
Language Models as Knowledge Bases for Visual
Word Sense Disambiguation
Anastasia Kritharoula1,∗, Maria Lymperaiou1,∗ and Giorgos Stamou1

1Artificial Intelligence and Learning Systems Laboratory, School of Electrical and Computer Engineering, National
Technical University of Athens

Abstract
Visual Word Sense Disambiguation (VWSD) is a novel challenging task that lies between linguistic sense
disambiguation and fine-grained multimodal retrieval. The recent advancements in the development of
visiolinguistic (VL) transformers suggest some off-the-self implementations with encouraging results,
which however we argue that can be further improved. To this end, we propose some knowledge-
enhancement techniques towards improving the retrieval performance of VL transformers via the
usage of Large Language Models (LLMs) as Knowledge Bases. More specifically, knowledge stored in
LLMs is retrieved with the help of appropriate prompts in a zero-shot manner, achieving performance
advancements. Moreover, we convert VWSD to a purely textual question-answering (QA) problem by
considering generated image captions as multiple-choice candidate answers. Zero-shot and few-shot
prompting strategies are leveraged to explore the potential of such a transformation, while Chain-of-
Thought (CoT) prompting in the zero-shot setting is able to reveal the internal reasoning steps an LLM
follows to select the appropriate candidate. In total, our presented approach is the first one to analyze
the merits of exploiting knowledge stored in LLMs in different ways to solve WVSD.
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1. Introduction

Visual Word Sense Disambiguation (VWSD) is a newly introduced task, where the most appro-
priate candidate image has to be retrieved given an ambiguous target word within a specific
context [1]. For example, given the ambiguous target word ”andromeda” within the context
”tree”, the phrase ”andromeda tree” is formulated. The word ”andromeda” itself may have
different meanings, referring to a constellation, flower, reptile or fish, and this ambiguity is
mitigated via the given context ”tree”. However, the presence of other tree-related candidate
images complicates the choice of the golden ”andromeda tree” image.

VWSD can be viewed as a multimodal extension of textual word sense disambiguation,
which has received some considerable attention in recent years [2]. Resolving polysemy has
been approached in several ways, with one of the most prominent being knowledge-based
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disambiguation. According to it, knowledge graphs representing linguistic relationships such
as WordNet [3] for English and BabelNet [4] for multilingual disambiguation are exploited to
frame the meaning of an ambiguous word based on its context, alleviating the need for training
during the disambiguation process. More specifically, both WordNet and BabelNet knowledge
graphs utilize synsets, i.e. sets of synonyms which express different meanings within different
contexts; hence, this structure is inherently related to the problem of sense disambiguation,
since several possible meanings are already explicitly encoded within each knowledge graph.

Nevertheless, given the ever-increasing amounts of linguistic information that need to be
stored in a knowledge base, structures such as WordNet and BabelNet naturally face scalability
limitations: novel words, contexts or languages demand high-quality manual engineering of
the related knowledge graphs to accommodate tasks such as word sense disambiguation in
a viable way. For example, given the example phrase ”andromeda tree”, a knowledge base
lacking the target word ”andromeda” or the context ”tree” (with respect to ”andromeda”) would
inevitably lead to disambiguation failure. To this end, the introduction of the Language Models
as Knowledge Bases (LM-as-KB) paradigm [5] opened a whole new world of possibilities for
knowledge representation. The expressive power of language models allows the extraction of
rich relational knowledge, similar to knowledge obtained when querying a structured knowledge
graph. Despite recent research advancements, the real-world utilization of the LM-as-KB
paradigm is still in its infancy, with several challenges and limitations arising [6]. These
challenges interrogate the adoption of the LM-as-KB framework in the visiolinguistic (VL)
setting [7], even though it is already favored in some tasks, such as Visual Question Answering
[8, 9, 10], Visual Commonsense Reasoning [11, 12] and Image Captioning [13].

In this work, we aim to explore the potential of following the LM-as-KB paradigm towards
resolving VWSD challenges. Specifically, we focus our contributions on two main directions:

• Ambiguous phrases are enriched with knowledge stored in Large LanguageModels (LLMs)
in a zero-shot fashion to provide more context for multimodal retrieval.

• We explore the conversion of VWSD to textual question-answering (QA) upon which we
apply zero-shot and few-shot prompting strategies. We further investigate the usage of
Chain-of-Thought (CoT) prompting to obtain explanations for LLM-based decisions.

2. Related work

Language models as Knowledge Bases is a novel paradigm that harnesses the implicit
knowledge stored in neural weights of Language Models (LMs) similar to how explicit knowl-
edge of Knowledge Graphs (KGs) has served related applications [5, 6]. Recent works probe
characteristics of different LLM-stored knowledge senses, such as commonsense [14], factual
[15] and temporal [16]. Model scale has revealed unprecedented LM capabilities related to
knowledge, such as different types of reasoning; there are open research questions related to
arithmetic [17], symbolic [18], commonsense [19] and causal reasoning [20] in large LMs, and
whether such models merely overfit large amounts of data or are genuinely capable of reasoning
similar to humans [21]. More recently, the LM-as-KB paradigm has been favored by the VL
community to enhance popular VL tasks [7, 8, 9, 10, 11, 12], as in the case of the current paper.



Prompting Language Models Traditionally, LMs are pre-trained on large amounts of text
corpora and then fine-tuned on smaller labelled ones to address longstanding challenges in NLP.
Scaling-up to several billion parameters (Large Language Models - LLMs) enables emergent
model capabilities, which can be communicated via prompting [22]. Different prompting
strategies have been proposed, such as zero-shot prompting, where the task is explicitly described
in natural language, and few-shot prompting, where few exemplars are provided to the LM
to guide answer generation [23]. More specifically, in-context learning (ICL) is a novel few-
shot paradigm where few sample demonstrations from the dataset are used to retrieve related
knowledge stored in the LLM without updating any parameters [24]. This technique is inspired
from the way humans learn from analogy [25] and has been successfully applied ever since
to serve several NLP tasks [26, 27, 28, 29, 30]. Another human-inspired prompting technique
is Chain-of-Thought (CoT), where the LM is encouraged by the prompt phrasing to generate
rationales together with the predicted answer [31, 32, 33]. Apart from the aforementioned
discrete prompt strategies, soft prompting sacrifices human-interpretable templates to achieve
more advanced knowledge retrieval [34]. In total, prompting can be viewed to be analogous to
querying knowledge graphs in the traditional knowledge retrieval scenario.

