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Abstract
Metabolomics has emerged as a promising discipline in pharmaceuticals and preventive healthcare,
holding great potential for disease detection and drug testing. However, analysing large metabolomics
datasets remains challenging, with available methods generally relying on limited and incompletely
annotated biological pathways. This study introduces a novel approach that leverages machine learning
classifiers trained on molecular fingerprints of metabolites, to predict their responses under specific
experimental conditions. The model is evaluated on mass spectrometry metabolomic data for a cellular
model of the genetic disease Ataxia Telangiectasia. In this study, metabolite structures are encoded using
the Morgan fingerprint, a well-established technique widely embraced in drug discovery. The suitability
of this fingerprinting method, in generating unique structural encodings for detected metabolites, is
analysed, and strategies to mitigate resolution limitations inherent to this fingerprint are introduced.
Machine learning classifiers are trained on these fingerprints and exhibit satisfactory performance,
providing evidence that the structural encoding holds predictive power over the metabolic response.
Feature importance analysis, conducted on the best-performing models, identifies the chemical configu-
rations that have the greatest influence to the classification process, shedding light on affected biological
processes. Remarkably, this analysis not only identifies metabolites known to participate in affected
pathways but also discovers metabolites not previously associated with the disease, opening up novel
opportunities for further exploration. As an initial exploration of the proposed approach, this work
lays the foundation for future research that leverages alternative structural encodings, diverse machine
learning models, and explainability tools.
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1. Introduction

Metabolomics, as the quantitative study of small molecule substrates and products of cellular
metabolism, occupies a unique position in the -omics landscape due to its proximity to the
phenotype [1]. The metabolome, representing the final product of genomic, transcriptomic, and
proteomic processes, provides a direct readout of the physiological state of an organism [2].
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Metabolomic profiling of diseased and healthy tissues can help uncover the disease mechanisms
of action and identify metabolic signatures, aiding the identification of potential drug targets [3].
Additionally, metabolomics can help assess the effects of candidate treatments, evaluating the
response at the metabolic level [4]. Therefore, metabolomics serves as an indispensable tool in
preventive healthcare as well as pharmaceutical research and development, with the potential
to enable timely disease diagnosis, early detection, effective drug testing, disease monitoring,
and personalised treatment strategies [5].

The potential of metabolomics lies in characterising and quantifying the metabolites present
in a particular biological system using a combination of analytical tools [5]. Central to this
endeavour are the advancements in mass spectrometry technologies, including in-line chro-
matographic separation modes, ionisation techniques, mass analysers, and detection methods.
Untargeted High-Resolution Mass Spectrometry (HR-MS) has emerged as a powerful tool, capa-
ble of simultaneously detecting a vast array of metabolites, thereby facilitating the identification
of metabolic alterations and the discovery of novel metabolites [6]. However, the analysis and
biological interpretation of the resulting large and complex datasets remains challenging.

In metabolomics studies, a typical approach involves comparing samples from a normal state
to those from a perturbed state, often induced by genetic knockout or the administration of
specific treatments [6]. Pathway enrichment analysis is the prevalent method for comparing
such samples, as it identifies pathways that exhibit a higher degree of overlap with significantly
under or over-expressed metabolites than would be expected by chance. This analysis aids
in pinpointing the affected pathways and unravelling the underlying metabolic mechanisms.
However, this approach poses various challenges, as it heavily relies on the existing knowl-
edge of biological pathways, which is not comprehensive or fully annotated. Furthermore, it
should be applied to metabolomic data with caution, as the method was primarily developed
for transcriptomic data and guidelines for best practices for metabolic pathway enrichment
analysis are still lacking [7]. Lastly, enrichment results were found to be quite sensitive to
the pathway definitions used by different metabolomic databases [8]. Consequently, despite
significant technological advancements, the full potential of metabolomics remains untapped, as
metabolic data analysis often leans on the limited knowledge of known pathways. To achieve a
comprehensive understanding of cellular metabolism, there is a pressing need to extend beyond
the boundaries of known pathways and consider all detected metabolites in the analyses.
When metabolites lack annotations of their roles in enzymatic reactions and metabolic

pathways, chemical similarity emerges as a valuable tool for unravelling potential relationships
with other metabolites. This approach leverages the known tendency for chemically similar
compounds to be found in close proximity within metabolic pathways [9]. Chemical structures
can be analysed to identify enriched chemical features within a specific experimental condition,
thereby providing insights into the affected cellular processes. The structure of metabolites
can be represented using fingerprints, which are binary vectors that capture the presence or
absence of structural properties [10]. Machine Learning (ML) models can then be trained on
the structural encoding of metabolites to predict whether the metabolite level significantly
differs in the sample under study compared to a control. Relationships between the chemical
structures and the metabolic response to given experimental conditions can therefore be
explored in a data-driven manner, opening new avenues for understanding metabolic ways and
identifying biomarkers.



