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Abstract
Over the last decades, many prognostic models based on artificial intelligence techniques have been
used to provide detailed predictions in healthcare. Unfortunately, the real-world observational data used
to train and validate these models are almost always affected by biases that can strongly impact the
outcomes validity: two examples are values missing not-at-random and selection bias. Addressing them
is a key element in achieving transportability and in studying the causal relationships that are critical in
clinical decision making, going beyond simpler statistical approaches based on probabilistic association.

In this context, we propose a novel approach that combines selection diagrams, missingness graphs,
causal discovery and prior knowledge into a single graphical model to estimate the cardiovascular risk
of adolescent and young females who survived breast cancer. We learn this model from data comprising
two different cohorts of patients. The resulting causal network model is validated by expert clinicians in
terms of risk assessment, accuracy and explainability, and provides a prognostic model that outperforms
competing machine learning methods.
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1. Introduction

An important application of artificial intelligence in healthcare is predicting a disease trajectory
conditional on the patient’s history and a projected treatment strategy. In this context, we
aim to develop a model that generalizes well: it must provide accurate predictions not only
on the study cohort (the population from which the data have been collected) but also on the
target cohort, the general population that it is designed for. The model’s validity, accuracy and
usefulness in clinical practice are then of paramount relevance.

In order to establish validity in a rigorous causal framework, we must clearly identify the
scope of the study the data come from, as well as the applicability and limitations of the theory
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we are studying. However, many other issues can impact model validity. Firstly, study cohorts
differ from target cohorts in both randomized controlled trials and clinical observational studies
due to their inclusion and exclusion criteria. Secondly, missingness patterns may introduce bias
in the model when the data are missing not at random (MNAR). Thirdly, information can be
fragmented across different data sets (data sparsity) and experts (domain knowledge). Therefore,
it is important to understand the data selection mechanism and the merging process to ensure
the model validity and generalisability [1].

Our main contributions in this context are:

• Developing the first causal network model for estimating the risk of cardiovascular
diseases in adolescent and young adults that have been treated and survived breast cancer.

• Developing and adapting a methodological approach to deal with data affected by selection
bias and suffering by MNAR.

• A thoughtful review of the model we developed and of its implications by domain experts
(that is, expert physicians).

The rest of the paper is organized as follows. We start by introducing our research question
and the topic of the study: cardio-oncology, the subfield of cardiology that aims at significantly
reducing cardiovascular morbidity and mortality and at improving the quality of life in cancer
survivors, here young patients (Section 2). We complete this introduction by providing an
overview of the related work available in the literature (Section 3). We then describe the
data (Section 4.1), the domain knowledge (Section 4.2) and the causal networks methodology
(Section 5) that we use to design and develop our model. Finally, we describe our findings
(Section 6), we contrast them with the available clinical and epidemiological knowledge and we
assess model performance against that of other commonly-used machine learning approaches.
We complete the paper by summarising our conclusions and presenting future work (Section 7).

2. Young Adult Breast Cancer Survivors

The increasing number and life expectancy of cancer survivors in the last decades has high-
lighted the acute and long-term cardio-toxic effects of different cancer therapies. The most
common cancer among adolescent and young-adult females (AYAs; 15–39 years at the first cancer
diagnosis) is breast cancer (BC), which is a rare disease with unique genetic and biological
features in this age class. AYA female patients are more likely to be genetically susceptible to
more aggressive form of BC than older females, and their diagnosis is often delayed because of
the lack of BC screening policies for their age group. While lower than in older females with
BC, AYAs BC survival rates are high and continuously increasing, thus making such patients
likely to be long-term survivors [2]. Moreover, BC is biologically more aggressive in AYAs than
in older women with BC, and requires more aggressive combined neoadjuvant (pre-surgery)
and adjuvant (post-surgery) treatments [3].