3. Method

The retrieval backbones utilized in all cases are pre-trained VL transformers, which place
both images 𝑖 and textual phrases 𝑡 in a joint embedding space. The retrieval of the most
appropriate image 𝑖 with respect to a given text phrase 𝑡 is performed based on a similarity
score score(𝑡, 𝑖) = max(sim(𝑡, 𝑖)), which can be obtained using different similarity measures,
such as cosine similarity or euclidean/manhattan distance1. In the baseline case, no knowledge
enhancement is performed, thus image candidates 𝑖 and original phrases 𝑡 are passed in the
VL transformer of choice. The VL transformers used are CLIP-L (CLIP [35] with ViT [36]
large encoder), CLIP𝐿𝐴𝐼𝑂𝑁 (LAION/CLIP ViT-H/14)[37] trained on LAION-2B English subset
of LAION-5B, ALIGN [38], and BLIP [39] variants; specifically for BLIP, BLIP𝐶 and BLIP-L𝐶
refer to variants pre-trained on COCO [40] and using ViT base/ViT large as backbone encoders
respectively, while BLIP𝐹 and BLIP-L𝐹 variants are pre-trained on Flickr30k [41].

Moreover, based on the observations of Dadas [42], there are image candidates 𝑖 that present
high similarity scores with multiple text phrases 𝑡, thus imposing a majority bias. To this end,
we adopt the penalty factor 𝑝(𝑖), as introduced in [42], to diminish the similarity scores for
such frequently similar candidates 𝑖, without affecting the similarity scores for the rest of the
candidates. In cases 𝑝(𝑖) is incorporated in VL retrieval, the similarity score is altered as:

𝑠𝑐𝑜𝑟𝑒(𝑡 , 𝑖) = sim(𝑡, 𝑖) − 𝑝(𝑖) (1)

3.1. LLM-based phrase enhancement

Following the LM-as-KB paradigm, the original text phrases 𝑡 are transformed to knowledge-
enhanced phrases 𝑡𝑒 by harnessing the rich factual knowledge stored in state-of-the-art LLMs.

1We will be using the term similarity to refer to both cosine similarity and euclidean/manhattan distance.



Zero-shot enhancement is achieved via the usage of discrete prompts that follow specific
handcrafted templates, as presented in Tab. 1. Those templates are created based on human
conversational intuition, encouraging the retrieval of related facts to produce 𝑡𝑒.

Table 1
Prompt templates used for zero-shot LLM knowledge enhancement of textual phrases 𝑡.

Prompt name Prompt template
exact “<phrase> ”

what_is “What is <phrase>?”
describe “Describe <phrase>.”

meaning_of “What is the meaning of <phrase>?”

Emerging capabilities of LLMs, such as multiple types of reasoning, are analogous to model
size [33, 43], demonstrating that models beyond a specific scale may contain more advanced
knowledge. We examine whether this statement also stands for knowledge enrichment by
experimenting with models up to 13B parameters, which correspond to the upper limit our
hardware can accommodate, as well as with orders of magnitude larger models (175B parameters)
accessible via public APIs (susceptible to pre-defined pricing schemes). More specifically, we
use GPT2-XL (1.5B parameters) [44], BLOOMZ-1.7B & 3B [45], OPT-2.7B & 6.7B [46], Galactica
6.7B [47], LLAMA-7B [48] and Vicuna 7B & 13B [49] in the lower-billion scale, as well as the
175B parameter models of GPT-3 [50] and GPT-3.5-turbo2.

As in the baseline case, we attempt to incorporate the penalty 𝑝(𝑖) in the VL retrieval stage,
forming the following knowledge-enhanced similarity score for images 𝑖 and phrases 𝑡𝑒:

score(𝑡𝑒, 𝑖) = sim(𝑡𝑒, 𝑖) − 𝑝(𝑖) (2)

3.2. Prompting LLMs with question-answering prompts

We transform VWSD to a question-answering (QA) task by converting the textual phrases 𝑡 to
questions 𝑄 that follow handcrafted prompt templates, as presented in Tab. 2. Our experimenta-
tion includes both zero-shot and few-shot prompting. In both scenarios, the LLMs prompted are
the Vicuna-13B [49] and the 175B GPT-3.5-turbo. Since the LLMs to be prompted can currently
handle textual but not VL inputs, we need to transit to exclusively textual representations for
both images 𝑖 and phrases 𝑡. Therefore, image captioning techniques are leveraged to achieve this
transformation, providing captions 𝑐𝑖 for each image candidate 𝑖. We experiment with greedy
search, where only one caption 𝑐𝑖 per 𝑖 is returned, as well as with beam-search multinomial
sampling using 5 beams, which returns 𝑘=10 captions 𝑐𝑘𝑖 per image 𝑖. The models selected for
captioning are GiT-L [51] and BLIP-L [39], which are both based on ViT-large [36] encoder, and
ViT-GPT2 [52], which uses ViT-base as the encoder and GPT-2 [44] as the decoder. Throughout
this VWSD as QA conversion we aim to leverage different aspects of knowledge stored in the
selected LLMs by employing the expressiveness of the designed QA prompts, which allow for
advanced flexibility compared to the knowledge enhancement setting described in Sec. 3.1.

