately, the Twake community is relatively small, and the



available documentation is not always helpful. Provisioning Twake is straightforward but may
be challenging for some users due to the lack of detailed documentation.

Rocket.Chat Rocket.Chat architecture is well-designed and allows disabling features for
improved performance. Rocket.Chat offers several features for customization, but some are
still experimental or limited in their capabilities. One notable feature of Rocket.Chat is its
ability to handle bulk loads particularly well. While provisioning the platform is generally
straightforward, it’s worth mentioning that users may experience a greater complexity when
compared to other platforms.

Corteza Corteza architecture is designed to use its monitoring system, which can be both
an advantage and a drawback. On the one hand, it simplifies provisioning the platform. On
the other hand, it can limit observability. The community has deprecated the plugin API for
customization. Due to its small community, finding support or well-written documentation
during the provisioning process can be challenging.

Revolt Revolt architecture is unique in that it is designed to be fragmented, with components
deployed separately and communicating with each other. This means changes can be made to
specific parts without restarting the entire platform. While customization options are limited
and the documentation is not comprehensive, provisioning Revolt is not significantly more
complex than other platforms. Additionally, the community is not as large as some others.

Architecture All platforms are built upon a distributed architecture, clearly distinguishing
components with real-time responsibilities from those without. Matrix sets itself apart from
other platforms by aiming to provide a decentralized infrastructure, allowing anyone to run
their server instead of relying on resources provided by the platform provider. Most platforms
rely on APIs for synchronous and asynchronous communication and web sockets for real-time
communication. Rocket.Chat and Matrix differentiate themselves by relying on event-oriented
communication. Notably, there is no specific preference towards SQL or NoSQL databases
among these platforms, as both options can be utilized to achieve persistence for collaboration
data.

Customization In terms of customization, there is a significant disparity among platforms.
Mattermost stands out by offering multiple approaches to extend existing features and incor-
porate new ones, providing a wide range of options unmatched by other platforms. Matrix
supports customization by design as it serves as a building block for any possible collaboration
platform, making it easy to implement desired features. Opposed to them, Element lacks support
for customization, while Corteza has deprecated its plugin API.

Community Most communities are very active and have a large user base. However, younger
projects like Corteza and Revolt may have comparatively lower activity levels and smaller user
bases. There is a noticeable disparity among platforms in terms of documentation. Whereas plat-
forms like Mattermost and Matrix stand out by offering detailed and exhaustive documentation,



others like Cinny lack high-quality documentation. Among the commonly used programming
languages across platforms, JavaScript is the most used. Notably, it is interesting the adoption of
Golang, which is predominant in some platforms such as Mattermost. Additionally, the Matrix
community is developing new core components in Golang, gradually replacing the existing
Python-based ones.

Table 3
Platforms’ community metrics.
(*) means it is partially under the underlined license.
(~) means there is partial support.

Li
ce
ns
e

Fi
rs
t c
om

m
it

La
st
co
m
m
it

Co
m
m
its

Co
nt
rib

ut
or
s

O
rg
an
iz
at
io
n

Su
pp

or
t

Mattermost Apache-2.0 2015 2023 16,925 782 ! [36]
Matrix Apache-2.0 2014 2023 22,756 + 2,750 463 + 163 ! [37]
Element Apache-2.0 2015 2023 12,616 525 ! [38]
Cinny AGPL-3.0 2021 2023 1,064 38 !

Gitter MIT 2012 2023 48,308 100+ !