While cardiovascular diseases (CVDs) are well characterized in some groups of cancer sur-
vivors, only few studies describe CVDs in AYAs because of their rarity in young patients.
Therefore, further evidence is needed to understand and prevent CVDs in AYAs with BC for
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helping clinicians to plan personalized and effective follow-up guidelines for these patients.
Thus, with this work we are interested in answering to the question: “To what extent is it possible
to predict and explain individual susceptibility to cardiotoxicity in AYA with BC?”,

3. Related works

Machine learning (ML) techniques have achieved remarkable results in predicting CVDs in can-
cer patients [4]. Unfortunately, they are still not part of the clinical practice: cardio-oncologists
rely on older, less accurate cardiovascular risk stratification tools such as the Framingham score
[5]. The reasons for their reluctance to use ML methods are as follows:

• Data Availability. The best-performing ML models such as XGBoost and neural networks
rely on biomarkers, laboratory tests, electrocardiograms, echocardiograms, computer-
ized tomography, and cardiac magnetic resonance imaging data [6]. However, cardio-
oncologists rarely have immediate and complete access to such data in their everyday
practice.

• Computational Burden and Data Scarcity. ML models are known to be computation-
ally intensive and to require large amounts of data to achieve optimal performance. This
limits their use in most of healthcare systems, even in rich countries, because healthcare
data suffer from quality issues and are typically scarce. They are also often biased and
affected by missing-not-at-random patterns [7] in ways ML models do not account for.

• High Skills, Knowledge and Expertise. Current state-of-the-art ML methods require
specialized skills, knowledge and expertise to train, validate and deploy especially when
combining different types of data, which is almost always the case in healthcare [8].

• Lack of Interpretability. The current state-of-the-art ML models are still difficult to
interpret despite recent progress from Explainable AI in addressing this issue [9].

• Lack of generalizability. ML models have been applied successfully to childhood cancer
survivors [10], where using a limited number of variables, a relatively simple model, and
an easy-to-understand user-interface ensured that they were incorporated into clinical
practice. However, cancer is a collection of very complex and heterogeneous diseases,
making ML models unlikely to transfer successfully to other cancer survivors cohorts.

• Correlation vs Causation. ML models are typically developed using observational
data, and in general they can achieve excellent predictive accuracy by leveraging the
association between the response and the observed variables. However, clinicians operate
in a causal framework [11] where they need to evaluate what the outcome could be when
prescribing a particular treatment.
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4. Materials

4.1. Data

This project makes use of data coming from two separate cohorts:

• The population-based cohort (PBC): a retrospective cohort of about 1,500 AYAs BC pa-
tients who completed cancer treatment, that is, that survived at least 1 year after the cancer
diagnosis. In this cohort, BC cases have been identified in population-based cancer reg-
istries and the information from each BC patient has been linked to several administrative
data sets (hospital discharge records, outpatients and drug flows) for CVD follow-ups [12].

• The clinical-based cohort (CBC): a retrospective single-institution clinical cohort con-
sisting of 340 additional BC patients, with additional detailed information on cancer
prognostic factors but with no CVD follow-up information.

Around 3% of AYAs BC patients from the PBC had at least one CVD event during the follow-up
(mean follow-up time = 5 years). However, the Framingham score for women with the same
characteristics as those in the PBC ranges between 0 and 9, which translates to a predicted
risk of 0% to 1% of developing a hard coronary heart disease (such as myocardial infraction)
or of dying for a CVD event within 10 years [5]. Exploring the PBC further, we found that
the most frequent CVDs were due to chemotherapy-induced cardiac damages (arrhythmia and
heart failure, in around 1% of patients) and to ischemic heart diseases that may be related to
hormone therapy (in around 2% of patients). Moreover, 15% of patients developed at least one
major cardiac risk factor (dyslipidemia, diabetes and hypertension) after cancer treatment, thus
resulting in an increase in the corresponding Framingham CVD risk.

The CBC consists of patients treated by a single institution (Fondazione IRCCS Istituto
Nazionale dei Tumori di Milano) and is biased due to the patient selection mechanism in ways
that are apparent from the baseline and treatment variables distribution. Around 8% of AYAs BC
patients from the CBC have at least one major cardiac risk factor before treatment, compared to
only 5% in the PBC. Moreover, there is an higher proportion of patients receiving neoadjuvant
treatments (30% in the CBC vs 23% in the PBC), which are more likely to be prescribed when
dealing with later tumor stages at diagnosis (with lymph nodes involvement, metastasis and high
dimension tumors). These facts reflect a more severe case-mix of both baseline characteristics
of the patients and of tumor aggressiveness in the CBC compared to the PBC, which is expected
since the Institute is a referral expertise cancer center.

