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Abstract

Respiratory rate monitoring is crucial for many diseases, correlated or not with the lungs, like chronic
bronchitis and obstructive apnea, and it is central for the study of sleep stages. Notably for sleep-
related diseases, it is important to develop a non-intrusive method to monitor the respiratory rate.
This single-subject study investigates the feasibility of using a pressure-sensor mattress to avoid cables
and discomfort, for both the patient and the staff, typical of other devices. A pressure-sensor mattress
generates a 2D matrix of pressure signals: in this work, those signals are analysed by a processing pipeline
to detect the best signal in the matrix. The aim is to find the best signal to exploit for measuring the
respiratory rate. Criteria have been identified, resulting in a metric to order the signals. The respiratory
rate is then determined by another processing pipeline acting on the stream from this specific sensor.
Many complications made the data gathered from all but one subject unusable: nevertheless, the results
show that the approach is effective and the respiratory rate can reliably be measured with a commercial
pressure-sensor mattress.
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1. Introduction

The main physiological process that our body performs is respiration, namely the output of
carbon dioxide (COz), and the input of oxygen (O3). This process can be divided into two main
phases: the external phase, which consists of the exchange of gases with the environment, i.e.,
the transfer of gases across the blood-gas barrier, and the internal phase, which begins from
the loading of oxygen onto the haemoglobin molecule and is followed by the transportation,
delivery, and transfer of O3 to the tissues. COs is delivered back to the lung and ventilated out to
the environment with the reverse process. Normal tidal breathing occurs with the synchronous
movement of the thorax and abdomen, this movement can be automatic or can be controlled
voluntarily and it is adjusted based on the activity performed in that moment. In healthy adults
the average respiratory rate at rest is between 12 and 15 breaths per minute [1].
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The monitoring of the respiratory rate is also crucial for sleep studies, as breathing affects
physical and mental wellness. In fact, people spend about one-third of their lifetime sleeping,
and sleeping affects almost every tissue and system in the body, from the brain, heart, and lungs,
to metabolism, immune function, mood, and disease resistance. During sleep, two different
types of investigation related to respiration can be conducted, based on the objective of the study
and/or the illness of the patient: sleep stages and breath-related disorders. The sleep cycle of a
person is divided into two phases: Non-Rapid Eye Movement (NREM) and Rapid Eye Movement
(REM); this second phase is further divided into three other stages (N1-N3). Different muscle
tones, brain wave patterns, eye movements, heart and breathing rate alterations characterise
every phase and stage. REM sleep is characterised by brain activity near to awakeness level,
while the body experiences atonia, which is a temporary paralysis of the muscles, with two
exceptions: the eyes and the muscles that control breathing. The respiratory rate is quite stable
in the NREM phase, and increases during the REM phase, therefore allowing to detect at which
sleep stage a person is just by focusing on the respiratory rate [2]. For breath-related disorders,
respiratory rate monitoring is also crucial: it is the way to detect sleep apnoea/hypopnoea
syndrome (SAS) [3], where the individuals experience a collapse of the airway in deeper sleep
states or sleep-related hypoventilation/hypoxia; the ability to monitor respiration rate allows
for a faster intervention in severe cases.

Currently, the state-of-the-art in sleep monitoring technology is polysomnography [4], which
involves recording sleep stages, respiratory and heart rate, and other parameters. However,
this procedure is time-consuming, complicated, expensive, and invasive besides being often
unavailable in hospitals. The aim of this study is to investigate a device to monitor the respiratory
rate without causing discomfort to the patient and obstructing intervention from the hospital
staff. Nowadays, it is possible to achieve this goal using different unobtrusive methods, such
as radar technology [5]. The limitation of the radar-based approach lies in the fact that the
presence of another person in the room, in a hospital condition, e.g., a nurse or a doctor, or
even the presence of fans, could be a source of noise for the radar, which could lead to incorrect
predictions; radars can also be disturbed by the movement of the patient [6]. Another possibility
is to use video cameras, also equipped with infrared filters [7]; though this approach seems
promising, it has strong privacy concerns. It is also possible to rely on smartwatches, like
Garmin [8], which can estimate multiple vital signs with good precision [9], but they need to
be worn all night, which could lead to discomfort for some people. Moreover, these devices do
not allow raw data extraction, and tracking is lost if the batteries run out. Another approach is
under-mattress ballistocardiography-based sensors [10], like Emfit [11]; such devices, in case of
multiple people in the bed, can cover only half bed and a wrong posture can lead to inaccurate
data.