Twake AGPL-3.0 2020 2023 1,240 42 ! [39]
Zulip Apache-2.0 2012 2023 51,971 843 ! [40]

Rocket.Chat MIT* 2015 2023 23,741 826 ! [41]
Corteza Apache-2.0 2018 2023 4,775 26 ! [42]
Revolt AGPL-3.0 2020 2023 1,593 + 887 56 + 19 [43]~

The data presented in Table 3 was gathered from the GitHub or GitLab pages of the respective
projects. It is important to note that most platforms have code bases organized into multiple
repositories. Therefore, we had to collect information from all repositories or select a relevant
subset for our analysis. We opted for the latter approach to ensure efficiency in our manual
analysis process. In particular, we focused on core projects, where core means repositories
required to set up the platform with the bare minimum in a way that works. For instance,
Mattermost can be tailored to the users’ needs thanks to many community-developed plugins
made available via dedicated repositories. However, the built-in basic collaborative features of
the server are enough to make it work. Conversely, Matrix has two primary servers, released
via two different repositories, that we need to consider to have an overall view of what users
can use to set up the platform.
To find the license, we searched for the LICENSE.txt file in the project’s root directory on

both GitHub and GitLab. We utilized the GitHub insights feature to identify the first and last
commits, which provides the dates of these commits. However, for Gitter, we had to search on
GitLab and manually find these commits. The number of commits was calculated by summing
all from the selected repositories. Similarly, the number of contributors was determined, except
in GitLab, where we faced a limitation of the latest 6,000 commits in tracking contributors.
The organization aspect refers to the presence of an organization, foundation, or any other



entity that supports or leads the projects. The involvement of an organized entity often adds
credibility and stability to the project, assuring the users. On the other hand, the support aspect
relates to the community’s provision of user guides and documentation. These resources serve
as valuable references for users with different levels of technical proficiency, aiding them in
effectively using the platform. In the support column, the tilde (~) symbol means partial support
provided by the community to users. This indicates that some platforms primarily focus on the
administrative/development aspects without offering guidance for users in using them.

Provisioning Our primary focus was understanding the challenges in provisioning and con-
figuring the platforms, particularly in containerized environments using Docker and container
orchestration tools like Kubernetes or cloud providers. While all platforms offer a public Docker
image for containerized solutions, it is worth noting that Zulip’s Docker image is still in an
experimental phase, and the Zulip installer is considered a more reliable option. Some platforms
provide dedicated documentation and tools, such as Kubernetes operators and Helm charts
facilitating deployment on Kubernetes, while others require manual configuration from scratch.
Similarly, deploying to cloud providers varies among platforms, with some offering specific
documentation and guidance, particularly for Amazon Web Services.

4.3. Discussion

The discussion focuses on three main aspects that emerged from the analysis: the open-source
nature of the platforms, their stability, and the level and quality of support they offer. These
factors are crucial for users and organizations to decide on a collaboration platform that aligns
with their needs and requirements.

Open-source nature Customization is crucial in tailoring collaboration platforms to specific
needs and integrating them with existing systems. The evaluated platforms are open-source, as
indicated by the licenses, which inherently allows users and developers to extend and customize
their functionalities, even if no built-in feature is offered to customize the platform, as indicated
in Table 2 where different levels of customization capabilities are highlighted. While this study
focuses on open-source platforms, it’s important to underline that proprietary platforms like
Discord or Teams also provide features to build open-source customization. Therefore, users
should assess their customization needs and other requirements and evaluate both open-source
and non-open-source platforms to choose the one that best aligns with their needs.

Stability The stability of the projects can be assessed by considering several factors based
on Tables 2 and 3. The duration of the projects can be inferred from the first and last commit
dates in Table 3, revealing a considerable span of commits for all projects, starting from years
in the past and continuing until the present year (2023). This longevity indicates a certain level
of stability and ongoing development. Additionally, the number of commits and contributors
offers further insights because projects with many commits and contributors typically have an
active development community putting a noticeable effort into improving and maintaining the
platform. While the study included projects with at least 100 stars, most had thousands to tens
of thousands of stars, a measure of popularity and stability in the open-source community. As



said, an organization backing the projects is another good indicator because it often implies a
structured approach, long-term commitment, and resources dedicated to supporting the project.
Most platforms have an organization that either leads or funds platform development, as stated
in Table 3. The results in Table 2 highlight how platforms have adequate or above provisioning
processes, meaning that provisioning them is relatively straightforward and well-documented
at least.