Furthermore, the PBC and the CBC were collected for different purposes, resulting in dif-
ferent missingness mechanisms. In the CBC, the purpose is patient care, so factors that may
influence tumor prognosis (such as tumor grading, staging, etc.) are recorded in greater detail;
whereas cancer registry data, which form the basis of the PBC, are collected for administrative,
epidemiological monitoring and public health purposes. More details about the distribution
of missing values by cohort type is reported in Table S1 in the Supplementary Material. their
percentage of completeness in the cohort of origin.

4



Alice Bernasconi et al. CEUR Workshop Proceedings 1–16

4.2. Clinical Knowledge on Cardiovascular Diseases

In this section we elicit the clinical knowledge on cardio-oncology. To make it easier for the
reader to understand how the domain knowledge has been translated from natural language
to the structure of the causal network model, we report in square brackets the label of the
corresponding nodes.

The description of the selection mechanism behind the selection node [cohort] has already
been described in Section 4.1.

To decide which treatment to give to a young BC patient, clinicians rely on the most well-
known prognostic factors for 5-year cancer survival [death_in_5y] [13]: age (below or
above 35 years) [age35], tumor grade [grade], tumor histology [histology], ki67+ sta-
tus [ki67], molecular subtype [receptors], vascular invasion [vascular], lymph nodes
involvement [pN] and tumor dimension [pT]. For example, triple negative BC is a specific
molecular subtype of BC that is more common in AYAs than in other age groups (prevalence
15%–20% [14]) and whose treatment options are limited to chemotherapy and/or radiotherapy
because target therapies are ineffective.

The risk of CVDs after both neoadjuvant [_neo] and adjuvant [_adju] cancer treatments
is well known. For instance, anthracycline is frequently prescribed as a chemotherapy regimen
[chemo_], either alone or in combinations with other chemotherapical drugs. Its cardio-
toxic effects are well documented and largely attributable to the generation of free radicals:
it ultimately results in left-ventricular dysfunction, arrhythmias [cardiotoxicity] and, in
turn, heart failure in the most severe cases [15] [cvds]. Even though radiotherapy [radio_]
reduces the risk of cancer recurrence and death in BC patients, the heart may be incidentally
exposed to ionizing radiation when the primary cancer is located in the left breast, with in turn
increases the risk of heart diseases [cvds] [16]. In addition, target therapy [target_] has
been shown to induce acute cardiac toxicity [cardiotoxicity], especially when administered
as an adjuvant treatment (say, trastuzumab for young BC patients [17]), due to possible changes
in oxidative stress that reflect mainly in left-ventricular-ejection fraction reduction. However, it
is generally believed that the trastuzumab-induced cardiotoxic effects are reversible and that
they do not impact long-term CVD risk [18].

Moreover, 5 years of tamoxifen [hormons_], with or without ovarian suppression/ablation,
is considered the standard hormone therapy in young women with hormone-receptor positive
disease, which represent the vast majority in this age group. However, it has frequent chronic
late effects like type-2 diabetes [t2db], hypertension [hypertension] and dyslipidemia
[dyspidemia] which are all known to be major risk factors for long-term ischemic heart
diseases [ischemic_heart_disease] [19].

5. Methods

Assessing validity is a crucial aspect of causal inference. Specifically, internal validity refers
to generalizing the evidence from a study sample to the underlying study population; external
validity refers to transporting the evidence to a different target population. The interest in the
transportability of inference has increased exponentially in the last few years [20, 21] thanks
to methodological breakthroughs in handling distribution shifts and selection bias. In this
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work, we leverage both missingness graphs [22, 23, 24] and selection diagrams [25] to learn a
causal Bayesian network by combining observational data together with prior knowledge in
the presence of selection bias and missingness bias.

5.1. Causal Models for Missing Values and Selection Bias

Model-based approaches rely on the formal specification of a model representing the interactions
we are interested in. In the case of causal inference, causal graphs are the de-facto standard for
encoding causal relationships.

Definition 1 (Causal Graph). A causal graph 𝒢 = (V,E) [26] is a directed acyclic graph
where for each directed edge (𝑋,𝑌 ) ∈ E, 𝑋 is a direct cause of 𝑌 and 𝑌 is a direct effect of 𝑋 .
The vertex set V can be split into two disjoint subsets V = O ∪U, where O is the set of the fully
observed variables (with no missing values) and U is the set of fully unobserved variables, also
known as latent variables.

