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Abstract
Recent advancements in natural language processing (NLP) have been driven by the utilization of large
language models like BERT. These models, pre-trained on extensive textual data, capture linguistic
and relational knowledge. Therefore, cloze-style prompts, which involve filling in missing words in a
sentence, can be used to solve knowledge-intensive NLP tasks with the help of a language model. The
"Knowledge Base Construction from Pre-trained Language Models (LM-KBC 2023)" challenge aims to
harness language models’ potential for knowledge graph construction through prompts. In particular,
contestants are challenged to infer the correct Wikidata ID of objects, given a prompt used to link subject,
relation, and object. Automatically inferring the correct objects would help in reducing the need for an
expensive manual graph population. Our proposed approach in Track 1 focuses on expanding BERT’s
vocabulary with a task-specific one (i.e., Wikipedia2Vec) and facilitating its usage through prompt tuning
with OPTIPROMPT.

1. Introduction

Recently, significant progress has been made in enhancing downstream NLP tasks by leveraging
pre-trained language models like BERT [1], which infer their language understanding on
extensive textual datasets. The fact that pre-trained LMs not only understand language but also
capture relational information from these datasets makes them a valuable knowledge source
for automatic knowledge graph construction. To extract this stored knowledge, cloze-style
sentences (e.g., ’Dante was born in [MASK].’) are used to prompt the model to truthfully complete
relation facts. Such relational facts consist of knowledge triples in the form of subject, relation,
object.

In this regard, the challenge of Knowledge Base Construction from Pre-trained Language
Models (LM-KBC 2023)1 [2] explores the capability of language models to solve the downstream
task of knowledge graph construction. Knowledge graphs have proven to be an efficient source
for retrieving relational information. However, populating knowledge graphs demands the
extraction of relational information from various sources, including textual data. This task
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entails complex Natural Language Processing (NLP) pipelines that encompass components
for entity extraction, co-reference resolution, entity linking, and relation extraction. These
components in turn rely heavily on expensive manually or automatically generated supervised
data. To mitigate the dependence on expensive data annotations, the relational knowledge stored
in the self-supervised language models can be utilized to populate KGs. The "Knowledge Base
Construction from Pre-trained Language Models (LM-KBC 2023)" challenge aims to harness
language models’ potential for knowledge graph construction through prompts and offers two
tracks:

• Track 1: A small-model track with low computational requirements (<1 billion parame-
ters).

• Track 2: An open track, allowing participants to select any Language Model (LM) they
prefer.

With the approach proposed in this work, we addressed Track 1 of the challenge and ranked
second. The code for our suggested approach can be accessed on our GitHub repository2.

1.1. Task Description

The goal of the knowledge graph construction task involves predicting the object entities
associated with a given subject entity-relation pair. For instance, if presented with the subject
entity-relation pair <Cologne - CityLocatedAtRiver>, the task is to predict the object entity
<Rhine>. In this challenge, when provided with an input subject-entity (𝑠) and a relation (𝑟),
the objective is to employ language model probing to retrieve the complete set of accurate
object-entities (𝑜1, 𝑜2, ..., 𝑜𝑘) to solve the knowledge graph construction tasks. Language model
probing means asking the model to fill the masked token in a cloze-style prompt such as "Cologne
is a city situated along the [MASK] river." with the correct list of object entities, in this case
<Rhine>. Furthermore, the task requires linking this list of object entities to the correct Wikidata
[3] entity IDs, in this example <Q584>.

1.2. Dataset

The LM-KBC challenge provides a dataset with training and validation splits, along with the
unseen test set. This data contains 21 distinct relations, for each of the relations one prompt
template is given. Additionally, the dataset provides up to 100 training and validation examples
per relation, each example containing a subject entity, the Wikidata ID of the subject entity,
the relation, and a list of object entities with their respective Wikidata IDs. Four out of the 21
relations contain zero cases, where none of the object entities are correct. The dataset can be
found at a Github3 repository, which also provides an in-depth dataset statistic.