Support Since most platforms have their code bases organized into multiple repositories,
our analysis focused on a relevant subset of repositories. As a result, the reported number of
commits and contributors in Table 3 may be higher than presented, indicating a potentially
more substantial activity level. More contributors can be beneficial when seeking support
for a platform, especially for projects with fewer contributors than others. However, if your
requirements include active and consistent support, it is advisable to consider platforms with at
least an adequate community, as indicated in Table 2. Furthermore, Table 3 reveals that not all
platforms provide comprehensive support for administrative and usage aspects. Some platforms
focus on administrative functionalities while offering limited guidance for regular use. This
aspect should be carefully considered based on the specific usage scenarios envisioned for the
platform. Therefore, users should be aware of the varying levels of support.

5. Use case

A concrete use case for data-driven collaboration lies in the context of the Horizon Europe
project CS-AWARE-NEXT which requires a collaboration platform to provide users with a
continuous view of their data, enabling them to effortlessly keep up with discussions, even
on complex topics involving significant amounts of data. As a result, we needed to identify
the most suitable platform to work as the foundation for a suitable data-driven collaboration
platform. To do so, we used this study to choose a platform among the analyzed ones.
CS-AWARE-NEXT is a follow-up to the H2020 project CS-AWARE6. CS-AWARE focuses on

a novel approach to socio-technical cybersecurity management in organizations. It follows a
data-driven approach to create awareness by working with people who can understand how an
organization works: the people working in the organization and with organizational IT systems
and networks daily. CS-AWARE has developed a novel socio-technical system and dependency
analysis methodology based on the tried and proven soft systems methodology (SSM) [44] to
generate an organizational knowledge repository for cybersecurity-relevant assets.

In CS-AWARE-NEXT, the focus shifts to awareness and collaboration in inter-organizational
settings. The issue of understanding and data availability in individual organizations was
addressed through CS-AWARE. However, we have identified a gap in awareness, the ability to
collaborate effectively, and ultimately the availability of data and information when dealing
with cybersecurity incidents that are not contained within one organization but span across
an organization’s supply ecosystem. We have identified the need to improve collaboration in
this context. To that end, we have found a solution in a data-driven collaboration platform

6https://cordis.europa.eu/project/id/740723

https://cordis.europa.eu/project/id/740723


that connects individual organizations and utilizes all the available data to foster and facilitate
collaboration on cybersecurity.

The role of such a platform is to support cybersecurity collaboration between parties in the
ecosystem. Collaboration cannot be a goal as such (similarly: we do not tell people how to read)
but serves a particular purpose. In CS-AWARE-NEXT, collaboration strengthens cybersecurity
in the ecosystem through increased awareness about the primary needs, issues, and achievable
solutions for the ecosystem. Platform support for collaboration involves the agile design
of coordinated affordances and data-driven information exchange in collaborative scenarios.
Scenarios describe a designed series of actions to achieve some objective in context. Scenarios
are abstractions that specify the necessary parameters for successful operation, not the actions
themselves. Table 4 briefly describes our data-driven collaboration platform’s three main
scenario types.

From the description of the scenarios, it can be seen that the foreseen collaborative activities
that the platform should be able to support are quite different. For example, exchanging and
discussing sensitive threat information is essential in collaborative incident-handling scenarios.
In consultancy scenarios, an exchange of documents and an explanation of specific policies
and practices is expected. For knowledge management scenarios, access to and adding to
repositories seems crucial. Consequently, the platform chosen as the building block for our
collaboration platform must be highly customizable and open-source to accommodate these
varying requirements. In the worst-case scenario, if the platform’s built-in customization capa-
bilities are insufficient, we may need to modify the underlying code. Since CS-AWARE-NEXT
is a long-term project spanning multiple years of development, maintenance, and operation,
the selected platform must offer exceptional stability and continuous community support,
including patches, security fixes, and general improvements. Additionally, we require the
platform to be provisioned in containerized environments. Therefore, support for delivering
the platform in such environments and guidance throughout the process are critical factors in
our decision-making.