A causal graph allows researches to (i) decide if a consistent estimator exists for a casual
effect and (ii) derive that estimator directly from the graph. Being able to correctly estimate
causal effects is extremely important for policy making. For instance, it allows clinicians to
assess the impact of a given drug on a disease from observational studies when randomized
controlled trials are not available for a particular sub-population [27]. In more general terms,
let 𝒢 be a causal graph, 𝑋 a treatment and 𝑌 an outcome. A consistent estimator for the causal
effect of 𝑋 on 𝑌 is given by the do-operator :

𝑃 (𝑌 = 𝑦 | 𝑑𝑜(𝑋 = 𝑥)) =
∑︁
z

𝑃 (𝑌 = 𝑦 |𝑋 = 𝑥,Z = z)𝑃 (Z = z) (1)

if there exists a set Z that satisfies the back-door criterion for 𝒢 [28]. If no consistent estimator
exists, confounding bias makes it impossible to estimate the causal effect correctly. Unbiased
estimators of causal effects are theoretically possible even without a causal graph, but their
assumptions are rarely satisfied in practical applications [29]. Therefore, causal graphs remain
the tool of choice to achieve both explainability and consistency.

The missingness mechanism also plays an important role in causal modeling. Common
pre-processing techniques that deal with missing values such as sample deletion and missing
imputation are often ineffective or even detrimental to causal effect estimation. For instance, [30,
31] have shown how missing-data handling has a significant impact on the clinical conclusions
that can be drawn from experimental results . Therefore, modeling the reason why a given
value is missing is crucial, especially for MNAR data.

The framework for modeling missingness mechanisms is detailed in Rubin’s foundational
work [32]. More recently, missingness graphs [33, 22] have been proposed to reconcile Rubin’s
framework with causal graphs by directly including the missingness indicators in an extended
graph structure.

Definition 2 (Missingness Graph). A missingness graphℳ = (V,E) [22] is a causal graph
whose vertex set V is partitioned into five disjoint subsets O ∪U ∪M ∪ S ∪R, where: M is the
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set of the partially observed variables, that is, the variables with at least one missing value; S is
the set of the proxy variables, that is, the variables that are actually observed; R is the set of the
missingness indicators.

Since missingness graphs are extended causal graphs, d-separation [34] implies (conditional)
independence. Briefly, a set of variables Z d-separates 𝑋 from 𝑌 , denoted by 𝑋 ⊥⊥ 𝑌 | Z,
if it blocks every path (the combination of all edges and nodes that connect two selected
nodes of interest) between 𝑋 and 𝑌 . A path is blocked by Z if and only if it contains: a fork
𝐴← 𝐵 → 𝐶 or a chain 𝐴→ 𝐵 → 𝐶 so that 𝐵 is in Z, or, a collider 𝐴→ 𝐵 ← 𝐶 so that 𝐵,
or any descendant of it, is not in Z. In this framework, there exists a one-to-one correspondence
between the Missing Completely At Random (MCAR), Missing At Random (MAR) and MNAR
patterns and the independence statements implied by the missingness graph:

• MCAR implies O∪U∪M ⊥⊥ R: missingness is random and independent from the fully
observed variables O and the partially observed variables M;

• MAR implies U ∪M ⊥⊥ R | O: missingness is random only conditionally on the fully
observed variables O;

• MNAR if neither MCAR nor MAR.

This makes it possible to verify whether a consistent estimator for the joint probability 𝑃 (X)
exists in case of MNAR. When the conditions in [33] hold, 𝑃 (X) is recoverable and a consistent
estimator is given by

𝑃 (X) =
𝑃 (RX = 0,X)∏︀

𝑋∈X 𝑃 (𝑅𝑋 = 0 |Π𝑅𝑋
,RΠ𝑅𝑋

= 0)
, (2)

where 𝑅𝑋 is the missingness indicator for variable 𝑋 , Π𝑅𝑋
is the parent set of 𝑅𝑋 and RX is

the union of the 𝑅𝑋 for all the variables in X.
When the data are a collation of multiple data sets, their different selection criteria may induce

discrepancies in the distribution of some of the collected variables. In such cases, pooling the
data together without modeling the context from which observations come from could induce
inconsistent estimates [35]. Selection diagrams are introduced as an extension of causal graphs
for this purpose. We report the definition for completeness.