Reasoning capabilities of LLMs can be unlocked via the so-called Chain-of-Thought (CoT)
prompting [33, 32, 31], where the LLM is asked to output a series of intermediate reasoning
2https://platform.openai.com/docs/models/gpt-3-5

https://platform.openai.com/docs/models/gpt-3-5


Table 2
QA prompts with and without CoT. ’Beam’ and ’Greedy’ refer to the corresponding captioning strategy.

Name QA Prompt template
think
(greedy)

“Q: What is the most appropriate caption for the <context>? Answer choices: (A) <caption for image 1>
(B) <caption for image 2> ... A: Let’s think step by step. ”

think
(beam)

“Q: What is the most appropriate group of captions for the <context>? Answer choices: (A) <captions
for image 1 (separated with comma)> (B) <captions for image 2> ... A: Let’s think step by step. ”

CoT “<think_prompt> <response of LLM with think prompt> Therefore, among A through J, the answer is”
no_CoT
(greedy)

“Q: What is the most appropriate caption for the <context>? Answer choices: (A) <caption for image 1>
(B) <caption for image 2> ... A: ”

no_CoT
(beam)

“Q: What is the most appropriate group of captions for the <context>? Answer choices: (A) <captions
for image 1> (B) <captions for image 2> ... A: ”

choose
no_CoT
(greedy)

You have ten images, (A) to (J), which are given to you in the form of captions.(A) <caption for image
1>…(J) <caption for image 10> You should choose the image, and therefore the caption that could better
represent the <phrase>. What image do you choose?

choose
no_CoT
(beam)

You have ten images, (A) to (J), which are given to you in the form of captions.(A) <captions for image 1
(separated with comma)>…(J) <captions for image 10 (separated with comma)> You should choose the
image, and therefore the set of captions that could better represent the <phrase>. What image do you
choose?

choose
CoT
(greedy)

You have ten images, (A) to (J), which are given to you in the form of captions. (A) <caption for image 1>
… (J) <caption for image 10> You should choose the image, and therefore the caption that could better
represent the <phrase>.
Use the following format: Question: What image do you choose? Thought: you should always think
about what you choose. Result: the result of your thought. Final Answer: the image that you choose.
Begin! Question: What image do you choose?

choose
CoT
(beam)

You have ten images, (A) to (J), which are given to you in the form of a set of captions. (A) captions
for image 1 (separated with comma) … (J) captions for image 10 (separated with comma) You should
choose the image, and therefore the set of captions that could better represent the <phrase>.
Use the following format: Question: What image do you choose? Thought: you should always think
about what you choose. Result: the result of your thought. Final Answer: the image that you choose
Begin! Question: What image do you choose?

steps that logically lead to its answer. Even though CoT prompting has mostly been exploited
for multi-step reasoning tasks, it is also able to provide human-understandable explanations
regarding the choice of the most appropriate candidate 𝑖 for each phrase 𝑡. To this end, the
first 5 templates and the prompting pipelines of Tab. 2 are adopted from Kojima et al. [31],
where a ”reasoning” prompt (”Let’s think step by step”/think prompts of Tab. 2) retrieves the
reasoning path stored in the LLM, followed by an ”answer” prompt (”Therefore, [...] the answer
is”/CoT prompt of Tab. 2) that returns the final answer in an appropriate format. The rest of the
templates (”choose” prompt names) are inspired from LangChain prompts [53], following an
instructive and descriptive template to encourage the selection of the correct image candidate.

3.2.1. Zero-shot prompting

In the zero-shot setting, we input a selected prompt from Tab. 2 to the LLM (Vicuna-13B/GPT-
3.5-turbo), which generates the answer A. The generated A can be one of the caption options
A-J or a statement that an answer cannot be defined; in any case,A is compared with the ground
truth caption to determine the success or failure of the zero-shot prompting strategy under



investigation. CoT prompts are accompanied with producing an explanation for choosing A.

3.2.2. Few-shot prompting

Additionally, we experiment with few-shot prompting in place of the previously described
zero-shot prompting. In this case, we select k no_CoT/choose no_CoT (greedy) prompts (Tab.
2), accompanied by their ground truth A, thus forming QA in-context samples. The number
of in-context samples k is defined by the user. We design three different ways of selecting
the k in-context samples. In the baseline case (random), the k samples are randomly selected
from the dataset. Nevertheless, since the relevance of selected samples with respect to a
chosen sample is significant [54], as well as the sample ordering [55], we design two similarity-
based sample selection methods, namely top and inverse-top. Both selection methods exploit
embedding representations of full phrases t, which are obtained using ALIGN [38]. The k
nearest embeddings to a given phrase embedding are efficiently retrieved with the help of cosine
similarity. Then, the top ordering strategy places the top-1 most similar QA sample first (which
corresponds to the most similar full phrase embedding), followed by the 2nd most similar QA
sample, until the k-th most similar in the k-th position. On the other hand, the inverse-top
strategy reverses this order by placing the top-1 most similar QA example in the k-th position.

4. Experiments

4.1. LLM-based phrase enhancement results

In Tab. 3 we present results regarding LLM-based phrase enhancement using different LLMs-as-
KB and the prompts of Tab. 1. More results are provided in Appendix A.

We can easily observe that LLM-based enhancement helps trespassing baseline accuracy and
MRR scores when appropriate prompting is used, irrespectively of the usage of VL penalty
𝑝(𝑖); ”exact” prompt seems to be rather weak towards triggering the necessary knowledge to
further drive VL retrieval, as in several cases metrics corresponding to phrases enhanced using
the ”exact” prompt fall below the baseline performance. On the other hand, ”meaning_of” is
the more powerful prompt attempted, resulting in non-negligible performance advancements
compared to the baselines in most cases. Overall, the combination of GPT-3 phrase enrichment
together with CLIP𝐿𝐴𝐼𝑂𝑁 (with penalty 𝑝(𝑖)) as the VL retrieval module lead to optimal results.