Mattermost emerged as an excellent fit as the foundation for our platform, especially consid-
ering our requirements for extensive customization and long-term maintenance. Mattermost
offers a wide range of powerful customization options that give us the flexibility to customize
and extend its features, making it an ideal platform to tailor to our specific needs. It is also
open-source, allowing us to work on the source code should we ever need it. One of the crucial
advantages of Mattermost is its large and active community. With a large user base and dedi-
cated contributors, we can rely on the community for ongoing support, updates, and continuous
improvements to the platform. The community ensures access to the latest developments, bug
fixes, and security patches, providing a robust and reliable platform that can be maintained and
enhanced over time. Additionally, Mattermost’s documentation and resources further contribute
to its suitability for our project. The platform provides comprehensive documentation and
guidelines for customization, configuration, and provisioning, making it a solid foundation to
build and maintain our platform successfully.



Table 4
Scenarios types for the employment of data-driven collaboration in CS-AWARE-NEXT.

Type Description
Collaborative incident han-
dling

This is a group of scenarios focusing on the collaborative handling of
cybersecurity incidents. The collaboration is between a group of organi-
zations (more than 2) that have agreed about a common cybersecurity
interest or interdependencies (e.g., a shared service on which they all
rely) and who collaborate in understanding incidents for improving their
(ecosystem) cybersecurity. The collaboration can be about activities after
(at some location) a cybersecurity issue showed up in their systems. The
collaboration in this scenario can call for relatively quick decision-making
and action and reflections on these actions and decisions afterward. Such
types of collaboration improve when participants are well-prepared and
backed up by effective policies and task descriptions.

Consultancy In these scenarios, organizations in the ecosystem have agreed to support
each other in realizing improved cybersecurity by contributing to dis-
cussions, reviewing, or supporting understanding of cybersecurity in an
organization. Topics can be brought up by one of the partners, expecting
support from experienced others, or by all, from a longer-term perspec-
tive of collaboration and community building. Examples: reviewing data
collection and analysis, critical services, vulnerabilities, defining adapted
incident handling procedures, implementing and testing developed shar-
ing procedures, risk assessment, business impact analysis, etc. Activity
coordination, information sharing, and increased situational awareness
will characterize successful consultancy scenarios. Evidence can be found
by looking at the number of contributions, the balance of participation
(about the same number of contributions per participant), and user sat-
isfaction, as indicated by survey outcomes. Such characteristics can be
indicators for monitoring and evaluation.

Knowledge management Knowledge management is the process of organizing, creating, using, and
sharing collective knowledge within an organization. The ultimate goal
of knowledge management is for an organization to share its knowledge
assets and to be able to retrieve useful information. For CS-AWARE-
NEXT, this implies cybersecurity knowledge, particularly knowledge for
the benefit of cybersecurity of the ecosystem. In CS-AWARE-NEXT,
we focus on situational awareness of local/regional cybersecurity, and
knowledge management can be taken as one of the (few) tools to realize
sustained awareness. In this scenario, participants share experiences and
trajectories and learn how to build on experiences within the context of
their trajectories of cybersecurity awareness development.

6. Conclusions and Future Works

In today’s modern era, collaboration platforms have become an essential part of our daily lives,
changing how we work, connect, and collaborate. With many options available, the abundance
of these platforms is a challenge in choosing the most appropriate one to meet specific needs.
To make well-informed decisions, it is crucial to consider various factors such as open-source
nature, stability, support, customization capabilities, and alignment with requirements. This
study aims to help navigate this landscape by offering an overview of open-source collaboration



platforms and conducting a comparison based on four key evaluation criteria (architecture,
customization, community, and provisioning).