Definition 3 (Selection Diagram). Let Π and Π* be two different populations with a common
underlying causal graph 𝒢. A selection diagram 𝒮 extends the causal graph 𝒢 so that:

• E𝒢 ⊂ E𝒮 , that is, 𝒢 is a sub-graph of 𝒮 ;
• ∃S ̸= ∅,S ⊂ V𝒮 ∧ S ̸⊂ V𝒢 where (𝑆𝑖 → 𝑉𝑖) ∈ E𝒮 iff 𝑓𝑖 ̸= 𝑓*

𝑖 , that is, the variables S
point to the variables V𝒢 that differ in their value assignment 𝑓 in Π and Π*.

The variables S are usually called selection variables and allow us to pool together all the
observations while keeping track of their provenance. In related work on selection bias, these
variables are called context variables and identify the context in which V𝒢 have been collected.
We refer the reader to [36] for an extended discussion of the differences between selection
variables and context variables. In our setting we can use these terms interchangeably. Intuitively,
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selection bias represents the difference between a consistent estimate for Π and a consistent
estimate for Π*: it limits the our ability to transport the inference made on a model for a study
population Π to another target population Π* due to the differences in their selection criteria.
As for d-separation, when a selection diagram 𝒮 is modeled, it is possible to identify a consistent
estimator for the given set of selection variables S using the g-transportability [37] criterion.

Once a causal graph 𝒢 is designed, we need to connect it to the data 𝒟. To do so, we rely
on Casual networks (CNs) [38], an extension of the well known Bayesian networks (BNs) [39],
where the underlying graph is a causal graph.

Definition 4 (Causal Network). Let be 𝒢 a causal graph and let 𝑃 (X) be a global probability
distribution with parameters Θ. A causal network 𝒞 = (𝒢,Θ) is a causal model where each
variable of X is a vertex of 𝒢 and 𝑃 (X) factorizes into local probability distributions following:

𝑃 (X) =
∏︁
𝑋∈X

𝑃 (𝑋 |Π𝑋) (3)

where Π𝑋 is the parent set of the variable 𝑋 .

If we combine a missingness graph and a selection diagram into a single causal graph, we
can recover from confounding bias, inconsistent estimators due to missing values and domain
discrepancies with a single causal network.

5.2. Causal Discovery with Missing Values and Prior Knowledge

Manually constructing the true causal graph is virtually impossible in real-world applications
where there is little to no control over the experimental setting. For instance, there could
be unobserved variables affecting the data generating mechanism or unknown interactions
between the observed variables. Causal discovery [40, 41] focuses on recovering the causal
graph from collected data and prior knowledge. The existing literature typically assumes that
there are no missing values or that the missingness mechanism is either MCAR or MAR [42];
extensions to MNAR have only appeared in recent years [23, 24].

In this contribution, we take into account the impact of the missingness mechanism using the
Structural Expectation-Maximization (SEM) algorithm [43, 44, 45] and clinical prior knowledge.
At its core, SEM repeats two steps until convergence is reached:

• Expectation (E): impute the missing values ̂︀𝒟𝑖 from ̂︀𝒞𝑖 by estimating ̂︀Θ𝑖 using ̂︀𝒢𝑖.
• Maximization (M): find ̂︀𝒢𝑖+1 that maximises a given score function for ̂︀𝒟𝑖.

At the end of the 𝑖th iteration, SEM produces an estimated causal network ̂︀𝒞𝑖+1 that will be
the starting point of the (𝑖 + 1)th iteration. In the case of MNAR, it is essential to model
the missingness mechanism a priori in order to avoid spurious associations induced by the
missingness pattern. We achieve that by providing an initial 𝒢0 that encodes a partially-specified
missingness graph from prior knowledge and by fixing its arcs in place throughout the causal
discovery, effectively assuming that they correctly specify the missingness mechanism. Hence,
the SEM algorithm only extends the initial graph, looking for a super-graph of 𝒢0 that better
fits the collected data 𝒟.
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5.3. Causal Model Evaluation

Literature validation. We validated the edges that are added by the SEM algorithm to the
model using the medical literature to support the results relevance in this domain. For this
purpose, we performed a literature review to identify publications that explain what we observe
in the data.