An interesting observation is that the Vicuna 7/13B models perform comparably to GPT-
3/3.5 models despite being orders of magnitude smaller. This is an encouraging result suggesting
that LLM-based phrase enrichmentmay be successfully performed with more lightweight LLMs
that do not adhere to a limiting pricing plan, which would impede large-scale experimentation.
However, in most cases that LLMs in the lower-billion scale are employed for knowledge
enhancement (Tab. 8), retrieval results struggle to compete with the knowledge-free baselines,
revealing a non-negligible association between scale and knowledge-enhancement capabilities.

4.2. Question-answering prompting results

In Tab. 4 we present accuracy scores occurring from transforming VWSD to QA using zero-shot
(with and without CoT) and few-shot (without CoT) prompting, denoting best results per prompt



Table 3
Results for zero-shot LLM-based enhancement using prompts of Tab. 1. Colored instances denote
overall best results per metric, while bold numbers indicate best results for each LLM.

CLIP𝐿𝐴𝐼𝑂𝑁 CLIP-L ALIGN BLIPC BLIP-LC BLIPF BLIP-LF

acc. MRR acc. MRR acc. MRR acc. MRR acc. MRR acc. MRR acc. MRR
With penalty

Baseline 71.06 81.50 62.85 76.24 68.90 80.00 60.90 74.33 64.58 77.51 60.47 73.87 69.76 80.42

V
ic
un

a7
B exact 64.58 77.20 59.18 72.46 61.99 73.62 55.94 70.98 59.83 73.52 53.56 69.18 62.20 75.68

what_is 69.76 80.49 69.05 77.82 68.25 80.16 66.74 78.00 69.33 80.00 61.34 74.61 70.84 81.00
describe 72.79 82.26 68.47 78.01 70.41 79.79 68.25 79.09 70.41 80.85 62.20 75.09 73.43 82.45
meaning_of 70.41 81.13 67.76 77.85 69.76 79.49 65.87 77.84 66.31 78.43 62.20 74.73 68.03 79.40

V
ic
un

a1
3B exact 67.60 79.48 62.12 74.49 64.15 75.60 60.69 73.98 65.01 77.46 54.86 69.91 66.74 78.74

what_is 72.14 81.69 69.98 77.63 70.84 80.58 67.82 79.01 69.11 79.87 59.18 73.48 73.43 82.91
describe 69.98 80.70 63.28 77.01 66.74 76.85 61.12 74.73 66.95 78.57 56.16 71.10 67.17 79.11
meaning_of 70.63 81.33 68.26 78.25 70.63 79.83 67.82 78.70 69.76 80.66 61.99 75.08 71.71 81.80

G
PT

-3
.5 exact 64.36 75.38 60.18 72.73 62.42 74.43 57.02 70.78 59.18 72.32 52.92 67.40 63.07 74.65

what_is 70.63 81.46 69.35 80.51 70.41 81.42 67.60 78.56 68.47 79.67 60.91 74.30 71.71 82.02
describe 73.22 82.50 69.28 80.31 73.22 82.73 69.33 79.90 70.41 80.80 59.83 73.65 70.63 81.29
meaning_of 73.65 82.71 69.06 80.55 70.41 81.38 66.52 78.59 66.52 79.16 58.53 73.31 69.98 81.46

G
PT

-3

exact 68.03 78.41 64.07 76.58 66.52 78.37 60.48 73.99 64.15 76.58 59.61 72.91 65.23 77.06
what_is 72.35 82.19 70.73 81.57 71.71 82.27 68.25 78.93 68.90 79.91 60.48 74.24 69.11 80.25
describe 70.63 81.05 68.72 80.26 72.57 82.52 64.58 76.75 68.25 79.35 61.34 74.03 69.33 80.47
meaning_of 73.65 83.52 69.84 81.56 74.95 84.09 66.74 78.37 71.71 81.55 62.63 75.55 72.35 82.28

Without penalty
Baseline 67.82 79.50 60.69 74.42 65.66 77.48 57.24 72.07 61.34 75.88 57.67 71.96 65.01 77.86

V
ic
un

a7
B exact 61.99 75.30 57.45 70.07 58.96 71.92 52.70 68.00 56.16 71.28 50.32 66.75 60.04 74.04

what_is 68.47 79.28 65.58 76.70 64.58 77.93 64.79 76.50 66.52 78.11 57.88 72.77 67.17 78.98
describe 71.06 81.17 65.87 76.16 68.25 77.91 66.09 77.78 68.90 79.63 60.69 73.97 70.19 80.69
meaning_of 69.11 80.13 65.80 75.77 68.25 78.11 63.28 75.79 63.07 75.96 59.18 72.88 64.36 77.09

V
ic
un

a1
3B exact 65.23 77.73 58.44 71.67 61.56 73.10 56.80 71.48 60.69 74.43 51.19 66.95 63.28 76.68

what_is 70.63 80.71 66.74 75.51 68.68 78.55 65.44 77.22 68.47 79.14 58.96 73.22 68.90 80.27
describe 67.82 79.14 60.69 75.75 64.58 74.88 57.67 72.47 62.20 75.75 52.27 68.72 63.50 76.66
meaning_of 68.90 80.18 65.87 76.64 67.60 78.38 65.66 77.62 66.31 78.31 58.96 73.19 68.03 79.64

G
PT

-3
.5 exact 62.20 73.38 57.11 70.36 60.48 72.15 54.43 68.33 56.80 70.42 51.40 65.68 58.32 71.11

what_is 69.55 80.51 65.87 78.11 67.82 79.52 64.15 75.91 65.87 77.78 58.10 72.32 68.03 79.36
describe 72.57 81.78 66.67 78.42 70.84 81.16 65.44 77.57 69.11 80.20 58.96 72.66 67.60 79.47
meaning_of 72.57 82.05 67.10 79.07 68.47 79.87 63.93 77.05 65.66 78.33 63.93 72.23 68.25 80.17