This study examines the interplay between chemical structure andmetabolic response through
a novel approach that combines fingerprinting for structure encoding and machine learning for
the identification of relevant chemical substructures within a given condition. The approach
is evaluated using a cellular model of Ataxia Telangiectasia (AT), a rare neurodegenerative
disorder caused by mutations in the Ataxia Telangiectasia Mutated (ATM) gene, known to
disrupt numerous metabolic pathways [11]. The study analyses metabolic data obtained through
untargeted mass spectrometry, comparing the disease cellular model with a control sample.

In the study, metabolite structures are encoded using the Morgan fingerprint, the most widely
embraced and rigorously validated molecular fingerprinting technique in drug discovery [12].
The suitability of this fingerprinting method for providing unique structural encodings for the
detected metabolites is carefully evaluated. Resolution limitations, leading to duplicate finger-
prints for distinct metabolites, are addressed by proposing extensions to the Morgan fingerprint.
ML classifiers are then trained on the fingerprints to predict down-regulated metabolites [13].
The emphasis on down-regulation stems from the disease’s well-established tendency to inhibit
cellular activities, although up-regulated metabolites can be similarly explored. The trained
models achieve satisfactory performance, providing evidence that the structural encoding of a
metabolite holds predictive value over its response to a particular condition. Finally, the study
analyses feature importance to identify the specific chemical substructures that contribute to
the classification process, shedding light on the biological pathways affected by the disease.
Remarkably, feature importance computed for one of the best-performing models identifies
metabolites known to participate in affected pathways, thereby validating existing knowledge, as
well as groups of metabolites not previously associated with AT, opening up novel opportunities
for further investigation.

In summary, this article introduces a novel approach that harnesses molecular fingerprinting
and machine learning for the analysis of large metabolomic datasets. The evaluation focuses
on three key aspects: the suitability of the Morgan fingerprint for representing metabolite
structures, the performance of the trained models, and the interpretability of the learned models.
As an initial exploration, this work lays the foundation for future research that leverages
alternative structural encodings, diverse machine learning models, and explainability tools.

2. Data and Methods

The study used fibroblasts AT GM00648 as a cellular model for AT and AG09429 for the
control. Metabolite analysis was conducted in triplicate using the UHPLC Vanquish system
with an Accucore 150 amide HILIC column. LC was coupled to an Orbitrap Exploris 240
mass spectrometer equipped with an H-ESI source, operating in positive and negative modes
and scanning the 80–800 m/z range. Metabolite identification and quantitation were carried
out using Compound Discoverer 3.2 (Thermo Fisher Scientific). Data processing led to the
identification of 4643 chemical structures. To enhance the precision of metabolite identification,
the mass of each detected compound was compared to the mass of the matched compound
recorded in the ChemSpider database and metabolites exhibiting a delta mass exceeding 5 ppm
were excluded from the dataset. Duplicate molecules were filtered, retaining the one with



the highest peaks and yielding a set of 2453 distinct metabolites. Within this subset, only 157
metabolites were successfully assigned a KEGG ID that would allow for pathway enrichment
analysis. The ratios between the measured quantities in the diseased and healthy conditions,
along with the corresponding adjusted p-values, were calculated for each metabolite.
Molecular fingerprints of chemical structures were computed using the RDKit cheminfor-

matics Python library [14]. The chosen encoding uses the Morgan molecular fingerprinting
method with a radius of 2 and 1024 bits and accounts for molecule chirality. The target class
for the classification task is binary and indicates whether the metabolite is significantly down-
regulated, i.e. its adjusted p-value is below 0.05 and the ratio of diseased to healthy is less
than 1. The data exhibits class imbalance, with the positive class accounting for 17% of the
data. T-distributed Stochastic Neighbor Embedding (t-SNE) [15] was employed to map data
to a bi-dimensional space. Two oversampling algorithms, Synthetic Minority Over-sampling
TEchnique (SMOTE) [16] and ADAptive SYNthetic (ADASYN) [17], were used to balance the
data by generating synthetic samples for the minority class.
The metrics to evaluate the models include Accuracy (𝐴), F1-score (𝐹1), Recall for class 1

(𝑅1), Balanced Accuracy (𝐵𝐴), and Matthew’s Correlation Coefficient (𝑀𝐶𝐶). 𝐴 and macro
𝐹1 provide an assessment of the classifier’s performance across both classes but tend to yield
overly optimistic results, particularly on imbalanced datasets. 𝐵𝐴 and 𝑀𝐶𝐶 serve as a more
informative statistical measure for unbalanced datasets, while 𝐹1 and 𝑅1 place emphasis on the
models’ ability to correctly classify instances of class 1. Six ML algorithms were used - Decision
Tree (DT), gaussian Naive Bayes (NB), Random Forest (RF), Support Vector Machines (SVM),
Logistic Regression (LR), and XGBoost (XGB) - initially without data preprocessing and then
applying both t-SNE and either SMOTE or ADASYN. Information gain was used to compute
feature importance for the XGB model.

