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Abstract
Reinforcement learning (RL) is a powerful technique for learning optimal policies from trial and error.
However, designing a reward function that captures the desired behavior of an agent is often a challenging
and tedious task, especially when the agent has to deal with complex and multi-objective problems. To
address this issue, researchers have proposed to use higher-level languages, such as Signal Temporal Logic
(STL), to specify reward functions in a declarative and expressive way, and then automatically compile
them into lower-level functions that can be used by standard RL algorithms. In this paper, we present
RMLGym, a tool that integrates RML, a runtime verification tool, with OpenAI Gym, a popular framework
for developing and comparing RL algorithms. RMLGym allows users to define reward functions using
RML specifications and then generates reward monitors that evaluate the agent’s performance and
provide feedback at each step. We demonstrate the usefulness and flexibility of RMLGym by applying it
to a famous benchmark problem from OpenAI Gym, and we analyze the strengths and limitations of our
approach.
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1. Introduction

Reinforcement learning (RL) is a subfield of machine learning that enables an agent to learn
optimal behavior by interacting with an environment and receiving rewards as feedback. RL
draws inspiration from the natural learning process observed in humans and animals, where
learning occurs through personal experience and trial-and-error. In RL, an agent learns to
navigate an environment by exploring various actions and observing their consequences. The
agent receives rewards for actions that lead to desired outcomes and penalties for actions
resulting in undesired consequences. The overarching goal of the agent is to maximize its
cumulative reward over time. RL has found applications across diverse domains, including
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games, robotics, control systems, and optimization, achieving remarkable results in challenging
tasks.

Despite its successes, RL encounters several challenges and limitations. These include the
complexity of specifying precise behaviors and the alignment problem, which relates to discrep-
ancies between training and evaluation objectives. To address these challenges, researchers
have proposed the integration of Runtime Verification (RV)-based approaches as complementary
techniques to RL [1, 2].

Software correctness has long been a fundamental objective in the fields of programming
language theory and theoretical computer science. Runtime verification [3], a relatively recent
software verification approach grounded in model-checking principles, has gained prominence.
RV involves monitoring a system’s behavior during execution to ascertain whether it adheres
to or deviates from predefined properties or specifications. RV serves various purposes, such
as error detection and correction, enforcement of security policies, or providing feedback to
adaptive systems. Furthermore, runtime verification techniques can be seamlessly integrated
with reinforcement learning methods, with possibilities ranging from using runtime verification
tools as reward machines [4, 5].

Reward machines employ finite-state machines to structure reinforcement learning reward
functions. These machines feature states corresponding to sub-goals and transitions representing
high-level events. The adoption of reward machines simplifies problem-solving, enhances
efficiency through off-policy learning, and accommodates the specification of complex and
precise behaviors, including temporal logic and non-Markovian rewards. Consequently, reward
machines contribute to enhancing the safety and effectiveness of reinforcement learning agents.

In this paper, we introduce RMLGym, a novel framework designed to specify and learn com-
plex behaviors within reinforcement learning environments. RMLGym builds upon OpenAI’s
gym framework and aims to bridge the gap between RL and RV. The framework leverages the
RML [6], a runtime verification framework enabling the definition and verification of formal
properties. Unlike conventional reinforcement learning setups with predefined reward func-
tions, RMLGym employs RML specifications as reward constructors, generating rewards based
on the satisfaction or violation of these specifications.

In our work, we define various RML properties and employ a range of reinforcement learning
algorithms, including PPO [7], TD3 [8], SAC [9], and TRPO [10], to evaluate the RMLGym
framework from diverse perspectives. Additionally, we conduct a comparative analysis between
RMLGym and STLGym [5].

RMLGym provides a powerful tool for specifying and learning intricate behaviors within
reinforcement learning environments. By utilizing RML specifications, we can express various
properties and constraints governing the agent’s behavior and generate rewards based on
their compliance or violation. With RML rewards, we can evaluate the agent’s performance in
alignment with the specifications, rather than relying solely on the optimization of a predefined
reward function.



1 env = gym.make('CartPole-v0')

Listing 1: The Python code for loading CartPole-v0 environment.

2. Preliminaries

In this section, we provide a concise introduction to reinforcement learning (RL), Runtime Mon-
itoring Language (RML), and OpenAI’s gym environment, a widely used toolkit for developing
and comparing RL algorithms.

2.1. Reinforcement Learning

Reinforcement learning [11] represents a machine learning paradigm that empowers agents to
learn how to navigate an environment through trial and error. Unlike other machine learning
branches, such as supervised and unsupervised learning, where models rely on pre-annotated or
pre-collected datasets, RL agents embark on a self-guided learning journey. This characteristic
makes RL a more challenging yet potent approach.

RL agents interact with the environment in discrete time steps, observing the current state
of the environment and the rewards received after each action. The fundamental objective of
an RL agent is to maximize its cumulative rewards over time. One key modeling tool for RL
problems is the Markov Decision Process (MDP), which encapsulates a set of states, actions, a
transition function, and a discount factor.

2.2. OpenAI Gym

OpenAI Gym [12] serves as a toolkit meticulously crafted to facilitate exploration, experimenta-
tion, and innovation within the realm of reinforcement learning. This platform offers a rich
collection of environments designed for training and evaluating RL agents. These environments
encompass a wide spectrum of activities, including playing Atari games, manipulating robotic
systems, and engaging in stock trading. OpenAI Gym provides a standardized API that facilitates
seamless communication between RL algorithms and the designated environments.

