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Abstract  
Water is an essential resource that is necessary for human life, agriculture, and industry. 

Numerous countries confront water shortages and inefficient water usage. Anomalous water 

usage detection is an important task in the efficient management of water resources and the 

prevention of water leaks. In this publication, we present a comparison between various 

machine learning models to detect unusual patterns in water usage data. All the machine 

learning models were tested on a real-world water usage dataset. The performance of each 

model was evaluated by accuracy, precision, recall, F1-score, ROC AUC, and MAE scores. 

The results indicate that PCA outlier detector can accurately detect uncommon patterns in 

water usage data. Our results outlined in this paper might be utilized by either individual 

homeowners or water utility corporations to detect water leaks more quickly and hence 

minimize water wastage. 
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1. Introduction 

Water is a limited and invaluable resource, which plays a crucial role in supporting every life on the 

Earth. As the population grows and urbanization develops, so will the need for water. With increased 

concerns about water shortage and its wasteful use, proper water management has emerged as a 

significant worldwide challenge.  

According to UNESCO, global water consumption has increased by about 1% per year since the 

1980s, driven by growing populations and changing habits of water consumption [1]. In accordance 

with Burek et al. [2], worldwide water use will likely continue to grow at 1% yearly rate, culminating 

in an increase of 20 to 30% above current levels by 2050. Approximately 2.2 billion people do not have 

access to safe drinking water, roughly 4.2 billion people face acute water scarcity for at least one month 

each year, and around three billion individuals do not have access to basic handwashing facilities [1]. 

In the USA a typical household uses about 138 gallons (~ 522 liters) of water every day, where the 

toilet flush accounts for the majority of this use (24%), followed by faucets (20%), showers (20%), 

clothes washers (16%), leaks (13%), baths (3%), others (3%) and dishwashers (2%) [3]. Even while 

leaks account for just 13% of total home water usage, approximately 1 trillion gallons (3.785 trillion 

liters) of water can be wasted by residential leaks in the United States, with the average household’s 

leaks accounting for nearly 10,000 gallons (~37,854 liters) of water every year [4].   

The “Leaving No One Behind” report highlights the importance of improving water resources 

management and how it is crucial to address various problems, such as poverty, health, food security 

and environmental sustainability [5]. Water leaks are a sign of larger concerns, which come from 

outdated infrastructure, poor maintenance procedures and inefficient water use management [5]. As 

recommended by World Water Assessment Programme (WWAP), optimization of water resource 

management could aid in the prevention of water leaks, which include frequent pipe monitoring, 

maintenance, enhanced metering, and leak identifications systems [5]. 
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Because water resources are limited, we must manage them effectively and responsibly to assure 

that it will be available for our future generations. To enhance water metering and existing water 

management systems, we compare a number of machine learning models to see how they perform under 

different water usage conditions. We begin by presenting relevant research on the topic of water leak 

anomaly detection, then we analyze various machine learning models and select the best one for 

detecting water usage abnormalities. 

2. Related Work 

This interesting yet difficult field, known as anomaly or outlier detection, has been acknowledged 

and thoroughly investigated by a plethora of research over the years. Han et al. [6] scrutinized how, in 

the last two decades, developed anomaly detection algorithms perform with regard to varying levels of 

supervision, different types of abnormalities and noisy and polluted data. Boukerche et al. [7] present a 

taxonomy of newly created outlier identification algorithms and approaches for high-dimensional data, 

data streams, big data, and little labeled data, followed by an overview of benefits and limitations for 

each algorithm. Wang et al. [8] presented a comprehensive and organized review of the progress of 

outlier detection methods. Chandola et al. [9] presented basic anomaly detection techniques, followed 

by an overview of the advantages and disadvantages of each technique. Campos et al. [10] conducted 

an extensive experimental study on the performance of a representative set of standard k-nearest 

neighborhood-based methods for unsupervised outlier detection. 

