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Abstract  
The advent of quantum computers makes it possible to perform quantum computations in 

different areas like machine learning, finance, or chemistry. This paper showcases one of the 

emerging areas under quantum machine learning, quantum natural language processing. We 

present two quantum natural language processing tasks, sentiment classification and missing 

word prediction in a sentence. We show how these tasks can be achieved even in real quantum 

computers using the two main libraries in this subfield, DisCoPy, and lambeq. 
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1. Introduction and state of the art 

Quantum physics and quantum mechanics are nowadays two key components of one of the emerging 

areas with major theoretical potential in computation: Quantum Computing. As devised in the 

literature, quantum-computing-based algorithms and procedures like Grover’s search algorithm 

[1] and Shor’s algorithm [2] can outperform existing algorithms and solutions and help to scale 

the existing computational power. Apart from these two typical examples of the potential of 

quantum computing, some other applications in fields like chemistry, finance, or machine 

learning have recently received significant attention from the research community. Moreover, 

some significant results related to these fields exist even with the actual quantum devices, the 

near-term devices. Quantum machine learning (QML), the process of performing machine 

learning tasks using quantum mechanics, is one of the emerging areas nowadays. The 

capabilities of quantum computers could allow machine learning to explore areas that could be 

too hard to do with classical computing. Nowadays, there exist practical implementations of 

QML algorithms, like variable depth quantum circuits (vVQC) [3, 4, 5], hybrid quantum 

autoencoders (HQA) [6], quantum neural networks (QNN) [7, 8, 9] [Figure 1], or hybrid k-

neighbours nearby models (HKNN) [10]. A review of the main QML algorithms and its 

applications between 2017 and 2021 can be found in [11]. A recent subarea of QML is Quantum 

Natural Language Processing (QNLP), which uses NLP models jointly with certain quantum 

phenomena such as superposition, entanglement, and interference to perform language-related 

tasks on quantum hardware. One of the seminal papers about this was written in 2010 by Bob 

Coecke [12], who established the theoretical and mathematical concepts based on a 

grammatical theory based on the algebra of Pregroups, introduced by Jim Lambek [13]. The 

code implementations of this basis are available in DisCoPy and Lambeq libraries [Figure 2]. 
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The first one allows the user to define string diagrams and monoidal functors, and the second 

one provides different tools to transform and manipulate a sentence, for example, convert it 

into string diagrams. 

 
Figure 1: Quantum Neuron Model [7] 

 
Figure 2: Lambeq Pipeline [2] 
 

2. Applications 

Using the two libraries cited in the previous section, DisCoPy [14, 15] and Lambeq [16], we are 

going to present the process to train two different models, one for sentiment classification and one of 

word prediction. 

 

 

2.1. Classification 

The classification task in machine learning is used to differentiate between two categories or labels; 

it can be used in images, e.g., classifying between cats and dogs or, as we do in this paper, 

classifying sentences in positive or negative sentiment. In this section, we start explaining the 

modeling process and, after that, an example of codification, transform, and training. First, the 

input sentence is encoded into a string diagram using a parser, for example, DepCGG or BobCat 

parser [Figure 3]. Second, lambeq allows rewriting the string diagram to reduce complexity, 

simplify it, and improve performance in the future training step. Third, the diagram is 

parameterized, and we convert it into a circuit using an ansatz. Some examples of the ansatzs 

that lambeq provides are SpiderAnsatz [Figure 4], IQPAnsatz [Figure 5], Sim14Ansatz, 

Sim15Ansatz or StronglyEntanglementAnsatz. Fourth, when the parameterisable circuit is 

created, a compatible backend with the model must be defined. For example, we can use a 

quantum backend like the qiskit [17] backend with the TketModel, or we can use classical 

resources (compatible with Jax [18] and GPU) with the PytorchModel. Finally, the trainer has 

different options to personalize and adapt to the model like a typical classical trainer: loss 

functions, epochs, optimizers, hyperparameters, and evaluation functions. 

 



 
Figure 3: String Diagram 
 

 
Figure 4: Spider Ansatz 

 
Figure 5: IQP Ansatz 
 



2.2. Prediction 

The prediction task is used to obtain an unknown value based on the previous historical data. A 

model is trained with prior data and tries to predict the missing data with a certain probability 

percentage. One of the areas that widely use this technology is business intelligence which tries to 

predict the future behavior of the market and make decisions accordingly. In this case, we try to predict 

the missing word from a sentence based on previous data we input into the model. With the DisCoPy 

library, we tried to predict one of the words that can follow up the sentence based on the input. First, 

we select a sentence with a defined grammatical structure. In this case, we defined the structure ’noun’ 

+ ’transitive verb’ + ’noun’, e.g., ’Alice drinks water’ [Figure 6]. Second, we removed the word of the 

sentence we want to predict and replaced it with an unknown value, e.g.,’?’. ’Alice drinks ‘?’ [Figure 

7]. Third, we trained the model with this unknown value and a corpus of words that could be the correct 

answer. When the model is trained, we check if the results are correct [Figure 8]. 

 

 
Figure 6: Prediction Model Input Sentence 

 



Figure 7: Prediction Model Missing Value 

 
Figure 8: Prediction Model Results 
 

3. Conclusions and Future Implementations 

As we cited in the introduction and state-of-the-art section, the conceptual and mathematical basis 

of QNLP had been established in the literature. Based on them, we presented some proof of concepts 

for QNLP classification and prediction models with libraries that implement this basis: DisCoPy and 

lambeq. In this paper, we demonstrate that it is possible to compute classification and prediction tasks 

using quantum computing. Even if the tasks are grammatically simple and this type of task had already 

been resolved by classical computing, there is a solid foundation that will enable us to increase the 

complexity of the tasks in future experiments. On the one hand, regarding the classification task, we 

use a parser to transform the sentences into string diagrams, allowing us to analyze each sentence’s 

grammatical structure. Once this step is complete, we transform this string diagram into an ansatz; this 

step is required to parameterize the object to train a model. Finally, depending on the backend we are 

using to train the model; we select an ansatz compatible with classical or quantum devices. 

On the other hand, the prediction task has the same first step as classification, converting the input 

data, the sentence, into a string diagram that represents the grammatical structure. In this proof of 

concept, we remove one word from the sentence and try to predict it. We can observe that the model 

predicts the correct word but with a low probability (18%). In future implementations of the examples 

presented, for classification tasks, we should increase the complexity of the sentences we use in the 

input data of the models or try to classify more than one sentence by joining them using, for example, 

DisCoCirc [19]. In the prediction field, our primary goal is to increase the accuracy probability of this 

type of task in future experiments to achieve a model comparable to classical models. Also, we can try 

to predict more than one word for each sentence or without the grammatical context of the predicted 

word. The main challenge in this area is to compute and train a model with a complete and larger text, 

which is not already viable due to the number of qubits available in current quantum devices. One of 

the potential strategies to address this problem, in parallel to the evolution of quantum hardware, is the 

development of methods that allow us to encode the grammatical and semantic meaning of the sentence 

using the fewer qubits possible, generating new QNLP procedures and algorithms [20] or following the 

path of research advances in other quantum computing areas [21]. 
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