G
PT

-3

exact 66.74 77.22 61.68 74.91 64.79 76.27 58.96 71.92 60.48 74.02 55.72 70.34 62.42 75.04
what_is 71.06 81.12 68.15 79.38 69.55 80.22 63.28 75.56 65.01 77.40 56.59 71.54 67.82 79.03
describe 69.55 80.15 68.25 79.81 71.27 81.21 63.93 75.81 66.31 77.74 58.96 72.62 67.17 78.93
meaning_of 73.00 82.89 68.96 80.26 72.57 82.29 65.87 77.56 69.55 80.26 60.26 74.26 70.41 81.09

with color. In general, there is an obvious discrepancy between the performance of GPT-3.5-
turbo and Vicuna-13B, denoting that model scale does matter in the VWSD as QA scenario,
contrary to the phrase enhancement case (Sec. 4.1): smaller models do not possess the necessary
knowledge or reasoning abilities to infer the correct answer from captions in the QA setting, no
matter the prompt template deployed or the choice between zero-shot/few-shot strategy. This



finding agrees with the observation of Kojima et al. [31] that LLM reasoning capabilities emerge
at scale. Moreover, there is no clear pattern whether beam or greedy captioning is more effective
towards triggering the necessary knowledge: in the case of GiT-L and BLIP-L there is a clear
preference towards greedy decoding in conjunction with CoT & no_CoT prompting. Especially
for Vicuna-13B this preference is very distinctive, demonstrating significant performance drops
when beam decoding is employed in place of greedy decoding. However, the opposite holds for
ViT-GPT2, even though the overall performance of ViT-GPT2 is lower in comparison to the
other captioners. The performance becomes even worse when beam decoding is employed with
few-shot prompting. At the same time, ”choose” prompts do not demonstrate a distinct pattern
with respect to the decoding strategy (greedy/beam) as well. Overall, GiT-L (greedy) exhibits the
most promising captioning capabilities in the majority of Tab. 4 results, while BLIP-L (greedy)
appears more capable in the few-shot prompting setting of Vicuna-13B (colored cells).

Table 4
Accuracy scores (%) for VWSD as a QA problem with and without CoT prompting.

Captioner Zero-shot Few-shot
(random)

Few-shot
(top)

Few-shot
(inv. top)

no_CoT CoT choose no_CoT choose CoT no_CoT no_CoT no_CoT
GPT-3.5-turbo

GiT-L (greedy) 44.49 47.30 51.84 52.27 51.19 51.40 53.56
GiT-L (beam) 40.82 36.50 50.54 49.68 46.12 47.83 45.61
BLIP-L (greedy) 47.95 43.84 49.46 44.06 48.16 48.81 50.32
BLIP-L (beam) 38.01 34.13 50.97 50.97 40.91 40.49 40.49
ViT-GPT2 (greedy) 28.94 25.05 32.40 29.81 31.32 31.45 28.91
ViT-GPT2 (beam) 30.24 25.92 32.83 33.05 32.03 28.73 23.64

Vicuna-13B
GiT-L (greedy) 34.34 27.65 20.52 20.52 31.89 33.63 36.30
GiT-L (beam) 11.02 7.91 19.44 11.23 < 2 < 2 < 2
BLIP-L (greedy) 30.02 23.76 20.95 21.81 35.56 36.08 36.48
BLIP-L (beam) 9.41 6.27 12.74 8.64 < 2 < 2 < 2
ViT-GPT2 (greedy) 21.60 21.17 17.49 15.33 24.83 24.94 26.11
ViT-GPT2 (beam) 11.45 6.91 16.85 12.74 2.81 3.89 4.75

4.2.1. Zero-shot prompting and CoT reasoning

According to Tab. 4, accuracy results with zero-shot QA prompting are not always encouraging,
especially when compared to LLM-based enrichment results of Tab. 3, which approach state-of-
the-art performance. Apart from the fact that proper LLM reasoning is still an open problem
[56, 57], one possible fundamental reason for these lower accuracy scores can be the conversion
from images to text via captioning: this intra-modality conversion may induce errors and
information loss that impacts the final performance. Of course, lower performance will also
affect the quality of the produced explanations, when CoT is employed. We delve into this
scenario by presenting an example where the usage of CoT leads to an erroneous answer,
while the no_CoT case succeeds. In Fig. 1 the candidates for the phrase ”tender embrace” are
showcased. By employing GiT-L (greedy) as the image captioner, we form the question Q as:



Q: What is the most appropriate caption for the tender embrace? Answer Choices: (A) a small boat sitting on top of a
dock. (B) a group of people walking on a green hill. (C) a student gets a hug from a student. (D) a large fly laying on a
rock in the water. (E) the bus stop at the station (F) a train is parked at a station. (G) a crowd of people watching a
concert. (H) a train station with a sign on the side of it. (I) a black and red train on a track. (J) a man laying in the
sand on top of a surfboard.

A B C (Gold image) D E

F G H I J

Figure 1: Candidate images for the phrase t ”tender embrace”.

In Tab. 5 the results of GPT-3.5-turbo with and without zero-shot CoT are demonstrated.

Table 5
Example of VWSD as QA with & w/o zero-shot CoT prompting. Questions Q are presented truncated.
GPT-3.5-turbo is the selected LLM, as it presented best results for CoT/no_CoT prompts of Tab. 4.

no_CoT
Q: What is the most appropriate [...]
A: The most appropriate caption for the tender embrace would be: (C) a student gets a hug from a student. 4

CoT
Q: What is the most appropriate [...]
A: Let’s think step by step.
First, we need to understand what the tender embrace is referring to. Once we know that, we can look at
the answer choices and find the one that best matches the subject of the photo. Therefore, without further
information about the photo, it is not possible to choose the most appropriate caption. Could you please provide
more context or information about the photo?
Therefore, among A through J, the answer is not applicable without more information about the photo” X

After observing the captions 𝑐𝑖 produced by GiT-L, we confirm that they accurately describe
the context, thus being appropriate answer options. Nevertheless, when prompted with CoT in
a zero-shot manner, GPT-3.5-turbo is unable to define where ”tender embrace” refers to without
receiving more information. On the contrary, it successfully returns the right answer when no
CoT is used. This discrepancy reveals that even though the knowledge regarding the phrase
”tender embrace” exists within the LLM, zero-shot CoT prompting is unable to trigger it. This
can be viewed as an inherent problem of CoT prompting, at least in the zero-shot setting, since
the only factor that differs between successful and unsuccessful reasoning is the prompt itself.