2https://github.com/debanjali05/LM-KBC2023-GESIS
3https://github.com/lm-kbc/dataset2023
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1.3. Task Evaluation

For each example in the test set, Wikidata ID predictions are evaluated by calculating precision
and recall against ground-truth values. The final macro-averaged F1-score is used to rank the
participating systems submitted to the challenge.

1.4. Task Challenges

The primary challenge with the task of using language models for knowledge graph construction
is that the language model is required to predict multi-tokens (e.g., <Pharrell Williams>) and
multi-label object entities (i.e., having 0 to N object entities for a given subject-relation pair).
While encoder-only language models like BERT [1] perform well at predicting single-token
objects (e.g., <Rhine>), they struggle when tasked with predicting objects comprised of multiple
tokens (e.g., <Pharrell Williams>). While, sequence-to-sequence language models such as
T5 [4] offer a potential solution for handling multi-token answers, they fail to address the
multi-label object entities. For multiple object entities, T5 can only solve the multiple labels
task by taking into account the order of the labels. For instance, when dealing with a subject
entity <Hexadecane> and relation <CompoundHasParts>, the object entities may be [<Carbon>,
<Hydrogen>]. When fine-tuning T5 on this list of object entities, the model would also learn
to reproduce the ordering of the elements seen during training, although an ordering is not
indicated by the data. The second challenge is to predict the zero cases, where one could add
a zero-case object entity like ’no objects’ to the label set. However, this would not resemble
a correct English sentence. (e.g., ’The parent organization of Turkcell is no objects.’) The third
challenge is to link the predicted tokens, representing the object entity for the given subject-
relations pair, to the correct Wikidata ID. A naive solution would involve using the Wikidata
API 4 to disambiguate the tokens and link them to Wikidata entities. However, this approach
neglects to take into account the contextual information provided by the subject-relation-pair.

2. Methodology

As previously discussed in Section 1.4, using sequence-to-sequence models is not a viable option
for this task. We resort to using BERT since a preliminary experiment showed promising
results for predicting single token entities in particular. However, the main limitations of
BERT are the rather small and single-token-only vocabulary. To address this limitation, our
approach involves mapping BERT representations to a significantly larger and task-specific
representation space containing multi-token entities. One strategy for achieving this is by
utilizing word embeddings like Glove embeddings, comprising a 400K vocabulary size and
n-grams representation. However, GloVe embeddings [5] only cover about 50% of the relevant
tokens in our case, entities. A task-specific target representation space, where BERT could be
mapped, is Wikipedia2Vec, which covers around 70% of the relevant tokens when using the
freely available pre-trained version 5.

4https://www.wikidata.org/w/api.php
5https://wikipedia2vec.github.io/wikipedia2vec/
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Wikipedia2Vec [6] is a joint embedding of both words and entities (i.e., concepts linked to
Wikipedia pages) calculated for a Wikipedia dump. This representation positions words and
entities that are semantically related in their respective proximity. Wikipedia2Vec optimizes
the traditional skip-gram model for learning word embeddings and an extension proposed in
Yamada et al. [7] to acquire embeddings specifically tailored for entities. Using Wikipedia2Vec
as a task-specific representation space to map BERT provides three significant advantages:
(i) a substantially larger vocabulary compared to BERT (i.e., 4M embeddings, with 2M word
embeddings and 2M Wikipedia article embeddings), (ii) many of the Wikipedia entities (here,
they represent articles) are multi-token (e.g., ENTITY/Barack_Obama), and (iii) Wikipedia articles
have a direct link to Wikidata IDs (e.g., ENTITY/Barack_Obama is linked to the Wikidata ID Q76
via the entity’s Wikipedia page.). These three advantages address the challenges of multi-token
entities, multi-label entities, and linking to Wikidata IDs, as outlined in Section 1.4 except
for the zero cases, which are handled later in Section 2.2. Our method consist of three steps:
(i) pre-training BERT transformation to Wikipedia2Vec representation space (cf. Section 2.1),
(ii) fine-tuning mapping to contextualized BERT embeddings (cf. Section 2.2), and (iii) inference
of correct entities for subject-relation-pair stated in a prompt (cf. Section 2.3).