This analysis points out that no perfect platform exists, but users must choose the right one
based on their specific requirements. For users seeking customization capabilities, Mattermost
and Matrix are the top choices. Mattermost, in particular, stands out for its readily available
platform that enables rapid provisioning. On the other hand, Matrix offers the flexibility for
users to choose their preferred user interface from options such as Element, Cinny, and Gitter.
Mattermost, Rocket.Chat and Zulip have large and active communities that make them recom-
mended for users prioritizing ongoing development and the quick release of fixes or security
patches. Rocket.Chat is an excellent choice for users with multiple existing communication
channels seeking to consolidate them. For users emphasizing topic-oriented communication,
Zulip’s enforced logic of assigning topics distinguishes it from other platforms that provide
optional topic assignments. Mattermost and Twake provide integrated tools and solutions for
effective task management. Cinny, with its simple user interface and focused feature set, suits
scenarios where extensive functionalities are not required. However, it’s worth noting that
Cinny lacks the calls feature, which may be necessary for some use cases. Corteza is a suitable
option for users seeking fine-grained access control on discussions. However, if the focus is
on finding a platform with a particular emphasis on security, Twake can be a fitting choice,
given the community’s focus on security. Lastly, for users who require the ability to discover
and connect with other communities in a Discord-like fashion, Matrix, Element, Cinny, and
Gitter provide suitable options within the Matrix ecosystem. Meanwhile, Revolt, which shares
a similar structure to Discord, offers a choice outside the Matrix ecosystem.

A potential extension to this research involves relaxing the boundaries enforced by the search
query to encompass a broader range of platforms, thereby enhancing the scope of the study.
The current query excludes popular platforms like Discourse7, but by adopting a less restrictive
approach, we could include these platforms to gain further insights.

In conclusion, this study presents a practical use case for a real-world analysis implementation
by identifying a platform that meets the requirements of the CS-AWARE-NEXT project. In this
context, the objective was to identify the most suitable platform to serve as the foundation
for designing and developing a data-driven collaboration platform to improve collaboration
in cybersecurity. Given our requirements for extensive customization, open-source nature,
long-term maintenance, stability, and continuous support, Mattermost emerged as the platform
that best met our needs and ultimately became our final choice.

Acknowledgments

This project has received funding from the European Union’s Horizon Europe research and
innovation program under grant agreement No 101069543. This communication reflects only
the author’s view, and the Commission is not responsible for any use that may be made of the
information it contains.

7https://www.discourse.org

https://www.discourse.org


References

[1] P. Schubert, J. H. Glitsch, Use cases and collaboration scenarios: how employees use
socially-enabled enterprise collaboration systems (ecs), International Journal of In-
formation Systems and Project Management (2022). doi:htpps://doi.org/10.12821/
ijispm040203.

[2] J. E. Greer, G. Mccalla, J. A. Collins, V. S. Kumar, P. Meagher, J. Vassileva, Supporting Peer
Help and Collaboration in Distributed Workplace Environments, International Journal of
Artificial Intelligence in Education 9 (1998) 159–177. URL: https://hal.science/hal-00588744,
special Issue on Computer Supported Collaborative Learning.

[3] C. Moore, The future of work: What google shows us about the present and future of
online collaboration, TechTrends 60 (2016) 233–244. doi:https://doi.org/10.1007/
s11528-016-0044-5.

[4] Q.-H. Vuong, N. K. Napier, T. M. Ho, V. H. Nguyen, T.-T. Vuong, H. H. Pham, H. K. T. Nguyen,
Effects of work environment and collaboration on research productivity in vietnamese
social sciences: evidence from 2008 to 2017 scopus data, Studies in Higher Education 44
(2019) 2132–2147. doi:https://doi.org/10.1080/03075079.2018.1479845.

[5] A. Hemetsberger, C. Reinhardt, Collective development in open-source communities: An
activity theoretical perspective on successful online collaboration, Organization Studies
30 (2009) 987–1008. doi:https://doi.org/10.1177/0170840609339241.

[6] J. P. Johnson, Collaboration, peer review and open source software, Information Economics
and Policy 18 (2006) 477–497. doi:https://doi.org/10.1016/j.infoecopol.2006.07.
001.

