
Reinforcement learning for obstacle avoidance application in unity ml-

agents

Reza Mahmoudi
1 and Armantas Ostreika

2

1 Kaunas Technology University (KTU), Kaunas, Lithuania
2 Kaunas Technology University (KTU), Kaunas, Lithuania

Abstract

Progress in the field of artificial intelligence has opened up new avenues for researchers to tackle

previously challenging use cases. One such example is the automation of simulated autonomous

driving, which has long been recognised as a difficult task. However, with advances in reinforcement

learning (RL), researchers have been able to achieve satisfactory outcomes. The Proximal Policy

Optimisation (PPO) algorithm of RL was used to test models on racecar agents in a unity environment,

as described in this paper. The ML agents’ framework within Unity Engine is particularly useful for

experimenting with RL algorithms. Behaviour cloning is a commonly used technique in the field of

machine learning which involves training a model using demonstrations by an expert. This method has

been widely employed in various domains such as robotics, autonomous driving, and gaming, and

generative adversarial imitation learning, also known as Gail, is a type of Reinforcement Learning

technique used to learn policies from demonstration data in situations where the distribution of actions

is unknown. Gail utilises a generator and discriminator network that work together to learn a policy that

can imitate the behaviour of an expert. Training agents to comprehend their surroundings and overcome

obstacles was accomplished by utilising both behaviour cloning and Gail techniques. In the experiment,

various obstacles were introduced into the environment and the combination of behavioral cloning as a

pre-training technique and Generative Adversarial Imitation Learning (GAIL) were utilized to train for

navigating around these obstacles. The optimal model achieved a cumulative reward of -1.619 and a

value loss of 0.019 using the aforementioned behaviour cloning method with the use of the PPO

algorithm.

Keywords 1
Reinforcement-Learning, Autonomous driving, ML-Agents

1. Introduction

The technique as Reinforcement Learning (RL) has gained popularity in the realm of game artificial

intelligence (AI), as it involves agents learning how to play games by means of repeated

experimentation and learning from their mistakes [1]. Furthermore, Reinforcement Learning (RL)

techniques are significant in the realm of autonomous driving, as they can facilitate the creation of self-

driving systems that are capable of making decisions in intricate and unpredictable environments,

including scenarios such as navigating environment or avoiding obstacles on environment [2]. Policy

Gradient methods are a group of reinforcement learning algorithms that aim to acquire a policy function

that maps states to actions. Proximal Policy Optimization (PPO) is a distinct policy gradient method

that incorporates a surrogate objective function that restricts the update step of the policy. This

constraint ensures that the updated policy does not deviate excessively from the previous policy,

preventing instability issues during the learning process [3]. In this paper, we use ML-agents toolkits

that technique utilizes reinforcement learning methodology to aid developers in training their created

game through ML implementation. By doing so, the trained model can replicate the entire process,

allowing for a comparison of differences. [4] especially the PPO algorithm for training kart agents to

28th Conference on Information Society and University Studies (IVUS’2023), May 12, 2023, Kaunas, Lithuania

EMAIL: reza.mahmoudi@ktu.edu (R. Mahmoudi); armantas.ostreika@ktu.lt (A. Ostreika).

ORCID: 0000-0001-7451-4387 (A. 1); 0000-0001-5718-3766 (A. 2).

©️ 2023 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

navigate the environment and avoid obstacles with Behaviour Cloning that is capable of learning

directly from a vast number of human-driven vehicles without the need for a fixed ontology or

additional manually labelled data [5] and Gail is frequently employed for imitation learning. This

algorithm uses positive demonstrations as a means of mimicking the actions of an expert [6].

2. Materials and Methods

2.1. Reinforcement Learning for Kart Agents

In the context of Reinforcement Learning (RL), an agent learns how to make decisions through

interaction with an environment with the aim of maximizing cumulative reward over time. A specific

application of this is in autonomous cart racing, where multiple agents, represented by autonomous

carts, navigate a track while competing each other at the finish line as quickly as possible. The RL

algorithm utilizes the Bellman equation to approximate the value of a state-action pair, denoted as

Q(s,a), which represents the expected cumulative reward achieved by taking action a in state s and

fallowing the optimal policy subsequently. The Q-value is iteratively updated during the training

process according to the given formula [7].

𝑄(𝑠, 𝑎) < −𝑄(𝑠, 𝑎) + 𝑎𝑙𝑝ℎ𝑎 × (𝑟 + 𝑔𝑎𝑚𝑚𝑎 × max 𝑄(𝑠′. 𝑎′) − 𝑄(𝑠. 𝑎))

2.1.1. RL Sequence Diagram

The sequence diagram in Figure 1 depicts how reinforcement learning agents are given Action A(t)

by the environment, receive Reward R(t) from the environment for each action taken, and obtain State

S(t) for the current scenario.

Figure 1: RL Sequence Diagram

2.2. Environment

The simulation was created using the Unity game engine. For the project’s experiments, a publicly

available environment called “unity-ai-racing-karts-ml-agents” was utilized. This environment

comprises 24 car racing tracks and a racing environment. All agents were trained independently. Figure

2 shows the environment.