A trend in the field of unobtrusive sensors to track vital signs is the use of bed pressure
sensors as a solution to the concerns of the previous solutions. Today there are different pressure
sensors, based on different technologies like, e.g., piezo-electric, inductive and capacitive. In the
literature we can find pneumatic sensor arrays [12] that can be placed between the mattress
and bed base; micro bend optic fibre sensors mattresses [13], that are small, lightweight and
affordable and also immune to electromagnetic and radio frequency interference, and can be
placed directly under body’s person; air-mattress [14], that measure changes in air pressure
inside single air comportment of an inflatable mattress. A particular type of pressure mattress



available nowadays is the textile pressure sensor mattress, based on piezoelectric sensors. These
mattresses appear like thin mats that can be installed over the standard mattress; this means
that they lead to negligible discomfort. At the same time, they would allow to monitoring
of both physiological and positional data without interfering with the patient’s comfort and,
depending on the density of the sensors, the sampling, and the signal-to-noise ratio, even the
heart rate. In this work, we investigate the use of such sensors.

In Section 2 the paper firstly provides an overall view of the instruments involved and the
data collection conducted, whose data are then analysed using the pipeline described in Section
3; the results are discussed in Section 4. Finally, conclusions are drawn in Section 5.

2. Instrument and Methods

In this study, we used a sensor-pressure mattress from Sensingtex, in combination with the gold
standard for sleep studies, i.e., cardiopulmonary polysomnography, as ground truth. The imple-
mentation of the pipeline here described is publicly available as a Matlab package with source
code (including simulations), documentation, and a tutorial at https://github.com/Aisimetra/
The- Art-e-of-Respiratory-Rate.

2.1. Pressure Sensor Mattress

The SensingTex mattress [15], visible in Figure 1, is a commercially available textile pressure
sensor mattress. The mattress covers the entire area of a bed, measuring 192cm x 94cm, with a
48 x 22 sensor elements matrix, and a sampling rate of 10Hz; the output is given in the range
[0,256]. This device is already installed in a hospital ward at the University of Bern for studying
movement disorders during sleep in patients with Parkinson’s disease. It was made available
thanks to O. Gnarra [16]. This mattress has already been used in the context of the classification
of the posture of the human body during sleep. As shown in Figure 1.b, it is possible to retrieve
the posture of the person by analysing the signal produced by the sensors activated by the body
weight. Looking in the time domain at the signals of each single channel, it is possible to see a
pattern that resembles a breathing rhythm. Furthermore, those signals are similar to the data
that can be retrieved from the nasal pressure exerted on the cannula of the cardiorespiratory
polysomnography. The exploitation of such similarity is the starting point of our study.

Figure 1: (a) : The Sensingtex mattress on a bed (b) : The output when a person is lying on it
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2.2. Cardiopulmonary polysomnography

Cardiopulmonary polysomnography is an accepted method to monitor physiological data during
sleep and to track the breath behaviour of a subject. During this work, we conducted a data
collection, as explained later on, and a ground truth was needed, to validate the estimated respi-
ratory rate. We used a Nox A1 by NoxMedical [17], a wireless and portable polysomnography
device, to record the following physiological parameters: nasal pressure, and nasal flow via
nasal cannula, chest and abdomen movement with Respiratory Inductance Plethysmography
(RIP), output as a single value called RIP Flow, Heart Rate (ECG), SpO; and Pulse with a fingertip
sensor. We decided to use the Resp Rate (respiratory rate) value as ground truth, which is based
on the RIP Flow data. However, we also used nasal pressure and nasal flow to quickly visually
check the output of our pipeline.