[7] J. Teixeira, T. Lin, Collaboration in the open-source arena: The webkit case, in: Proceedings
of the 52nd ACM Conference on Computers and People Research, Association for Com-
puting Machinery, 2014, p. 121–129. doi:https://doi.org/10.1145/2599990.2600009.

[8] P. Schubert, S. P. Williams, Enterprise collaboration platforms: An empirical study of
technology support for collaborative work, Procedia Computer Science 196 (2022) 305–313.
doi:https://doi.org/10.1016/j.procs.2021.12.018, international Conference on EN-
TERprise Information Systems / ProjMAN - International Conference on Project MANage-
ment / HCist - International Conference on Health and Social Care Information Systems
and Technologies 2021.

[9] C. Burkert, H. Federrath, Towards minimising timestamp usage in application software: A
case study of the mattermost application, in: Data Privacy Management, Cryptocurrencies
and Blockchain Technology: ESORICS 2019 International Workshops, DPM 2019 and CBT
2019, Luxembourg, September 26–27, 2019, Proceedings, Springer-Verlag, 2019, p. 138–155.
doi:https://doi.org/10.1007/978-3-030-31500-9_9.

[10] A. Ćirković, Z. Bogdanović, B. Radenković, Project-based learning with mattermost in
higher education, E-business technologies conference proceedings 3 (2023) 260–264. URL:
https://ebt.rs/journals/index.php/conf-proc/article/view/158.

[11] R. Barde, A. A. Raouf, Evaluating and improving accessibility of web applications: Zulip
chat case study, in: 2021 17th International Computer Engineering Conference (ICENCO),
2021, pp. 112–117. doi:https://doi.org/10.1109/ICENCO49852.2021.9698944.

[12] C. Ihle, F. Deifuß, M. Schubotz, B. Gipp, Towards portable identities in the matrix protocol,

http://dx.doi.org/htpps://doi.org/10.12821/ijispm040203
http://dx.doi.org/htpps://doi.org/10.12821/ijispm040203
https://hal.science/hal-00588744
http://dx.doi.org/https://doi.org/10.1007/s11528-016-0044-5
http://dx.doi.org/https://doi.org/10.1007/s11528-016-0044-5
http://dx.doi.org/https://doi.org/10.1080/03075079.2018.1479845
http://dx.doi.org/https://doi.org/10.1177/0170840609339241
http://dx.doi.org/https://doi.org/10.1016/j.infoecopol.2006.07.001
http://dx.doi.org/https://doi.org/10.1016/j.infoecopol.2006.07.001
http://dx.doi.org/https://doi.org/10.1145/2599990.2600009
http://dx.doi.org/https://doi.org/10.1016/j.procs.2021.12.018
http://dx.doi.org/https://doi.org/10.1007/978-3-030-31500-9_9
https://ebt.rs/journals/index.php/conf-proc/article/view/158
http://dx.doi.org/https://doi.org/10.1109/ICENCO49852.2021.9698944


in: 2022 IEEE 42nd International Conference on Distributed Computing Systems Work-
shops (ICDCSW), 2022, pp. 88–89. doi:https://doi.org/10.1109/ICDCSW56584.2022.
00025.

[13] R. Long, N. Martin, A. Bura, Third room: Decentralized virtual worlds on matrix, in:
Proceedings of the SIGGRAPH Asia 2022 Real-Time Live!, SA ’22, 2023. doi:https://doi.
org/10.1145/3550453.3586015.

[14] K. Ermoshina, F. Musiani, H. Halpin, End-to-end encrypted messaging protocols: An
overview, in: Internet Science, Springer International Publishing, 2016. doi:https://doi.
org/10.1007/978-3-319-45982-0_22.

[15] G. C. Schipper, R. Seelt, N.-A. Le-Khac, Forensic analysis of matrix protocol and riot.im
application, Forensic Science International: Digital Investigation 36 (2021) 301118.
doi:https://doi.org/10.1016/j.fsidi.2021.301118.