Environment

RL Agents

Action A(t)
Reward R(t)

State S(t)

Figure 2: Representation of Unity Environment

In Figure 3, you can observe 24 Kart agents, and using two different methods were utilized to train

the agents in our experiments. The first approach involved using ml-agents to control the agents. The

second approach was based on “Behavior cloning and Gail” in the behavior type, which utilized the

demonstration [8] option available in the Unity game engine.

Figure 3: Kart Agents for training

For our experiment, we added random obstacles to train our agents with the demonstration model,

which taught them how to navigate the environment and avoid obstacles. The obstacles can be observed

in Figure 4 below.

Figure 4: Add some Obstacles

3. Algorithm

3.1. PPO Algorithm

In the ml-agents framework, the PPO algorithm involves several steps such as updating the policy

and value networks and using the updated policy to control the agent’s behavior in the environment. To

ensure the stability and convergence of policy updates, the algorithm uses GAE [9]. Additionally, to

avoid large changes that could hinder the learning process, the clipping parameter restricts the size of

pf updates. You can see the PPO pseudo code with ML-Agents below.

PPO Pseudo code

PPO with ML-Agents

Initialize policy network with random weights 𝜃

Initialize value network with random weights 𝜙

Set learning rate α and clipping parameter ϵ

Set number of training iterations T

for t = 1 to T do:

 Collect batch of experiences using current policy 𝜋𝜃

 Compute advantages A using GAE

 Compute target values V using bootstrapped returns

 Train value network to minimize MSE loss between V and

predicted values

 Compute the surrogate objective L_clip using the current

policy 𝜋𝜃 and advantages A

 Compute gradients ∇L_clip w.r.t. policy parameters 𝜃

 Clip gradients to avoid large changes

 Update policy using clipped gradients and learning rate α

 Update the environment with the updated policy

end for

1. Initialize policy network with random weights 𝜃: A neural network is created with random

weights to represent the policy, which is the function that maps observations to actions.

2. Initialize value network with random weights 𝜙: Another neural network with random weights

is created to represent the value function, which is the function that estimates the expected total

reward from a given state.

3. Set learning rate α and clipping parameter ϵ: The learning rate determines how much the model

weights are adjusted with each update, and the clipping parameter limits the size of the parameter

updates to prevent too much change at once.

4. Set number of training iterations T: This sets the number of times the algorithm will repeat the

training process.

5. Collect batch of experiences using current policy 𝜋𝜃: The agent interacts with the environment

to collect a batch of experiences (state, action, reward, next state) using the current policy 𝜋𝜃.

6. Compute advantages A using GAE: The Generalized Advantage Estimation (GAE) method is

used to calculate an estimate of the advantage of each action taken by the policy, which reflects

how much better the action was than expected.

7. Compute target values V using bootstrapped returns: The bootstrapped return is an estimate of

the expected future reward from a given state and is used to compute a target value for each

state-action pair.

8. Train value network to minimize MSE loss between V and predicted values: The value network

is trained to minimize the Mean Squared Error (MSE) loss between the predicted values and the

target values.

9. Compute the surrogate objective L_clip using current policy 𝜋𝜃 and advantages A: The

surrogate objective is used to estimate how much the policy should be updated, and is computed

using the advantages and the current policy 𝜋𝜃.

10. Compute gradients ∇L_clip w.r.t. policy parameters 𝜃: The gradients of the surrogate objective

with respect to the policy parameters 𝜃 are computed using backpropagation.

11. Clip gradients to avoid large changes: The gradients are clipped to limit their size and prevent

the policy from changing too much at once.

12. Update policy using clipped gradients and learning rate α: The policy is updated using clipped

gradients and the learning rate, which adjusts the policy to improve its performance.

13. Update the environment with the updated policy: The agent interacts with the environment using

the updated policy to collect new experiences, and the process is repeated for a set number of

iterations.

3.2. Behavior Types

3.2.1. Behavior Cloning

Behavior cloning refers to the process of teaching a neural network to replicate the driving actions

of an experienced driver. To achieve this, a dataset of such driving behaviors is used to train the network,

which is then used to predict driving actions based on real-time sensor data from the autonomous

vehicle. The network is continuously improved over time by gathering new data and refining its

training. We have obtained the best result from the behaviour cloning method. In the context of playing

a game, observations of the game are represented as s ∈ S and actions as a ∈ A. There is no consideration

for time, rewards, or terminal/initial states. Behavioral cloning involves the task of learning the

probability distribution p(a|s) of actions taken by human players in a given state s, based on dataset D

of tuples (s, a). After learning this distribution, the agent can play the game by selecting an action a ∼

p(a|s) for a given state [10].