Various techniques have been developed, which have been applied to a variety of real-life scenarios, 

that include intrusion detection systems, fraud detection, medical anomaly diagnosis, anomaly detection 

in wireless sensor networks and urban traffic flow [7]. One of the real-life scenarios is an anomalous 

water use detection system, which has the main objective of detecting unusual water use. 

It is critical to distinguish between the numerous types of anomaly detection algorithms used to 

identify water leaks. Where physics and predefined expert rules seem appropriate to use, a traditional 

anomaly detection approach might be applied. This strategy, however, may not be appropriate in various 

situations, and labeled data may be difficult to get in this context. Furthermore, because anomalies are 

usually infrequent and unexpected, unsupervised learning algorithms have grown in prominence for 

their ability to detect abnormalities in unlabeled data. Where there is a possibility to obtain some labeled 

data points, semi-supervised techniques are used to train the algorithm, whereas fully supervised 

methods use solely labeled data. Active learning models are another way that uses expert or user input 

to categorize data and enhance algorithm accuracy. To further understand what research has been done 

and how different approaches function, the next paragraph will discuss traditional, unsupervised, semi-

supervised, active learning, and fully supervised anomaly detection algorithms. 

2.1. Traditional Anomaly Detection Methods 

Sarangi [11] presented a technique for detecting water leaks and theft that is based on the concept 

of conservation of mass, which states that mass cannot be generated or destroyed. The author provided 

a solution to stop water theft by installing two sensors, where one of them detects the amount of water 

flow coming into the pipeline, the other one – water leaving the pipeline. If the difference in data 

collected by both sensors exceeds a specified limit defined to minimize false alarms, the microcontroller 

will send an alarm for further investigation of that location. Similarly, if there is a pipeline burst or 

water theft, the difference between the two measurements will be large. 

Moni et al. [12] discussed how their approach could benefit farmers to detect water leaks. For this, 

they collected leak and no-leak vibration data from a pipeline using an accelerometer in three linear 

axes – x, y, and z. The results suggested that the root mean square (RMS) error, which in this case 

represents the difference between the measured vibration data and the expected vibration data for each 

condition, was always smaller when there was a leak. Final evaluation results indicated 87.9% accuracy 

when there was a leak and 96.3% accuracy when there was not. 

Boudhaouia and Wira [13] proposed a general solution for collecting and managing water 

consumption by a non-intrusive approach which works at any measurement point from a water 

distribution system. The suggested approach is based on three parameters: maximum daily load curve, 



minimum night flow (MNF), and a non-null time period calculated from water flow rate (PWNC). 

During nighttime, minimum night flow parameter is used. The algorithm considers the fact that average 

day flow rate is different from zero and night water use must be close to zero, otherwise it is classified 

as a small leak. During daytime, maximum daily load curve and MFN are used. The maximum daily 

load curve reflects a maximum water usage threshold. The detection is performed by comparing the 

current consumption to the specified limit. If the current water usage exceeds or is at the given threshold, 

accordingly a big leakage or risk of leakage is reported. Finally, a period without null consumption 

parameter is defined, which gives an overview of how long the water may run before it is considered a 

leak. Authors claim that their proposed procedure detected all water leakages. 

2.2. Unsupervised Water Anomaly Detection 

Ji et al. [14] compared linear regression, ARIMA and additive regression models using the data of 

Osan City to find the best method for water leak detection. First, authors calculated Watson value for 

the data, which resulted in 2.83E-05. This indicated that the linear regression model was unfit for the 

provided dataset. For this reason, time series model ARIMA and additive regression Prophet models 

were proposed. The ARIMA model resulted in an accuracy rate of 64% with an average MAE for all 

houses of 39,230.88. Fbprophet provided a smaller MAE of 17,635.15 and smaller accuracy rate of 

46% considering yearly trend, and accuracy rate was 65% with slightly higher MAE of 23,566.54 

without considering yearly trend. 