On the other hand, zero-shot CoT prompting can provide valuable insights in several cases,
such as the one presented in Fig. 2 with candidates corresponding to the phrase ”metal steel”.
By again using GiT-L as the captioner, the question Q is formed as:



Q: What is the most appropriate caption for the metal steel? Answer Choices: (A) a chocolate bar with three sides (B)
[unused0] and [unused0] at the concert in 2007 (C) a guitar and a guitar are displayed in front of a speaker. (D) frosty
patterns on a window (E) gold in the rocks - - (F) a black piece of metal with a large black square in the middle. (G) a
jar of honey on a wooden table. (H) a close up of a metal plate with a pattern of lines. (I) a large white quartz rock
with a clear base. (J) gold jewelry from the late 19th century.

A B C D E

F G H (Gold image) I J

Figure 2: Candidate images for the phrase t ”metal steel”.

Then, GPT-3.5-turbo outputs the results presented in Tab. 6, successfully guided by CoT.

Table 6
A successful example of VWSD as QA with & w/o zero-shot CoT prompting (GPT-3.5-turbo as the LLM).

no_CoT
Q: What is the most appropriate [...]
A: The most appropriate caption for the metal steel would be (F) a black piece of metal with a large black square
in the middle. X

CoT
Q: What is the most appropriate [...]
A: Let’s think step by step.
First, we need to understand what metal steel is and what its characteristics are. Steel is a hard and strong metal
alloy made mainly of iron and carbon. It is often used in construction, machinery, and transportation. Based on
this information, the most appropriate caption for metal steel would be (H) a close up of a metal plate with a
pattern of lines. This caption describes the texture and appearance of steel, which is often characterized by its
distinctive pattern of lines. The other options do not accurately describe steel or its unique qualities.
Therefore, among A through J, the answer is (H) a close up of a metal plate with a pattern of lines.” 4

This analysis highlights that the current state of CoT reasoning cannot be entirely trusted, as the
deployment of CoT prompts themselves may drive the LLM towards incorrect reasoning paths.
Thus, CoT reasoning for VWSD is not yet mature enough to provide valuable explanations.

Furthermore, regarding the comparison between standalone CoT/no_CoT prompts and
”choose” CoT/no_CoT prompts, there is a clear performance advancement when ”choose”
prompts are leveraged, reaching more than 10% performance gain in the case of BLIP-L (beam)
as captioner and GPT-3.5-turbo as the LLM to be prompted. We regard this as an evidence that
more descriptive and motivating prompts can better evoke the correct reasoning process of an
LLM. Finally, there is no clear indication of whether CoT facilitates performance over no_CoT
when combined with the ”choose” prompting template, since best results per captioner and
LLM of Tab. 4 alternate between ”choose” CoT/no_CoT strategies, and are often comparable.



4.2.2. Few-shot prompting

In the baseline few-shot setting (few-shot (random)), we randomly select k=5 instances to serve
as in-context examples. These in-context samples are comprised of k questions Q followed
by their ground truth answer choice, as described in Sec. 3.2.2. Results of Tab. 4 denote that
few-shot performance using no_CoT prompts is significantly better compared to their zero-shot
counterparts, while generally being on par with ”choose” prompt results, even though the
derived accuracy is close to random choice or even worse in most cases. Therefore, despite the
advanced engineering few-shot prompting requires compared to the zero-shot setting, it can
be regarded as a more viable choice for retrieving internal reasoning capabilities of LLMs. As
for the choice of in-context sample selection and order strategy, the results are not conclusive;
similarity-based sample selection (top & inv. top columns of Tab. 4) may result in better
(GIT-L greedy), worse (ViT-GPT2 beam) or comparable results to the random baseline accuracy.
Moreover, sample ordering (top versus inv. top) presents some variability in accuracy, with each
strategy performing better in different cases. Overall, we can state that few-shot prompting calls
for more extensive experimentation beyond the purpose of the current work until a standard
pattern emerges, while there is a possibility that no pattern can be inferred at all.

We are going to present some qualitative results regarding few-shot prompting. Fig. 3
contains candidates corresponding to the phrase ”football goal”, while GiT-L (greedy) serves as
the captioner. The k=5 in-context samples are demonstrated in Tab. 7 followed by the answer
A generated by GPT-3.5-turbo (in color) corresponding to the given Q. In the presented case,
in-context prompting achieves in guiding GPT-3.5-turbo to select the correct candidate I.

A B C D E

F G H I (Gold image) J

Figure 3: Candidate images for the phrase t ”football goal”.

5. Conclusion

In this work, we explore the conjunction of the Visual Word Sense Disambiguation task and
Large Language Models. More specifically, our current paper is the first one to harness the
rich knowledge stored in LLMs via different prompting strategies. Following the LLM-as-KB
paradigm we managed to boost the performance of baseline visiolinguistic pipelines. More-
over, we examined the potential of unimodal approaches by converting VWSD to a textual
question-answer problem, where generated image captions are leveraged as multiple-choice



Table 7
Example of few-shot prompting with k=5 in-context samples for disambiguating ”football goal” phrase.