2.3. Data Collection

The data collection has been conducted due to the lack of Sensingtex raw data at the time this
work was conducted. The objective was to collect data in order to understand the feasibility of
extracting the breath rate from the mattress, and to study the limits of this instrument. Since
the laboratory had available a rocking bed, used for other studies concerning sleep, this bed
has also been used in the data collection, with the aim of understanding if its movement could
influence the quality of the estimated respiratory rate.

On the basis of the habits of the hosting laboratory, this data collection has been classified as
not requiring the approval of an ethical committee.

The participants involved were 6, half of whom female, between 20-30 years old, students
of the laboratory. Since the data collection has been performed in a laboratory condition, it
has been necessary to force some variations in the respiratory rate, in analogy to the natural
increases and decreases taking place during the night and through the different sleep stages.
Consequently, the participants has been asked to perform some jumps in order to obtain an
increase in breath rate.

The data collection has been conducted as follows: each participant has been asked to perform
5 jumps, and then lie down on a standard mattress covered with the Sensingtex mattress for 4
minutes. They were then asked to stand up, perform other 5 jumps and lie down again on a
different body posture. This has been done for each of the considered postures (supine, left side,
prone, and right side) with 20 total jumps performed and a total recording time of 18 minutes,
including the time required for getting in and out of the bed and jumping. The recording
performed on the moving bed didn’t involve the jumps, in order to have less variability in the
breath patterns and to check for possible interferences due to the movement of the bed. The
total length of the data collection for each participant is therefore 36 minutes, divided into 4
minutes intervals for each of the 4 positions with the normal and the rocking bed.

After the data collection, it was necessary to clean the data in order to remove the moment
when the participant was getting in and out of bed. For each recording, based on different data
extracted from the polysomnography and the pressure mattress, it has been possible to retrieve
when the person stands up to perform the jumps or to turn around in another position. In
the end, for each participant, there are eight different 4-minute long recordings, one for each



position of the different postures.

However, only the data from a single subject turned out to be usable, due to different problems
that occurred during the data collection. Examples of such problems are: the disconnection of a
whole line of the sensing elements matrix, the breaking of a connector, the absence of a power
supply, the corruption of the software executable on the disk of the computer handling the
collection, the stop of the polysomnography because of defects with its batteries, interruption
of the electrical contact with the body of the cardio-electrodes of the polysomnography device,
etc.

3. Processing pipeline

Each sensing element of the mattress is positioned under a different point of the body, therefore
their perception of the pressure variations exerted by the body during breathing is different. We
then need a metric to discriminate the one(s) from which it is possible to estimate the respiratory
rate. Our objective with this metric is to use it as a confidence about the quality of the signal in
order to use it for the task.

This metric will rely on a few criteria, which each signal has to satisfy to a certain degree,
in order to give out a large confidence. Each criterion, which will be explained in the next
paragraphs, has been implemented in two variants: “binary”, i.e., it can be passed or not passed
(1 passed, 0 not passed), and “weighted”, where the percentage of the duration of the recording
that could contain valuable information is given out. Those versions have been designed to take
into account the possible presence of phenomena deteriorating the signal, which on one hand
could make it completely unusable or might just make unusable some parts of the recording.
The choice between the two versions can be taken at the beginning of the pipeline. In both
cases, the final metric is simply the mean of the values of each criterion.

In order to have a quasi-realtime analysis of the data we take in input a sliding window of
60 seconds, moving it through the 4mins recording in steps of 10s. Each 60s window for each
signal is analysed and is given a certain confidence, or even discarded by the Excluding Criteria
(described in the following paragraph 3.1), at the subsequent iteration all the signals are again
taken into account. Figure 2 shows a 4mins recording, highlighted is the first 60s window.
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Figure 2: A 4mins nasal pressure record, the black box is the first 60s moving window.