Fuentes and Mauricio [15] presented a smart water consumption measurement system, which 

involves house data collection, analyzation, and leakage alert functionality. Authors explain their 4-

scenario algorithm, which involves negative trend evaluation, last 24-hour consumption evaluation, 

similar consumption evaluation and historical data process. Authors extract historical data into different 

features, apply the k-NN algorithm to obtain a list of the consumptions that are closest to (K = 4) and 

apply Tchebysheff theorem for confidence interval construction. Outstandingly, the algorithm 

demonstrated accuracy, recall, precision, and F1-score as 100%, surpassing the rest of the leak detection 

algorithms. 

Patabendige et al. [16] developed a context aware anomaly detection algorithm that takes the 

relevant context for each day into account, applies the k-NN algorithm together with Gaussian error 

function to transform the outlier score into a probability value. The system also generates an anomaly 

score for each day together with a rationale that describes what could have caused an unusual water use 

and reports it to the user.  

2.3. Semi-supervised Water Anomaly Detection 

Lee et al. [17] built RNN-LSTM (Recurrent Neural Networks-Long Short-Term Memory) deep 

learning model. Authors applied a model on the actual leakage data and the leak was recognized at most 

points immediately after the accident. Also, this model resulted in good performance and showed more 

than 90% accuracy. Authors also mention that the model is highly scalable. 

Pang et al. [17] proposed a deep reinforcement learning-based approach that enables an end-to-end 

optimization of the detection of both labeled and unlabeled data. This approach learns the known 

abnormalities by automatically interacting with an anomaly-biased simulation environment, while 

continuously extending the learned abnormality to novel classes of anomaly by actively exploring 

anomalies in the unlabeled data. The authors demonstrated how experiments on 48 real-world datasets 

proved that their model outperforms state-of-the-art competing methods. 

Blázquez-García et al. [18] proposed a self-supervised water leak detection method based on a self-

supervised classification of flow time series, called Self-Supervised Leak Detector (SSLD). This 

algorithm does not require external class labels and instead uses labels that have been assigned to 

artificially generated data. In the first step of their self-supervised framework, a self-labeled training set 

is generated. Later, the classifier is trained to learn the mapping between input and its corresponding 

label. Authors concluded that proposed SSLD method obtains the best trade-off between detecting the 

majority of the detectable leaks and providing a low FPR. Also, the provided model is purely data-

driven and therefore does not require in-depth knowledge about the dynamics of the series. 



2.4. Active Learning Approach for Water Anomaly Detection 

Numerous authors proposed various active-learning-based algorithms that can interactively query 

user’s response to label data with the desired outputs. Wang et al. [19] proposed an active anomaly 

detection framework Active-MTSAD. Das et al. [20] proposed the Active Anomaly Discovery (AAD) 

algorithm. Zhu and Yang [21] proposed the tripartite active learning method. Vercruyssen et al. [22] 

proposed a novel constrained-clustering-based approach for anomaly detection that works in both 

unsupervised and semi-supervised setting. Active learning approach strategy starts with unsupervised 

learning where most important unlabeled instances are selected and then provided to the expert or user. 

Later, the model gets updated with new labels so it can achieve higher performance. This type of 

learning could adapt to the user’s needs and provide better results. As authors mention, their 

experiments demonstrated how active learning models outperform most methods for domain-specific 

anomaly detection [19]. 

2.5. Supervised Water Anomaly Detection 

Ismail et al. [23] proposed a comparison between four machine learning classification models. First, 

human annotators generated a ground truth dataset for water consumption. Secondly, the data was 

normalized using the z-score. Later, the data was applied to four machine learning models, including 

Decision Tree, k-NN, Naïve Bayes, and Random Forest. Authors concluded that Random Forest 

machine learning model gives the highest overall accuracy of 87%, precision of 75% and recall of 83 

% compared to other three classification models. 

Amora et al. [24] designed a Bidirectional LSTM (BiLSTM) machine learning model and compared 

it with Gated recurrent units (GRU) and Autoregressive models. The suggested method has two iterative 

loops, in which the outer loop optimizes the batch size, number of input time steps, and number of 

output units in each LSTM. Also, Hyperactive library and mean square error are used in this simulation. 