3. Results and Discussion

3.1. Structural encoding

The selected fingerprinting method is evaluated in terms of its resolution power, i.e. the ability
to provide molecules with a unique encoding. 196 molecules were found to share identical
fingerprints with at least one other metabolite. Further investigation into these groups of
molecules with identical fingerprints unveiled a consistent pattern: they consisted of molecules
that were identical except for the length of hydrocarbon chains, as exemplified in Figure 1 (a).
This is unsurprising given that the selected fingerprint method resolves substructures of diameter
4 and cannot account for longer repetitive structures, which are rare in libraries screened for drug
discovery. To enhance the resolution of the structural encoding, two strategies are proposed:
(a) to adopt a count fingerprint rather than a binary encoding, capturing not just the presence
of substructures but also their quantity, and (b) to incorporate the local information detected
by the binary fingerprint with global properties, either measured during data acquisition or
computed from the structure. Considering that the length of the hydrocarbon chain influences
the molecule’s weight, polarity, and interaction with chromatography phases, the molecular
weight, partition coefficient (logP), and retention time (RT) are selected as additional features.
Both approaches yield unique encodings and are illustrated in Figures 1 (b) and (c).



m1

m3

m5

m7

m2

m4

m6

m8

(a)

(b)

(c)

Figure 1: (a) Group of metabolites with identical morgan fingerprint, (b) number of repetitions of
given substructures (corresponding to the bits 80, 887, and 119 of the fingerprint) and (c) global physico-
chemical properties measured or computed for each molecule. Count fingerprints and added global
properties can both provide a unique structural encoding for groups of molecules with varying hydro-
carbon chain lengths.

3.2. Performance of trained models

The performance metrics for ML models trained on the binary Morgan fingerprint and the two
alternative structural encodings are presented in Table 1. Among models trained on binary data,
NB and XGB emerge as the top performers, achieving 𝐵𝐴 of 0.73 and 0.68, respectively. For
both alternative encodings, the performance of DT, SVM and RF is comparable to that of models
trained on binary data, while LR and XGB demonstrate substantial improvements in both 𝑅1
and 𝐵𝐴. XGB trained on the binary fingerprint with added global features demonstrates good
performance, with 𝑅1 of 0.65 and 𝐵𝐴 of 0.75, providing evidence that the structural properties
of metabolites hold predictive power over their response to particular conditions.
The original dataset presents notable challenges stemming from class imbalance and a

relatively large number of features (1024) in comparison to the sample size (2453). To tackle
these issues, the binary Morgan fingerprint data were pre-processed with t-SNE to reduce
dimensionality and oversampled with either ADASYN or SMOTE techniques. Table 2 reports
the metrics calculated for ML models trained on original and pre-processed data. For models DT,
NB, RF, and XGB, an improvement in 𝑅1 is achieved at the expense of 𝐵𝐴. Conversely, models
SVM and LR demonstrate a substantial improvement in both 𝑅1 and 𝐵𝐴. However, features
transformation, while beneficial for model performance, prevents direct feature interpretation.



Table 1
Performance metrics for six ML classifiers trained on three different structural encodings

Oversampling Binary Morgan FP Count Morgan FP Binary FP + global properties

model A F1 R1 MCC BA A F1 R1 MCC BA A F1 R1 MCC BA

DT 0.83 0.60 0.29 0.21 0.60 0.87 0.62 0.23 0.28 0.60 0.82 0.55 0.18 0.10 0.54
NB 0.82 0.68 0.61 0.38 0.73 0.59 0.50 0.68 0.17 0.63 0.80 0.62 0.44 0.25 0.64
SVM 0.83 0.60 0.27 0.20 0.59 0.80 0.59 0.35 0.19 0.61 0.80 0.57 0.26 0.13 0.57
LR 0.78 0.54 0.23 0.08 0.54 0.82 0.65 0.47 0.31 0.67 0.79 0.65 0.61 0.34 0.72
RF 0.87 0.57 0.15 0.18 0.56 0.87 0.60 0.19 0.25 0.58 0.87 0.56 0.13 0.18 0.55
XGB 0.80 0.64 0.53 0.30 0.68 0.81 0.66 0.58 0.35 0.71 0.79 0.65 0.65 0.35 0.75