2.1. Pre-training BERT to Wikipedia2Vec Mapping

In order to expand the vocabulary of BERT, we are required to map BERT word embeddings to
the Wikipedia2Vec embedding space. We accomplish this by pre-training a neural network (a
single-layer feed-forward linear mapping) denoted as 𝑓 : 𝐷𝐵𝐸𝑅𝑇 → 𝐷𝑊𝑖𝑘𝑖𝑝𝑒𝑑𝑖𝑎2𝑉 𝑒𝑐, which
transforms BERT embeddings to a corresponding vector representation in the Wikipeida2Vec
embedding space. To facilitate the training of this mapping as a first step, a dataset was systemat-
ically generated. The generation process entailed string matching the token in BERT vocabulary
to their Wikipedia2Vec correspondents, while prioritizing entity embeddings over word embed-
dings from Wikipedia2Vec. The resulting dataset denoted as𝐷 = {(𝑥0, 𝑦0), (𝑥1, 𝑦1), ..., (𝑥𝑛, 𝑦𝑛)}
consists of pairs (𝑥𝑖, 𝑦𝑖) where 𝑥𝑖 is a token embedding from BERT (e.g., the embedding of the
token ’France’ or ’hello’) and 𝑦𝑖 is the target embedding in Wikipedia2Vec space (e.g., the embed-
ding of the entity ’ENTITY/France’ or the word ’hello’, respectively). It’s important to note that
this simple string matching provides us with only positive examples. To generate hard negative
examples 𝑌 , we use a Faiss index [8] to retrieve the closest entities/words representations from
the Wikipedia2Vec embedding space to the target embedding 𝑦𝑖. Since Wikipedia2Vec contains
more than 4 mio embeddings, we use the Faiss Index to efficiently query the embedding space
Zhan et al. [9]. The Faiss index allows combining multiple indexes to achieve better search
performance and balance the trade-offs between accuracy and efficiency.The next step is to
optimize InfoNCE [10] loss function between a single 𝑥𝑖 and 𝑦𝑖 with 𝑁 many negative examples
𝑌 :

𝐿(𝑥𝑖, 𝑦𝑖) = log
exp−𝑑(𝑓(𝑥𝑖),𝑦𝑖)

exp−𝑑(𝑓(𝑥𝑖),𝑦𝑖)+
∑︀

𝑦�̂�∈𝑌 exp−𝑑(𝑓(𝑥𝑖),𝑦�̂�)
(1)

Where 𝑑 is the Euclidean distance, 𝑌 are𝑁 many nearest neighbors of 𝑦𝑖 in the Wikipedia2Vec
embedding space and 𝑁 = 1000. This loss function incorporates principles from informa-



tion theory, it not only separates positive and negative pairs but also maximizes the mutual
information between 𝑓(𝑥𝑖) and the positive sample 𝑦𝑖.