The inner loop of the suggested method updates each weighting element in the BiLSTM using the 

traditional Adam optimizer. According to the results gathered by authors, BiLSTM outperforms the 

GRU and Autoregression models when detecting water leak. 

A supervised learning approach in water anomaly detection most of the time is a challenge due to 

lack of labels. Zese et al. [25] applied several supervised machine learning techniques for the automatic 

detection of leakages. Authors demonstrated how convolutional neural network models were the best 

in detecting both the presence and absence of water leaks. Overall results showed that the model was 

able to classify water leaks with accuracy, precision, recall, F-measure, and AUC ROC ranging from 

92% to 99% [25]. Fan et al. [26] demonstrated how artificial neural networks (ANN) can accurately 

classify leaking versus non-leaking scenarios. However, it requires a balanced dataset under both 

leaking and non-leaking conditions. Nonetheless, authors claim that their model detected leaks in pipes 

with 100% accuracy [26]. 

3. The Data 

In this study, we use SWM (smart water meter) time-series (Trial A) data from the DAIAD Trials, 

which is available on GitHub2, and we also include one of our water use data, which was gathered from 

a smart water sensor in one person’s home. Our water consumption data is also available on GitHub3. 

The DAIAD dataset contains hourly water consumption measurements for ninety-two households 

in Alicante. Each time-series starts at 1/3/2016 and ends at 28/2/2018. On average, there are 7108 

measurements per household, which in total is 653,954 records. The outliers amount to 322 out of the 

total records in the dataset [27]. As they are a typical user behavior and not the water leak, thus any 

prediction as anomalous on the dataset’s outlier would be considered false positive. 

 
2 https://github.com/DAIAD/data/blob/master/swm_trialA_clean.zip 
3 https://github.com/LukaLike/water-consumption-data 
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Our time-series dataset contains minutely measurements, starting on 8/13/2022 and ending at 

3/2/2023. In total, this dataset contains 263,811 records. This dataset has no outlier and any prediction 

as anomalous on this dataset would also be considered false positive. 

4. Methodology 

In this section, we present a comparison of different outlier detection models to see which one is the 

most efficient in detecting anomalous water use. Different scenarios are used to achieve this, and 

important statistical parameters are evaluated. In these experiments we include CBLOF, COPOD, 

ECOD, HBOS, IForest, KNN, LOF, OCSVM, and PCA outlier detector models that are publicly 

available on GitHub platform4. The semi-supervised SSDO model that is used in these experiments is 

also publicly available on the GitHub platform5. 

To extensively analyze various machine learning models for detecting anomalous water use, we first 

prepared the data. This included reading timestamp and consumption values from the datasets. To 

ensure the quality of the data, preprocessing was applied, which included filling missing values and 

ignoring days with no consumption. Afterwards, different leak scenarios were added to the datasets. 

Throughout the data preparation process, we ensured that any modifications made to the dataset were 

performed only on the data that was temporarily stored in memory. This enabled us to maintain the 

original dataset intact for future runs. Subsequently, a feature and label matrix were built.  

Since multiple tests were done, several feature matrices and their sizes were created, including 2, 3, 

or 4-dimensional feature matrices with mean, min, max, or longest non-zero water flowing duration, 

and varying window range sizes. The hourly datasets were separated into 1-, 2-, 3-, 4-, and 6-hour 

window sizes, while the minutely datasets were divided into 1-, 5-, and 10-minute window sizes. In this 

regard, labels matrices were created, which included values indicating whether or not a given window 

range had a water leak. Because none of the datasets had any unusual water use points, only the values 

generated by the water leak function generator were marked as anomalous. Finally, the data was 

separated into training and testing sets and submitted to all outlier detection algorithms. 

In the following sections, we are going to further explain how we prepared the data and scenarios, 

and how we completed the evaluation of the models.  

4.1. Data and Scenarios Preparation 

To evaluate each model, correct and most realistic data must have been used. For this, the following 

process was followed: 

1. In the first step, we prepared the data. This included filling the missing values with zeros and 

removing the days that had not used any water.  