[16] mattermostGitHub, Mattermost, 2015. Https://github.com/mattermost.
[17] mattermostSite, Mattermost | secure collaboration for technical teams, 2015. Https://mat-

termost.com.
[18] matrixGitHub, matrix.org, 2014. Https://github.com/matrix-org.
[19] matrixSite, Matrix.org, 2014. Https://matrix.org.
[20] elementGitHub, Element, 2015. Https://github.com/vector-im.
[21] elementSite, Element | secure collaboration and messaging, 2016. Https://element.io.
[22] cinnyGitHub, Cinny, 2021. Https://github.com/cinnyapp.
[23] cinnySite, Cinny | site, 2021. Https://cinny.in.
[24] gitterGitLab, gitter · gitlab, 2012. Https://gitlab.com/gitterHQ.
[25] gitterSite, Gitter — where developers come to talk., 2015. Https://gitter.im.
[26] zulipGitHub, Zulip, 2012. Https://github.com/zulip.
[27] zulipSite, Zulip: Open-source team chat with topic-based threading, 2012.

Https://zulip.com.
[28] twakeGitHub, Linagora, 2020. Https://github.com/linagora.
[29] twakeSite, The open digital workplace | twake, 2020. Https://twake.app.
[30] rocketChatGitHub, Rocket.chat, 2015. Https://github.com/RocketChat.
[31] rocketChatSite, Rocket.chat: Communications platform you can fully trust, 2016.

Https://www.rocket.chat.
[32] cortezaGitHub, Corteza project, 2018. Https://github.com/cortezaproject.
[33] cortezaSite, Corteza - corteza, 2019. Https://cortezaproject.org.
[34] revoltGitHub, Revolt, 2020. Https://github.com/revoltchat.
[35] revoltSite, Revolt - find your community, 2021. Https://revolt.chat.
[36] mattermostDocumentation, Mattermost documentation, 2015. Https://docs.matter-

most.com.
[37] matrixDocumentation, Matrix.org - matrix for instant messaging, 2014. Https://matrix.org/-

docs/chat_basics/matrix-for-im.
[38] elementDocumentation, User guide | get started in element, 2016. Https://element.io/user-

guide.
[39] twakeDocumentation, Twake - twake, 2020. Https://doc.twake.app.
[40] zulipDocumentation, Overview — zulip 8.0-dev+git documentation, 2012.

Https://zulip.readthedocs.io/en/latest/overview.

http://dx.doi.org/https://doi.org/10.1109/ICDCSW56584.2022.00025
http://dx.doi.org/https://doi.org/10.1109/ICDCSW56584.2022.00025
http://dx.doi.org/https://doi.org/10.1145/3550453.3586015
http://dx.doi.org/https://doi.org/10.1145/3550453.3586015
http://dx.doi.org/https://doi.org/10.1007/978-3-319-45982-0_22
http://dx.doi.org/https://doi.org/10.1007/978-3-319-45982-0_22
http://dx.doi.org/https://doi.org/10.1016/j.fsidi.2021.301118


[41] rocketChatDocumentation, Rocket.chat - rocket.chat docs, 2016. Https://docs.rocket.chat.
[42] cortezaDocumentation, Corteza :: Corteza docs, 2019. Https://docs.cortezapro-

ject.org/corteza-docs/2023.3.
[43] revoltDocumentation, Introduction | revolt, 2021. Https://developers.revolt.chat.
[44] V. Kupfersberger, T. Schaberreiter, C. Wills, G. Quirchmayr, J. Röning, Applying soft

systems methodology to complex problem situations in critical infrastructures: The cs-
aware case study, International Journal on Advances in Security 11 (2018) 191–200. URL:
http://eprints.cs.univie.ac.at/5904/.

http://eprints.cs.univie.ac.at/5904/

	1 Introduction
	2 Related Works
	3 Platforms Overview
	3.1 Features Summary

	4 Platforms Evaluation
	4.1 Criteria
	4.2 Results
	4.3 Discussion

	5 Use case
	6 Conclusions and Future Works