Q: What is the most appropriate caption for the vanillin compound? Answer Choices: (A) a fossil fossil with a spiral
pattern (B) a blue plate topped with pastries and a piece of bread. (C) the bones of the foot are very thin. (D) a
spoon full of sugar on a table. (E) the tower of the building is made of brick. (F) a pair of sunglasses with a white
background. (G) a close up of a plant with a yellow flower. (H) turmeric powder in a bowl (I) a man with glasses
and a tie sitting at a desk. (J) a close up of a bike tire with a yellow tag on it. A: (D) a spoon full of sugar on a table.

Q: What is the most appropriate caption for the nankeen fabric? Answer Choices: (A) a close up of a white quilt with
a tree design on it. (B) a man in a blue jacket and tan pants holding a sword. (C) a collection of brass trombones (D)
a close up of a green plant (E) a pine tree in the forest (F) a row of mannequins in black dresses. (G) two boys are
standing in front of a red wall. (H) two apples sitting next to each other on a white surface. (I) a cartoon of two
women in fancy hats and a mirror. (J) a close up of a woman’s face with a round ball on her forehead. A: (B) a man
in a blue jacket and tan pants holding a sword.

Q: What is the most appropriate caption for the olmec indian? Answer Choices: (A) a large stone head in a garden (B)
a woman lighting a candle at a table (C) [ unused0 ] is the new champion of the world (D) a table full of food (E) a
group of women holding banners in a protest. (F) a woman in a traditional dress stands in front of a tent. (G) a
man in a suit sitting in a chair. (H) a clay pot with a small hole on top of it. (I) a close up of three green leaves of a
plant (J) a fern in the forest near the lake A: (A) a large stone head in a garden

Q: What is the most appropriate caption for the charales order? Answer Choices: (A) a man walking past a store with
a sign on it. (B) the road to the island (C) the art of the flower (D) a black snake with white spots on it’s body. (E) a
bird perched on a branch in a tree. (F) a lion roaring in the wild. (G) a man falling from a skateboard (H) a large,
thin, green plant with long thin leaves. (I) a close up of a bush with blue berries (J) a mouse in a hollow log. A: (H)
a large, thin, green plant with long thin leaves.

Q: What is the most appropriate caption for the skink lizard? Answer Choices: (A) two lizards on a log with a log
in the background. (B) a man walking past a store with a sign on it. (C) the art of the flower (D) a portrait of [
unused0 ], seated at a desk in front of a telescope. (E) the car is a small car that can be found in the museum. (F) a
black snake with white spots on it’s body. (G) a bird perched on a branch in a tree. (H) a close up of a bush with
blue berries (I) a close up of a metal container with a white label on it. (J) a white door with a glass window A: (A)
two lizards on a log with a log in the background.

Q: What is the most appropriate caption for the football goal? Answer Choices: (A) a large stadium with a large field
and a large structure. (B) a woman wearing a blue ski mask (C) [ unused0 ] of spain during the fifa world cup brazil
group a match between spain and argentina at the estadio santiago bernabeu on june 25, 2010 in santiago, chile.
(D) a woman lifting a barbell in a competition. (E) a man in a suit and tie looking at the camera. (F) person is a
player for football team (G) [ unused0 ], the brazilian national team, in the 1960s. (H) the empty stand at the old
trafford stadium (I) a soccer field with a goal post in the middle (J) the emblem of the football club of the italian
football club of the italian football club of the italian football club of the italian football club of the italian football
club of the italian football club of the A: (I) a soccer field with a goal post in the middle 4

candidates. Finally, Chain-of-Thought prompting highlighted human-interpretable explainabil-
ity aspects tied to the LLM-based knowledge extraction process. Overall, our analysis reveals
the importance of model scale towards performing knowledge-related tasks with LLMs.
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A. Scale significance for knowledge enhancement

As an extension of Tab. 3, we presents results regarding LLM-enhancements using other LLMs
(1.7B to 7B parameters) in Tab. 8.

Compared to Tab. 3, smaller models present more mediocre knowledge enhancement capabil-
ities, frequently scoring below the knowledge-free VL retrieval baseline. Such a result indicates
that knowledge enhancement is not a ”free-lunch” solution to boost results, but requires tuning
several aspects of the process in order to benefit the downstream task. Therefore, despite the
encouraging performance of Vicuna7B/13B models, other LLMs in the lower-billion range do not
possess the necessary knowledge capabilities to effectively perform knowledge enhancement
for VWSD. Therefore, we can conclude that similarly to the QA prompting that demonstrated
the need for scale, also prompting for knowledge enhancement is strongly associated with
model size. To this end, we verify that smaller models with competitive capabilities, similar to
the Vicuna series, need to be develop in order to facilitate applications related -but not limited-
to LLM-based knowledge-enhancement.

B. Reproducibility

Our code can be found in GitHub: https://github.com/anastasiakrith/llm-for-vwsd/.
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Table 8
Additional results for zero-shot LLM-based enhancement.

CLIP𝐿𝐴𝐼𝑂𝑁 CLIP-L ALIGN BLIPC BLIP-LC BLIPF BLIP-LF

acc MRR acc MRR acc MRR acc MRR acc MRR acc MRR acc MRR
With penalty

Baseline 71.06 81.50 62.85 76.24 68.90 80.00 60.90 74.33 64.58 77.51 60.47 73.87 69.76 80.42

B
LO

O
M
Z
1.
7B exact 66.52 78.50 64.92 74.50 65.87 77.42 64.58 76.28 65.66 77.13 59.18 72.70 67.39 78.67

what_is 69.98 80.67 66.74 76.41 65.44 78.92 63.28 75.95 65.23 77.68 58.32 72.06 66.52 78.30
describe 73.65 83.52 69.84 80.08 74.95 81.56 66.74 78.37 71.71 81.55 62.63 75.55 72.35 82.28
meaning_of 69.33 80.69 65.01 76.38 66.74 78.17 63.50 76.44 65.44 78.29 58.53 72.50 68.25 79.74