Table 2
Performance metrics for six ML classifiers trained on fingerprint data with and without pre-processing

oversampling None t-SNE + SMOTE t-SNE + ADASYN

model A F1 R1 MCC BA A F1 R1 MCC BA A F1 R1 MCC BA

DT 0.83 0.60 0.29 0.21 0.60 0.72 0.56 0.45 0.16 0.60 0.72 0.56 0.48 0.17 0.62
NB 0.82 0.68 0.61 0.38 0.73 0.64 0.55 0.79 0.28 0.71 0.61 0.53 0.79 0.25 0.69
SVM 0.83 0.60 0.27 0.20 0.59 0.65 0.56 0.79 0.28 0.71 0.61 0.53 0.79 0.25 0.69
LR 0.78 0.54 0.23 0.08 0.54 0.64 0.55 0.76 0.26 0.69 0.63 0.54 0.77 0.26 0.69
RF 0.87 0.57 0.15 0.18 0.56 0.73 0.57 0.45 0.17 0.61 0.73 0.58 0.52 0.21 0.64
XGB 0.80 0.64 0.53 0.30 0.68 0.60 0.51 0.68 0.18 0.63 0.58 0.51 0.74 0.20 0.65

3.3. Interpretation of trained models

To gain insights into the chemical structures contributing to the classification, feature importance
analysis was conducted on the XGB model trained with the non-oversampled Morgan binary
fingerprint. As illustrated in Figure 2, the feature importance analysis reveals several key
features that influence the model predictions, corresponding to specific chemical configurations
within the metabolites. Notably, the influential bits represent chemical configurations contained
in saturated (bits 119, 794, and 591) and unsaturated (bit 849) fatty acid chains, phosphate groups
(bits 814 and 192), nucleic acids (bits 640 and 932), and amino acids (bits 820 and 573).

Upon closer examination of the affected metabolites containing bits 640 and 932, several
nucleotides and nucleotide-containing compounds were identified. These molecules are the
building blocks of nucleic acids and play essential roles as coenzymes and signalling molecules,
including Acetyl-CoA, Coenzyme A, AMP, and GMP. These observations align with prior
knowledge, as the synthesis of nucleotides is known to be promoted by ATM and suppressed
in AT [18]. Moreover, the nicotinamide corresponding to bit 984 points to other nucleotide-
containing metabolites, NAD+ and NADP+, essential anti-oxidant cofactors whose role in AT as
a result of impaired response to reactive oxygen species has been thoroughly characterised [13].
Affected metabolites containing structures represented by bits 119, 794, 591, and 849 encompass



a diverse array of lipids, with a prominent presence of phospholipids. The metabolism of these
lipids has been reported to be disrupted in the context of the disease [19]
Notably, bits 573 and 820 were linked to over 100 down-regulated amino acids, dipeptides,

and their derivatives. While the role of the tripeptide glutathione in oxidative stress within
the context of AT has been characterised [20], the role of other peptides remains unknown,
presenting a promising avenue for future investigations.

814                820                119                794

591                640                849                192 

984                583                932                573 

(a) (b)

Figure 2: (a) The most important features for the XGB model trained on binary Morgan fingerprint and
(b) the corresponding chemical configurations.

3.4. Opportunities for further improvement

Several avenues to further improve model performance can be explored. Alternative hashed
fingerprints frequently employed in drug discovery, such as Daylight, Atop Pair, and Topological
Torsion, can provide higher encoding resolution. Additionally, fine-tuning parameters such as
fingerprint size and radius can positively impact model performance. Expanding the metabolic
dataset by integrating measurements from different chromatographic columns, such as HILIC
and C18, would effectively double the dataset size and enhance its diversity. The number of
features can be reduced by calculating their correlation with the label vector and removing those
with coefficients below a certain threshold, thereby reducing the dimensionality of the dataset
while preserving the interpretability of features. A feature correlation study can be conducted to
eliminate highly correlated features and reduce collinearity. Alternatively, compact molecular
fingerprints based on pattern-matching could be explored, such as the MACCS fingerprint
with 166 features. Lastly, it should be noted that classification tasks are intrinsically more



challenging for complex conditions with multiple affected pathways and a diverse range of
affected metabolites like in AT. Consequently, achieving excellent classification performance in
such a complex disease is challenging. Conversely, classification tasks may be relatively easier
in experimental conditions where only a few metabolic pathways are affected.

4. Conclusions

This study proposes a novel approach for the comprehensive study of metabolites which does not
rely on prior knowledge of metabolic pathways. By representing metabolites using molecular
fingerprints and training machine learning classifiers on these structural encodings, the study
effectively predicts down-regulated metabolites in the disease under study. Feature importance
analysis provides insights into the cellular processes affected by the disease, validating existing
knowledge and uncovering novel associations. This study serves as a foundation for future
research exploring alternative structural encodings, diverse machine learning models, and ad-
vanced explainability techniques. These explorations are essential for the ongoing development
of metabolomics as a powerful tool for enhancing the understanding of cellular metabolism and
its implications for human health.
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