Performance metrics. The combined data set comprising the PBC and CBC cohorts was
split in a training set and a test set. As mentioned in Section 4.1, the CBC does not include
information on the outcome variables, so we included it only in the training set. The ratio
between training and test set was 70% (60% PBC + 10% CBC) / 30% (PBC). We considered further
splitting the training set to obtain a validation set, but that would reduce the sets sample size to
the point of making the analysis unfeasible.

We evaluated the CN we learned from the training set on the test set by estimating the
probability of CVDs and the associated Area Under the receiver operating characteristic Curve
(AUC). In particular, we contrasted the AUC obtained with 𝒢0, with the network learned from
SEM (starting from 𝒢0), and with other standard ML methods. AUC represents the degree or
measure of separability: it measures how much the model is capable of distinguishing between
classes. The higher the AUC, the better the model is at predicting healthy individuals as healthy
and individuals affected by CVDs as at risk.

6. Experimental Results

Validation of SEM algorithm results. Figure 1 shows the network learned by SEM: edges
elicited from the domain knowledge are in black, while the new ones, that highlight new medical
insights, are in bold blue. The latter comprise:

• Edges directed from [cohort] to the three adjuvant treatments [radio_adju],
[chemo_adju], [hormons_adju] and to one neoadjuvant treatment [target_neo].
These edges can be explained by the selection mechanism: the treatments nodes act as
proxies of case severity [13] which is more likely to be higher in the CBC than in the PBC.

• Edges directed from the neoadjuvant treatments [chemo_neo] and [target_neo] to ad-
juvant treatments [chemo_adju], [radio_adju] and [target_adju]. These edges
can be explained by surgical details not encoded in the [surgery] node, which only
describes whether the surgical approach was radical or conservative. The prioritization of
breast preservation in AYAs results in more conservative surgical approaches and, in turn,
in a higher probability of incomplete surgical margins. As a result, adjuvant treatments
are more frequently used to reduce the risk of both local and distant recurrences [46].

• Edges directed from target therapy [target_neo] to cardiovascular diseases [cvds].
These edges can be explained by other unstudied effects of oxidative stress and inflam-
mation that induce CVDs but that are not mediated by cardiotoxicity (for instance,
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Figure 1: Causal network learned by combining data together with prior knowledge. The edges in black
are included in the prior knowledge provided by clinicians, the edges in blue are added by the SEM
algorithm.

metabolomic and other unmeasured CV risk factors such as obesity) [47]. Moreover, ac-
cording to the literature, our understanding of the mechanisms of trastuzumab-mediated
cardiotoxicity is still evolving [17]. Therefore, they should be further investigated to
better tailor the CVDs follow-up guidelines in young BC survivors.

Model performance. The CN model based on the clinical prior knowledge illustrated in
Section 4.2 showed a strong classification performance, with an AUC of about 83% in the test
set. The new edges introduced by the SEM algorithm improved performance to about 88%.
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It is important to clarify that results obtained from standard ML methods are not directly
comparable to those obtained by the proposed approach, for several reasons. Firstly, standard
ML methods are not designed to accommodate missing values, relying instead on pre-processing
techniques such as sample deletion or imputation. Therefore, only cases coming from the PBC
and with complete information on all variables, less than half of the available cases (≈ 800), can
be used to train and validate ML models. Secondly, these models do not address the selection bias
and lack of external validity. Finally, their results are not causally and clinically interpretable.
Against these limitations, we can see in Table 1 that the proposed CN models outperforms all
standard ML methods in terms of classification performance.

Table 1
Model performance comparison using Area Under the receiver operating characteristic Curve (AUC).

Random XGBoost AODE Naive CN CN
Forest Bayes prior only prior+SEM

AUC 36.2% 65.6% 74.0% 72.7% 82.9% 87.6%

7. Conclusions and Future work

The CN shown in Figure 1 is the first causal network model for estimating the CVD risk in
adolescents and young adult females who survived breast cancer. Thanks to the combination of
several causal inference methods, including missingness graphs, selection diagrams and causal
discovery algorithms, we were able to build a model that combines domain expert knowledge
and multiple data sets. The proposed model is able to:

• Deal with the uncertainty and biases that are intrinsic to real-world observational data
and produce valid results, generalizing to other applications or populations;

• Combine data coming from different data sources, which is especially relevant when dealing
with small and understudied populations for which data are extremely sparse.