2. Secondly, water leak scenarios were generated and included into the dataset at the program’s 

runtime. Each assessment was performed 5 times and each time new random water leak scenarios 

were included. The model was fit on the first 80% and tested on the last 20% of the data. In the 

training randomly [0; 3], and in the testing data – [1; 3] leak scenarios were included. Each scenario 

had a chance to overlap, contain the same scenarios, and last between 5 and 180 minutes. All of the 

possible scenarios are shown in Table 1. 

 
Table 1 
Water leak scenarios 

Scenario 
Minimum flowing speed 
(ml/min) 

Maximum flowing speed 
(ml/min) 

Dripping pipe 33.1 35.9 
Dripping faucet 539.8 573.2 
Broken mainline 3671.9 3899 

 
4 https://github.com/yzhao062/pyod 
5 https://github.com/Vincent-Vercruyssen/anomatools 
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Flowing faucet 7343.7 7798 
Leaking toilet 15434 16389 
Broken sprinkler 45898.1 48737.2 

4.2. Evaluation 

To evaluate each model’s performance, we calculate accuracy, precision, recall, F1-score, ED-score, 

AUC ROC, and AUC PR values. 

 

Precision  

It is a metric that assesses the proportion of a model’s positive predictions that are actually correct. 

Its definition is the proportion of accurate positive predictions to all positive predictions. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, (1) 

where: 

TP: True Positive, the number of correct positive predictions 

FP: False Positive, the number of incorrect positive predictions 

 

Recall  

It is a metric that assesses how many actual positive instances a model can identify. It is determined 

by dividing the total number of positive occurrences by the proportion of actual positive predictions. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, (2) 

where: 

FN: False Negative, the number of incorrect negative predictions 

 

F1-score 

It is an evaluation metric that is defined as the harmonic mean of the precision P and recall R.  

 

F1 =  
2𝑃𝑅

𝑃 + 𝑅
. (3) 

 

AUC-ROC: Area Under the Receiver Operating Characteristic Curve   

It is a statistic used to assess how well binary classification models perform. The AUC-ROC ranges 

from 0 to 1, with a score of 1 denoting flawless performance and a score of 0.5 denoting no improvement 

over a random guessing. 

 

AUC-PR: Area Under the Precision-Recall Curve  

It is also a metric used to assess how well binary classification models perform. The AUC-PR 

concentrates on the model’s precision and recall rather than the true positive and false positive rate, like 

AUC-ROC does. At various levels, it calculates the precision and recall trade-off. The AUC-PR scales 

from 0 to 1, with a score of 1 denoting perfect performance and a score of 0.5 denoting no better than a 

random guessing. 

 

ED-score: Early Detection score 

It is a score that rewards detections that are close to the fault start time 𝑡𝑓, with the reward decreasing 

as the detection moves further away. The detection time is defined as the earliest time step within the 

fault window duration at which the algorithm registered a detection. In our tests, as in Vercruyssen’s, a 

successful detection is recorded if the algorithm generates detections that persist for at least 75% of the 

time. The early detection score is calculated by first determining the delay of the first detection in the 

defined fault window, given by 𝑥 = 𝑡𝑑 − 𝑡𝑓, and then applying the following sigmoid function to this 

detection [22]: 



 

σ(x) =  
2

1 +  𝑒
(

𝛼
𝑇𝑤

 ∗ 𝑥)
, (4) 

where: 

σ – value that is defined such that σ(x) ≈ 0, while σ(0) = 1 for any values of 𝛼 < ∞, 

𝑇𝑤 – fault window duration [22]. 

 

In our tests, α was selected as 6. A detection that occurs outside the fault window is not included in 

the score. 

5. Analyzes and Results 

In the following sections, we present machine learning models comparisons in different scenarios, 

which include time windows, contexts, and data dimensions. The default parameter of each evaluation 

strategy is fixed 3 hour, contextual, 1 dimension (mean), non-overlapping window interval. For each 

strategy, only one default parameter will be changed or if stated otherwise. 