3.1. Excluding criteria

The first set of criteria, explained in this paragraph, is referred to as “Excluding Criteria”. Those
criteria aim to exclude all the mattress signals that cannot contain valuable information. When
the signals are stationary in value, have a small amplitude, or present only interference from
the other sensors of the mattress, for the entire window length, there are excluded. Since these
problems could take place only in part of the window, the value of the metric is different for the
binary and the weighted approach.
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Figure 3: Pipeline scheme.

Stationary window

As a person’s body cannot cover the entire mattress, not all sensing elements (hereafter referred
to as “channels®) are active. Such channels are most of the time stationary. Stationary signals are
those that keep the same value for the entire length of the window. If the window shows only a
part being stationary, the length of this part is used for the criterion, i.e., the percentage of the
window taken by the part. For the weighted approach, the metric value will be the percentage of
the non-stationary portion. For the binary approach, the criterion will take the 1 value (passed)
if the non-stationary part is longer than 20% of the window duration.

Window with small amplitude

Several channels present a signal with a small amplitude. Those channels were likely detecting
interference from the nearby channels or just detecting partially the body movement. Since they
cannot help in estimating the respiratory rate, they are excluded. If the window shows only
a part being a small amplitude, we will assign a percentage to the criterion, For the weighted



approach it will be the percentage with a non-small amplitude. For the binary approach, it will
take the 1 value if the small amplitude duration is less than 20% of the window duration.

Window with spikes

The mattress can produce spike artefacts, which could also be present in channels that would
allow the detection of the respiratory pattern, as highlighted in Figure 4. After evaluating
different thresholds for the spike detection, both in intensity and duration, we decided to accept
channels where the overall duration of the spikes in the window is below 30%. In such cases,
both the binary and the weighted approach take the same output: 100% or 1 when the criterion
is passed, 0% or 0 otherwise.
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Figure 4: Raw Data - Channel 404 - Low presence of spikes

Denoising

To estimate the number of breaths we have tried to detect the moment between inhalation and
exhalation, which turns in a peak in the pressure signal. After the aforementioned analysis, the
number of usable channels/windows decreases drastically, and those that could contain valuable
information, altogether with the confidence measure, are obtained. Nevertheless, most of the
signals are still noisy. Given the frequency of breathing w.r.t. the sampling of the pressure, we
can increase the signal-to-noise ratio by low-passing the signals. An analysis of the literature
showed that the most used filtering approaches are “multiresolution analysis of the maximal
overlap discrete wavelet transform”, and the “Savitzky-Golay filter” [18, 13, 19, 20, 21].

Multiresolution Overlap Discrete Wavelet Transform and Savitzky-Golay filter

The Multiresolution Overlap Discrete Wavelet Transform (hereafter also referred to as
"MODWTMRA") is a technique based on wavelet analysis that transforms the original signal
into a time-frequency domain to analyse it. The transform decomposes the signal in components
that produce the original signal when added back together. We chose the Daubechies wavelet
with two vanishing moments to represent the breath signal, as done in the literature. The raw
data is decomposed into 13 levels, and to obtain the denoised signal we sum only a subset of
these (the best results were obtained using the 9" and 10" levels), where the peaks could be
easily counted.

Another approach frequently used in the literature is the Savitzky-Golay filter. It is used to
smooth a noisy signal whose frequency span (without noise) is significant. The filters in this



family are called digital smoothing polynomial or least-squares smoothing filters. Savitzky-
Golay filters based on least-square fitting an nt"-order polynomial through the values in the
window and taking the central point of the fitted polynomial as the new smoothed data point.
For the filter, we choose a 9" order polynomial, which gives an outcome similar to the one
from the MODWTMRA filter.

3.2. Subsequent analyses of the filtered signal

The signals resulting from the application of the MODWTMRA or the Savitzky—Golay filters are
then analysed, based on physiological information. The following criteria have been considered,
as pass / no-pass. Therefore, for the weighted approach, a 100% was considered in case of a
pass, and a 0% otherwise.