3.2.2. Generative Adversarial Imitation Learning (Gail)

Imitation Learning is a technique that focuses on training agents to replicate expert behaviors based on

demonstrations. To achieve this, the problem is modelled as a Markov Decision Process (MDP) and a

policy π(a|s) is learnt from the state action trajectories τ = (s0, a0, · · · , sT) of the expert behaviour. A

more recent approach to imitation learning is Generative Adversarial Imitation Learning (GAIL), which

is designed to handle complex, high-dimensional physics-based control tasks. GAIL involves using

Generative Adversarial Networks (GANs) to create an adversarial learning framework. The generator

network of the GAN represents the agent's policy π, while the discriminator network serves as a local

reward function and learns to differentiate between state-action pairs from the expert policy πE and the

agent's policy π. This can be expressed mathematically as an optimization problem. [11]

min 𝜋 max 𝐷 𝐸𝜋[log 𝐷(𝑠, 𝑎)] + 𝐸𝜋𝐸[1 − log 𝐷(𝑠, 𝑎)] − λ(π)

4. Result and Experiment

4.1. Testing with Behavior Cloning and Gail

Using Tensorboard, the experiments involved training agents to navigate obstacles using

hyperparameters of the PPO algorithm, and utilizing behavior cloning and the Gail model with

demonstration. We have obtained our results by comparing them with those obtained in 5 million steps.

In figure 5, we have observed value rewards of -1.619 and -2.092 for Behavior Cloning (green line) and

Gail (blue line), respectively. By employing behavioral cloning as a preliminary training phase, the

agents were capable of acquiring the intended behavior, and our outcomes were promising in contrast

to the Gail approach. Figure 6 shows a loss value of 0.0192. The performance of the agents in the Gail

experiment was unsatisfactory since they faced difficulty in navigating the track, failed to evade

obstacles, and did not achieve favorable rewards or value losses. Figure 7 illustrates that the Gail value

loss had a value of 0.090.

Figure 5: Comparing Reward Value Figure 6: Behavior Cloning Loss Value

Figure 7: Gail Loss Value

Total Steps

C
u

m
u

la
ti

v
e

R
ew

ar
d

L
o
ss

 V
al

u
e

Total Steps

Table 1 displays the utilization of distinct hyperparameters for the behavior cloning and Gail methods,

despite employing the same PPO configuration.

Table1: ML-Agent’s Hyperparameter

PPO Behavior Cloning Gail

batch_size: 120

buffer_size: 12000

slearning_rate: 0.0003

beta: 0.01

epsilon: 0.2

lambd: 0.95

num_epoch: 3

learning_rate_schedule:linear

network_settings:

normalize: true

hidden_units: 256

num_layers: 2

vis_encode_type: simple

strength: 5.0

keep_checkpoints: 5

max_steps: 15000000

time_horizon: 1000

summary_freq: 12000

threaded: true

strength: 0.5

gamma: 0.99

network_settings:

normalize: true

hidden_units: 128

num_layers: 2

learning_rate: 3e-4

use_actions: false

use_vail: false

5. Conclusion

 This research study investigates the application of reinforcement learning (RL) algorithms using

the Unity ML-Agents toolkit to train kart agents to navigate a simulated racing track. Various RL

algorithms and configurations were compared to assess their performance in training the kart agents to

traverse the track successfully and avoid obstacles. The study also identifies the optimal approach for

training the kart agents to avoid obstacles on the track with demonstration method especially Behavior

Cloning and Gail. In our result, the agents were trained using behavioral cloning beforehand, and they

successfully learned the desired behavior with comparing the results with the Gail method. Furthermore,

the authors physically inputted a desired behavior and recorded it. The model used behavioral cloning

to achieve acceptable outcomes, where the agents successfully avoided obstacles and finished the

course. These results were compared to those of the Gail model. The behavior cloning had a reward of

-1.619 and a loss of 0.019. The performance of Gail model was not good outcome with -2.092 reward

value and 0.090 loss value respectively.

6. References

[1] K. K. .. Volodymyr Mnih, "Playing Atari with Deep Reinforcement Learning," Arxiv, 2013.

[2] D. D. T. .. Mariusz Bojarski, "End to End Learning for Self-Driving Cars," Arxiv, 2016.

[3] F. W. .. John Schulman, "Proximal Policy Optimization Algorithms," Arxiv, 2017.

[4] A. N. &. M. Biswas, Neural Networks in Unity, Springer, 2018.

[5] E. S. .. Felipe Codevilla, "Exploring the Limitations of Behavior Cloning for Autonomous

Driving," ICCV, 2019.

[6] G. Lee and .. Dohyeong Kim, "MixGAIL: Autonomous Driving Using Demonstrations

with Mixed Qualities," IEEE International Workshop on Intelligent Robots and Systems

(IROS), 2020.

[7] Z. Ruiming and .. Liu Chengju, "End-to-end Control of Kart Agent with Deep

Reinforcement Learning," IEEE International Conference on Robotics and Biomimetics,

2018.

[8] V.-P. B. .. Arthur Juliani, "Unity: A General Platform for Intelligent Agents," Arxiv, 2018.

[9] P. M. .. John Schulman, "High-Dimensional Continuous Control Using Generalized

Advantage Estimation," Arxiv, 2015.

[10] J. P. V. H. Anssi Kanervisto, "Benchmarking End-to-End Behavioural Cloning on Video

Games," Arxiv, 2020.

[11] M. S. .. Arjun Sharma, "Directed-Info GAIL: Learning Hierarchical Policies from

Unsegmented Demonstrations using Directed Information," Arxiv, 2018.