O
PT

2.
7B

exact 71.06 81.46 62.85 76.00 68.68 75.93 61.12 74.46 64.58 77.41 60.26 73.73 69.76 80.36
what_is 66.95 78.99 66.30 74.85 63.28 78.10 60.91 74.43 66.31 77.86 57.24 71.15 67.60 78.58
describe 68.03 79.89 66.08 74.75 64.79 78.14 61.77 74.73 66.31 77.57 57.67 71.48 68.03 79.03
meaning_of 69.11 80.56 65.25 75.60 65.66 77.45 61.99 75.35 63.93 76.88 58.32 71.65 65.44 77.69

B
LO

O
M
Z
3B

exact 67.82 79.31 62.99 74.59 66.52 76.18 60.48 73.13 63.28 76.00 57.02 71.23 65.66 77.49
what_is 71.92 81.78 68.25 76.82 67.39 79.82 61.34 74.94 66.95 78.47 59.61 73.35 68.47 79.58
describe 70.84 81.11 65.28 75.38 66.09 78.07 62.85 75.65 67.39 78.71 57.24 71.72 67.82 79.20
meaning_of 70.63 81.47 67.32 77.96 68.47 78.76 63.71 76.52 66.31 78.55 59.40 73.60 68.03 79.26

O
PT

6.
7B

exact 62.63 75.84 62.20 75.54 67.82 79.24 60.91 74.23 64.79 77.58 59.83 73.40 69.11 79.94
what_is 61.79 75.70 64.63 77.68 64.79 77.23 61.77 75.01 63.07 76.16 57.88 71.79 65.87 77.77
describe 64.43 76.91 65.73 78.24 65.23 77.89 61.12 74.67 63.93 77.07 56.16 71.30 66.09 78.38
meaning_of 62.17 75.84 63.61 77.19 66.74 78.47 63.28 75.93 65.44 77.43 59.83 72.96 68.03 78.75

LL
A
M
A
7B

exact 62.20 76.04 57.45 70.70 60.48 72.23 52.92 68.76 54.00 69.51 48.81 65.54 58.10 72.33
what_is 68.90 80.48 67.10 77.26 66.95 78.93 68.03 68.03 66.95 78.48 58.75 73.29 70.84 80.84
describe 72.14 82.02 66.81 76.80 69.76 79.04 64.79 76.58 66.09 77.99 58.53 72.44 69.11 80.15
meaning_of 67.82 80.11 62.90 76.12 65.66 76.53 60.26 74.40 62.42 75.71 54.00 69.84 65.87 78.19

Without penalty
Baseline 67.82 79.50 60.69 74.42 65.66 77.48 57.24 72.07 61.34 75.88 57.67 71.96 65.01 77.86

B
LO

O
M
Z
1.
7B exact 63.71 76.53 61.66 72.23 63.28 75.05 59.18 72.96 62.85 74.99 56.37 70.60 63.50 76.20

what_is 67.60 79.04 65.01 75.30 63.07 77.33 59.40 73.50 62.85 76.00 56.16 70.54 65.23 77.26
describe 67.60 79.54 62.99 74.68 66.52 76.05 59.83 74.59 62.63 76.47 53.56 69.84 63.71 77.06
meaning_of 66.52 78.70 64.15 73.78 64.36 77.03 60.48 74.34 61.99 76.13 56.16 70.61 65.01 77.89

O
PT

2.
7B

exact 67.82 79.47 60.26 72.77 65.66 74.15 57.45 72.19 61.12 75.77 57.24 71.68 65.01 77.90
what_is 65.44 77.60 62.75 72.91 61.12 75.47 59.83 73.13 61.12 74.54 53.35 68.71 63.50 76.22
describe 65.87 78.09 63.89 72.95 62.20 76.31 59.83 73.28 62.20 75.17 54.43 69.86 63.28 76.28
meaning_of 67.60 79.28 62.99 72.97 64.58 75.79 59.18 73.38 60.26 74.70 54.86 69.43 62.42 75.86

B
LO

O
M
Z
3B

exact 64.15 76.98 59.52 71.53 63.93 73.78 58.10 71.77 59.61 74.06 54.86 69.66 61.12 74.99
what_is 69.11 80.03 65.66 75.39 62.85 77.88 61.34 74.35 65.01 77.32 57.24 71.85 68.03 79.12
describe 68.68 79.47 62.88 73.83 63.50 76.11 60.48 73.87 62.85 76.06 54.86 70.48 65.66 77.64
meaning_of 68.25 79.73 64.94 75.51 66.31 77.17 61.77 74.92 62.42 76.27 57.02 71.79 65.23 77.21

O
PT

6.
7B

exact 58.75 72.63 59.61 73.86 64.15 76.57 57.24 71.96 61.12 75.83 56.80 71.40 64.79 77.66
what_is 60.48 74.10 62.45 75.89 61.77 75.18 57.88 72.27 61.77 74.89 52.92 68.83 61.99 75.23
describe 60.74 74.28 63.12 76.19 63.28 76.26 59.40 73.03 58.96 73.86 52.92 69.18 62.63 76.13
meaning_of 59.28 73.77 62.17 76.04 63.71 76.31 52.92 74.37 61.99 75.47 55.94 70.67 65.01 77.27

LL
A
M
A
7B

exact 60.91 74.66 56.16 68.98 56.80 70.76 52.05 67.33 50.54 66.81 47.95 64.17 54.86 69.79
what_is 67.60 79.19 64.71 75.98 66.31 77.31 64.36 76.30 64.36 77.00 56.37 71.90 68.47 79.43
describe 70.41 81.20 63.77 74.97 66.74 76.99 64.15 76.25 63.50 76.40 58.10 72.58 68.25 79.36
meaning_of 66.09 78.60 60.41 72.84 62.85 74.79 58.75 72.70 58.53 73.12 52.70 68.03 62.42 76.07
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