5.1. Models Evaluation on Different Time Windows 

During this experiment, we evaluated the performance of the models at different sliding window 

sizes. First, the models were tested using DAIAD data (in hourly frames) with a window width of 3 

hours and a sliding window size of 1, 2, 3, 4, and 6 hours, respectively. The models were then tested 

using data from the system’s developer (in minute frames) with a window width of 3 hours and a sliding 

window size of 1, 5, and 10 minutes, respectively. In the graphs, the x axis indicates the size of the 

sliding window, and the y axis indicates the model’s performance for the specified criterion. 

 

Comparison of the models in different hourly time frames 

 

 
Figure 1: Comparison of models in different hourly frames 



The experiment with different hourly frames showed that the precision decreased 2 times as the 

sliding window decreased from 6h to 1h, but the recall remained the same in most of the models. Also 

looking at the ED-score, most models performed poorly in terms of early detection of water leakage 

with a 1h rolling window. The semi-supervised SSDO model was able to perform better than most of 

the unsupervised machine learning models. 

 

Comparison of the models in different minutely time frames 

 

 

The experiment with different minute frames showed that decreasing the size of the rolling window 

from 10 minutes to 5 minutes improved accuracy and recall much more than changing the window size 

from 5 minutes to 1 minute. The partially trained SSDO model was not able to provide better accuracy 

compared to the unsupervised models but provided in the best recall values. 

5.2. Models Evaluation on Different Context 

During this experiment, we tested the performance of the models in different contexts. In the graph, 

not contextual data indicates that for training and testing, all data (from Monday to Sunday) was taken, 

while contextual data indicates that during different testing stages working days (from Monday to 

Friday) and weekend days (Saturday and Sunday) were taken, and the resulting estimates were summed 

and divided by two.  

The graphs on the x axis indicate whether the result is contextual or not, and on the y axis is displayed 

model’s performance for the specified criterion. 

 

Figure 2: Comparison of models in different minutely frames 



 

This experiment showed that the use of contextual data reduces the precision and improves the recall 

only marginally. However, when using non-contextual data, most models were able to detect water 

leakage much faster than when using contextual data. 

5.3. Models Evaluation on Different Data Dimensions 

During this experiment, we evaluated the performance of the models on different data dimensions. 

In the graphs, the dimensions marked on the x axis are expressed as follows: 

 

• One dimension includes the mean of the data. 

• Two dimensions include the mean of the data and the longest water running period (in minutes). 

• Three dimensions include the average of the data, the minimum and the maximum water 

consumption over a three-hour period. 

• Four dimensions include the third dimension plus the longest water running period (in minutes). 

 

On the y axis the performance of the model is displayed for the specified criterion. 

Figure 3: Comparison of models in different contexts 



 

The experiment on different data dimensions showed that using two dimensions (average and longest 

water running period) gives the best overall results – the models were able to provide the best precision, 

recall and also provide the fastest water leakage detection rate. 

6. Conclusion 

In this work, we compared unsupervised CBLOF, COPOD, ECOD, HBOS, IForest, KNN, LOF, 

OCSVM, PCA and semi-supervised SSDO outlier detectors on water usage data and how they perform 

in detecting anomalous water usage. Experiments performed in different minute frames showed that 

when the system collects water consumption data every minute, all models perform much better with a 

smaller sliding window size, both in terms of precision and recall estimates. The results thus suggest 

that using the PCA outlier detector with a minute sliding window will be able to detect water leakage 

approximately 78% of the time, as well as to detect the onset of anomalous water use very quickly in 

order to stop unwanted consequences in time. Experiments performed at different levels of context 

showed that the difference between contextual and non-contextual data is not incredibly significant, but 

in most cases the models were able to detect leakage much faster using non-contextual data. 

Experiments performed using different dimension values indicated that using two dimensions (average 

water consumption and longest water running period) models were able to give the best results, and 

overall, the PCA model produced the best outcome, being able to detect water leakage 95% of the time 

and efficiently identify the start of the anomaly. 
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