2.2. Prompt and fine-tuning BERT to Wikipedia2Vec Mapping

Using the available prompt templates6, we generated prompts for all subject-relation pairs
in the training set, provided by the organizers. For each prompt, we fetch the masked token
representation from BERT, denoted as ℎ𝐵 , which is then transformed using the pre-trained
linear mapping 𝑓 to a representation in the Wikipedia2Vec space, as ℎ𝑊 = 𝑓(ℎ𝐵) (cf. Section
2.1). Subsequently, we search for the top 200 nearest neighbors of ℎ𝑊 in the Wikipedia2Vec
space using a Faiss index, which will represent the negative examples 𝑌 = {𝑦0, 𝑦1, ..., 𝑦199}
in fine-tuning. To obtain positive examples 𝑌 = {𝑦0, 𝑦1, ..., 𝑦𝑛} (where 𝑛 is the number of
correct object entity IDs for each subject-relation pair), we utilize the Wikidata object IDs
corresponding to each subject-relation pair to retrieve the respective Wikipedia articles and
subsequently their associated Wikipedia2Vec representations. For the zero object entity cases,
we incorporated the zero vector as the correct target. The primary objective of the fine-tuning
is to increase the Euclidean distance 𝑑 between the transformed masked token representations
ℎ𝑊 and negative examples 𝑌 , while reducing the distance to positive examples 𝑌 . To achieve
this, the supervised contrastive loss (in Equation 2) as proposed by Khosla et al. [11] is utilized.
This loss formulation is applicable to multi-label classification and, unlike binary cross-entropy,
it is not fragile to long-tail distributions. Furthermore, we can interpret the resulting output as
a probability distribution over a set of candidate labels. Conceptually, one can think about this
loss as the average of several independent cross-entropy losses. The exponent of the negative
Euclidean distance 𝑑 is used as a custom similarity function (in Equation 3) analog to the linear
mapping training.

𝒞ℒ = − 1

|𝑌 |
∑︁
𝑦𝑖∈𝑌

log
exp𝑠𝑖𝑚(ℎ𝑊 ,𝑦𝑖)∑︀

𝑦𝑗∈𝑌 exp𝑠𝑖𝑚(ℎ𝑊 ,𝑦𝑗)+
∑︀

𝑦𝑖∈𝑌
exp𝑠𝑖𝑚(ℎ𝑊 ,𝑦𝑖)

(2)

𝑠𝑖𝑚 = exp(−𝑑(ℎ𝑊 , 𝑌 )) (3)

To allow BERT to effectively adapt to the task, we perform prompt tuning using OPTIPROMPT
[12], a continuous prompt optimization technique. OPTIPROMPT aims to identify optimal
prompts by crafting prompts through vectors within the embedding space. OPTIPROMPT
optimization and the fine-tuning of the linear mapping between BERT and Wikipedia2Vec are
performed jointly.

2.3. Inference using BERT to Wikipedia2Vec Mapping

As depicted in Figure 1, for a given subject-relation pair, we first generate a prompt using
the provided template and replace the relation tokens in the prompt with the optimal prompt
tokens generated using OPTIPROMPT during the prompt and fine-tuning phase, as explained in
Section 2.2 (cf. Step 1 in Figure 1). Following this, the modified prompt is employed to generate

6https://github.com/lm-kbc/dataset2023/blob/main/prompts.csv
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Figure 1: Inference pipeline showing the different steps of our approach.

the mask token representation using BERT (cf. Step 2 in Figure 1). This representation is then
transformed using the fine-tuned linear mapping (cf. Step 3 in Figure 1). We utilize the Faiss
index to fetch the top 200 closest (in terms of L2 norm) candidate entities to the transformed
representation of the masked token. Simultaneously, we also calculate the similarity between
candidate entities and the transformed masked token representation using Equation 1, which
yields a probability distribution over the candidates (cf. Step 4 in Figure 1). To obtain the final set
of object entities, we select the top 𝑘 answers where 𝑘 is inferred by 𝑘 = 1//𝑚𝑎𝑥(𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦)
(cf. Step 5 in Figure 1). Finally, we use the Wikidata API to query the correct Wikidata IDs for
the set of selected object entities (cf. Step 6 in Figure 1).

3. Results and Discussion

Detailed results of our approach on the test dataset are shown in Table 1. These outcomes
provide insights into the performance of our approach across different relations, which is
discussed below. In Table 2, a comparison is drawn between the results of our approach, the
baseline method using BERT, and the winning approach.