Respiratory rate lower than a threshold

A maximum value for the respiratory rate has been imposed, given the human physiology. The
threshold is set at 30rpm because a larger than 20 value is predictive of cardiopulmonary arrest
within 72 hours and death within 30 days [22], while a value greater than 27 is predictive of
cardiopulmonary arrest within 72 hours [23]. The threshold is slightly larger to account for the
errors in the reconstruction of the signal. The windows with a value larger than 30 are given a
confidence of 0%.

Distance between maxima and minima

The resulting signals are given in input to a peak finder, to determine the moment between
inhaling and exhaling, which is a maximum and is counted as a breath. Since the window is
60s long, the number of maxima in a window is the respiration rate, i.e., the breathing acts per
minute.

Also, the minima are detected and used for computing the distance in the x — y plane, see
Figure 5, between the minimum and the subsequent maximum value of the pressure during
the inhaling act. A similar distance is computed between the maximum and the subsequent
minimum, corresponding to the reduction in pressure during the consecutive exhaling act. For
each breathing act, these two distances have to differ by less than the £20%. In such a case the
signal is considered meaningful and given a 100% confidence if all breathing acts satisfy this
constraint.
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Figure 5: The distances minimum-maximum in inhaling, in dashed blu lines; dashed red lines are the
distances maximum-minimum in exhaling.



Length of breath

The maxima and minima are used also for computing the duration of the inhaling and exhaling
phases. The difference between the two should not vary, for each breathing act more than +20%
w.r.t. the previous breath. In such a case the signal is considered meaningful and given a 100%
confidence.

3.3. Computation of the respiratory rate

In order to compute the respiratory rate, we consider the channels with a confidence higher
than a threshold, e.g., 80%. The respiratory rate is computed as the average of the respiratory
rates from all these channels. As our analysis is repeated on every window, we can give out an
estimate of the respiratory rate at 0.1Hz.

4. Results

The respiratory rate has been computed for each posture (supine, left side, prone, right side)
with both approaches (binary and weighted) on the available data. The results are evaluated
w.r.t. the number of breaths per minute given by the ground truth. The evaluation metrics are:
Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE). The results have
also been evaluated visually, with Bland-Altman plots, Figure 6, typically used to visualize the
difference in measurements between two different instruments or two different measurement
techniques. The x-axis of the plot displays the average measurement of the two instruments
and the y-axis displays the difference between the two instruments. In the plot also 3 lines are
shown, the central black one represents the average difference in measurements between the
two instruments, also known as “bias” between the two measurements. The red dotted lines are
the limits of the agreement (confidence interval), defined as the mean difference £1.96 standard
deviation of the difference.

Difference between estimated and real rpm
-
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Figure 6: Bland-Altman plot of the estimated respiratory rate w.r.t. to the ground truth, Normal bed,
supine posture, Savitzky-Golay filter

The output of the pipeline is shown in the heatmap in Figure 7, where the channels with the
highest confidence value are coloured red and those with the lower values are coloured green



up to blue when the channels have the 0% of confidence in representing a respiratory pattern.
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Figure 7: Heatmap of the channels with the highest confidence.

The results for the Savitzky-Golay filter are reported in Table 1 and for MODWTMRA in
Table 2. The denoise method has been applied for the binary and the weighted approaches, and
for each posture of the participant. The table also shows the results for the same user on the
rocking bed, to test whether the motion of the rocking bed could influence the signals from the
mattress. Even if the bed is designed to have an inaudible rocking mechanism, it is reasonable
to expect that the movement could influence the data acquisition. The raw data visually present
noise, but not significantly more than the signals from the normal bed.