• Incorporate the domain knowledge coming from experts, which has been shown to be
fundamental in maximizing the model’s performance.

• Provide interpretable causal recommendations to identify those patients that are at higher
risk of developing a CVDs and what risk factors are involved, to help physicians in clinical
decision making and patient follow-up management.

Moreover, the edges added by the causal discovery to the prior-knowledge-based causal net-
work improved its performance and highlighted new arcs that open medical insights particularly
valuable, especially for such an understudied population.

According to our experimental results, the proposed CN model outperforms standard su-
pervised learning methods in terms of classification accuracy: this is unexpected since these
methods are specifically trained to optimise it. The are two possible explanations for this
phenomenon. Firstly, as mentioned in the results section, the data used to train the models are

XGBoost: Extreme Gradient Boosting; AODE: Averaged One-Dependence Estimators.
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different: standard ML methods can use only cases coming from the PBC and with complete
information on all variables, which means less than half of the cases used to train the CN
models. Secondly, the CN models did not learn the model from scratch thanks to their ability
to incorporate prior domain knowledge; that makes them more efficient at dealing with low
sample sizes and missing-not-at-random issues.

Despite its relevance and strengths, this work has some limitations. First of all, we focused
on the classification accuracy of a specific variable of interest instead of evaluating the CN as a
whole. This allowed us to compare it with commonly-used ML supervised learning approaches
using standard metrics such as AUC, arguing that the proposed CN is competitive in this
respect. Having shown that, we are now ready to move beyond prediction into more advanced
applications of causal inference which are impossible to carry out with traditional ML models.
Moreover, while the arcs added by the SEM algorithm have been validated by a clinical expert
and a literature review, a further review by a domain expert (that is, a cardio-oncologist) will be
crucial to completely validate the final model.

In conclusion, we are working on further extending our model to include unmeasured
variables, such as distant metastases; this is necessary to further address the need of a clinically
relevant model, to help cardio-oncologists in their everyday practice.
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8. Supplementary Material

Table S1
Percentage of observed values for the variables in the model, categorized according to their role in the
domain and stratified by cohort type (PBC, CBC).

Variable Label Category PBC CBC
Age>35 years age35 Prognostic factor 100% 100%

Tumor Hystology histology Prognostic factor 100% 100%
Tumor grading grade Prognostic factor 0% 89%

Vascular invasion vascular Prognostic factor 0% 57%
Ki67 positivity ki67 Prognostic factor 0% 92%

Tumor receptor status receptors Prognostic factor 0% 94%
Tumor dimension pT Prognostic factor 0% 65%

Lymph nodes involvement pN Prognostic factor 0% 68%
Death in 5 years death_in_5y Survival 90% 45%

Neo-adjuvant chemotherapy chemo_neo Treatment 100% 99%
Neo-adjuvant radiotherapy radio_neo Treatment 100% 99%

Neo-adjuvant target therapy target_neo Treatment 100% 99%
Neo-adjuvant hormon therapy hormons_neo Treatment 100% 99%

Surgery type surgery Treatment 100% 100%
adjuvant chemotherapy chemo_adju Treatment 100% 96%
adjuvant radiotherapy radio_adju Treatment 100% 96%

adjuvant target therapy target_adju Treatment 100% 96%
adjuvant hormon therapy hormons_adju Treatment 100% 96%

Dyslipidemia dyslipidemia CVDs risk factor 100% 5%
Hypertension hypertension CVDs risk factor 100% 3%

Type 2 Diabete Mellitus t2db CVDs risk factor 100% 1%
Cardiotoxicity cardiotoxicity CVDs risk factor 100% 0%

Ischemic heart disease ischemic_heart_disease CVDs risk factor 100% 0%
Cardiovascular disease in 5 years cvds Target variable 100% 0%

PBC = Population-based cohort; CBC = Clinical-based Cohort; CVDs = Cardiovascular diseases.
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