The overall results of our approach are only marginally above the BERT baseline provided
by the challenge organizers (cf. Table 2). The performance of BERT decreased in the relations
concerned with countries and languages. One reason for this could be that BERT has the
required words in its vocabulary. Thus, is able to produce meaningful outputs. On the other
hand, we were able to increase the models’ performance for relations that depend on fine-tuning
(i.e., <CompoundHasParts>, <PersonPlaysInstrument>, <PersonHasNobelPrize>). However, in this
case, our model just learned to predict the most common object entities without much subject
sensitivity. There are some relations that our model is now able to predict better, without a
dataset-specific explanation. In particular, the increased performance for the <PersonHasAuto-
biography> and <CompanyHasParentOrganisation> show that we are indeed able to predict
entities that were not originally in BERT vocabulary but learned from the Wikipedia2Vec
embedding space.



Table 1
Detailed results of our proposed methodology on the test set

Relation Precision Recall F1 score

BandHasMember 0.0000 0.0000 0.0000
CityLocatedAtRiver 0.0133 0.0300 0.0180

CompanyHasParentOrganisation 0.4933 0.5100 0.4950
CompoundHasParts 0.6768 0.6167 0.6341

CountryBordersCountry 0.3175 0.2804 0.2641
CountryHasOfficialLanguage 0.0256 0.0538 0.0338

CountryHasStates 0.0000 0.0000 0.0000
FootballerPlaysPosition 0.0933 0.2533 0.1343

PersonCauseOfDeath 0.1950 0.6800 0.1967
PersonHasAutobiography 0.0400 0.0350 0.0367

PersonHasEmployer 0.0167 0.0383 0.0223
PersonHasNoblePrize 0.2733 0.8900 0.3430

PersonHasNumberOfChildren 0.0000 0.0000 0.0000
PersonHasPlaceOfDeath 0.1233 0.5300 0.1300
PersonHasProfession 0.0500 0.0895 0.0604

PersonHasSpouse 0.0000 0.0000 0.0000
PersonPlaysInstrument 0.1133 0.1753 0.1313
PersonSpeaksLanguage 0.1467 0.2843 0.1848
RiverBasinsCountry 0.2000 0.3917 0.2462

SeriesHasNumberOfEpisodes 0.0000 0.0000 0.0000
StateBordersState 0.0133 0.0108 0.0113

Average 0.1329 0.2319 0.1401

Table 2
Comparison of our proposed methodology with baseline in Track 1

Method Precision Recall F1 score

BERT - baseline 0.1418 0.1467 0.1399
Our Approach 0.1329 0.2319 0.1401

Winner 0.3950 0.3925 0.3226

4. Conclusion

In this work, a novel approach is introduced that aims to expand the BERT vocabulary by
integrating entity-specific embeddings sourced from Wikipedia2Vec, in order to address the task
of knowledge graph construction using language model probing. To summarize, our proposed
approach comprises the following three steps: (i) Expanding BERT’s vocabulary by incorporat-
ing a larger and more task-specific representation through integration with the Wikipedia2Vec
vocabulary. (ii) Training a mapping from the BERT embedding to the Wikipedia2Vec embedding
space. (iii) Simultaneously performing prompt tuning using OPTIPROMPT and fine-tuning the
mapping between BERT embedding to the Wikipedia2Vec embedding space. In conclusion, we
observed that our model lacked sensitivity when predicting objects for different subject entities.



We think that this behavior might be explained by three sources. Firstly, reducing the embed-
ding size (768 (BERT) to 500 (Wikipedia2Vec)) thus losing parts of the information encoded in
BERT. Secondly, Wikipedia2Vec knows more than 100 times the amount of words/entities than
BERT. Therefore, we hypothesize that the embeddings might not carry enough information
to distinguish between unknown representations. Lastly, it is not clear that BERT encodes the
given subject texts in a meaningful way. Thus, we think that our pipeline would benefit from
an end-to-end pre-training step, that increases both the sensitivity of the output representation
and the knowledge available in the input representation. In the best case, retaining the con-
textual understanding of BERT while enabling the usage of a much larger and task-dependent
vocabulary.
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