It appears that the binary and the weighted methods perform similarly. We believe that this
is due to the percentage of confidence set, which did not result restrictive enough. The posture
of the participant appears decisive, as in the prone posture the error increases particularly, and
the supine results in the minimum error. It might depend on the motion of the chest, which may
be less intense in the prone posture. Furthermore, the results show that the error is influenced
mostly by the chosen filtering approach rather than the bed. Actually, the Savitzky-Golay filter
shows a lower error, compared to the wavelet approach. Focusing on the MAPE metric, it is
10% lower in most of the postures and both beds. The average error for the Savitzky—-Golay
filter is 1.6 breaths with the exception of the prone posture for the stationary bed, which shows
an error of 3.3 breaths. MODWTMRA, instead, shows up to 4.2 breaths of error in the case of a
prone posture with the rocking bed and has an average error of 2.6 breaths.

5. Conclusions

In this work, we investigated the possibility of estimating a patient’s respiratory rate using
a commercial sensor pressure mattress. The signals from the mattress show that it could be
possible to compute the respiratory pattern. In the course of the data collection we, unfortunately,
suffered various problems with the instruments and most of the data had to be discarded resulting
in the possibility of analysing and testing the pipeline on just a single subject. The pipeline has



Supine St. Supine Rk. Prone St. Prone Rk.
Metric Binary Weighed Binary = Weighed Binary = Weighed Binary = Weighed
rpm mean  12.389 12.360 13.907 13.915 14.1734 12.1734 14.1829 14.1820
MAE rpm  1.0796 1.1422 1.8091 1.8171 3.3532 3.3532 1.9835 1.9825
MAPE (%) 9.779% 9.279% 15.538%  15.601%  31.914%  31.914% 17.895%  17.888%
Left St. Left Rk. Right St. Right Rk.
Metric Binary Weighed Binary = Weighed Binary = Weighed Binary = Weighed
rpm mean  13.503 13.401 13.907 13.915 14.523 14.433 14.645 14.613
MAE rpm 1.392 1.359 1.423 1.459 1.821 1.759 2.237 2.2046
MAPE (%) 11.83% 11.56% 11.675% 11.944% 14934% 14.407%  18.544%  18.281%
Table 1

Results for Savitzky—Golay filter in: supine and prone (top table) left and right (bottom table) in the two

different settings: Normal bed (St.) and Rocking bed (Rk.)

Supine St. Supine Rk. Prone St. Prone Rk.
Metric Binary =~ Weighed Binary Weighed Binary Weighed Binary Weighed
rpm mean 14.529 14.506 15.121 15.111 15.029 15.029 15.466 15.461
MAE rpm 2173 2.150 3.023 3.0133 4.210 4.210 3.233 3.229
MAPE (%) 17.810% 17.619%  25.732%  25.644%  36.598%  36.598%  28.550%  28.522%
Left St. Left Rk. Right St. Right Rk.
Metric Binary =~ Weighed Binary Weighed Binary Weighed Binary Weighed
rpm mean 15.441 15.360 15.2342 15.2393 15.015 15.020 15.3536 15.3291
MAE rpm 2.4545 2.8934 2.4545 2.4597 2.4638 2.4691 2.9452 2.9208
MAPE (%) 24.620%  24.004% 19.961% 19.996% 19.915% 19.969%  24.401%  24.199%
Table 2

Results for MODWTMRA in: supine and prone (top table) left and right (bottom table) in the two
different settings: Normal bed (St.) and Rocking bed (Rk.)

been tested and showed an error of 2 breaths on average, mostly determined by the denoise
method used (Savitzy-Golay or MODWTMRA), and the posture of the person on the mattress.

However, this study had to be conducted on few raw data, due to the necessity of discarding
many recordings. The result suggests the possibility of using this kind of instrument to track the
respiratory rate of a person and also that the design pipeline could be a useful instrument, but
this requires a more extended data collection. This could lead the designed pipeline to be more
tuned, and incorporate new parameters and factors to reduce the number of misinterpreted
breathings. Otherwise, if larger trials confirm the magnitude of the error on the number of
breaths, this would imply the approach is not good enough in medical contexts, as the average
error is too high for, e.g., the study of sleep stages, which requires more accurate estimates.
Nevertheless, in domestic usage, this error would not be an issue.
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