To initiate the utilization of the OpenAI Gym Python library, the first step entails creating an
environment. This process involves invoking the make() method, as demonstrated in Listing 1.

Once the environment is established, interactions with the environment can commence using
the step () method (as shown in Listing 2). This method allows agents to interact with the
environment, accepting an action as input and yielding the subsequent state, reward, and an
indicator signaling the end of an episode.

The provided code exemplifies the execution of a single episode comprising 100 time steps.
It showcases the interaction between an agent and the environment, where the agent selects
actions based on its current state, and the environment provides feedback in the form of rewards
and state transitions.



1 t = 0
2 state = env.reset()
3 while not env.done and t < 100:
4 action = agent.act(state)
5 next_state, reward, done, _ = env.step(action)
6 print(next_state, reward)

Listing 2: The Python code for single episode.

2.3. Runtime Monitoring Language (RML)

The Runtime Monitoring Language (RML)1 [6] is a Domain-Specific Language (DSL) tailored for
specifying highly expressive properties in runtime verification (RV), including non-context-free
properties. We have chosen to employ RML in this work due to its support for parametric
specifications and its inherent ability to define interaction protocols. The underlying low-level
language of RML was originally developed for specifying communication protocols [13, 14].

In the context of our work, we provide a simplified and condensed overview of RML’s syntax
and semantics. However, for a complete presentation, you can refer to [6].

In RML, a property is expressed as a tuple ⟨𝑡,ETs⟩, where 𝑡 represents a term, and ETs =
{ 𝐸𝑇1, . . . , 𝐸𝑇𝑛 } is a set of event types. An event type 𝐸𝑇 is defined as a set of pairs
{ 𝑘1 : 𝑣1, . . . , 𝑘𝑛 : 𝑣𝑛 }, where each pair identifies a specific piece of information (𝑘𝑖) and its
corresponding value (𝑣𝑖). An event 𝐸𝑣 is represented as a set of pairs { 𝑘′1 : 𝑣

′
1, . . . , 𝑘

′
𝑚 : 𝑣′𝑚 }.

An event 𝐸𝑣 matches an event type 𝐸𝑇 if 𝐸𝑇 ⊆ 𝐸𝑣, meaning that for all (𝑘𝑖 : 𝑣𝑖) ∈ 𝐸𝑇 ,
there exists (𝑘𝑗 : 𝑣𝑗) ∈ 𝐸𝑣 such that 𝑘𝑖 = 𝑘𝑗 and 𝑣𝑖 = 𝑣𝑗 . In simpler terms, an event type 𝐸𝑇
specifies the requirements that an event 𝐸𝑣 must meet to be considered valid.

An RML term 𝑡, with 𝑡1 and 𝑡2 as other RML terms, can take various forms:

• 𝐸𝑇 , representing a set of individual traces containing events 𝐸𝑣 where 𝐸𝑇 ⊆ 𝐸𝑣.

• 𝑡1 𝑡2, indicating the sequential composition of two sets of traces.

• 𝑡1 | 𝑡2, denoting the unordered composition of two sets of traces (also known as shuffle
or interleaving).

• 𝑡1 ∧ 𝑡2, representing the intersection of two sets of traces.

• 𝑡1 ∨ 𝑡2, signifying the union of two sets of traces.

• { let 𝑥; 𝑡 }, denoting the set of traces 𝑡 where the variable 𝑥 can be utilized, allowing the
variable 𝑥 to appear in event types in 𝑡 and be unified with values.

• 𝑡*, indicating the set of chains resulting from concatenating traces in 𝑡.

1https://rmlatdibris.github.io/ [visited on September 2023]

https://rmlatdibris.github.io/


Event types in RML can also include variables. For instance, 𝐸𝑇 (𝑎𝑔1, 𝑎𝑔2) = { 𝑠𝑒𝑛𝑑𝑒𝑟 :
𝑎𝑔1, 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 : 𝑎𝑔2, 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 : ”ℎ𝑒𝑙𝑙𝑜” } allows for flexibility in the sender and receiver fields
while requiring the content to be the string ”ℎ𝑒𝑙𝑙𝑜”. When an event matches an event type
with variables, the variables take on values from the event. For example, if the observed event
is 𝐸𝑣 = { 𝑠𝑒𝑛𝑑𝑒𝑟 : ”𝐴𝑙𝑖𝑐𝑒”, 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 : ”𝐵𝑜𝑏”, 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 : ”ℎ𝑒𝑙𝑙𝑜” }, it matches 𝐸𝑇 with
variable assignments: 𝑎𝑔1 = ”𝐴𝑙𝑖𝑐𝑒” and 𝑎𝑔2 = ”𝐵𝑜𝑏”. This feature is essential for enforcing
specific message order constraints using variables in RML terms.

3. RMLGym Architecture

This section provides an overview of the RMLGym framework, an extension of the OpenAI
Gym environment that incorporates verdicts generated by the RML to create rewards. We begin
by examining the architectural design and flow of the RMLGym framework, followed by a
comprehensive exploration of its core components: the reinforcement learning (RL) agent, the
environment, and the RML monitor.

Our methodology focuses on enhancing the environmental aspect of the RL process by
integrating a reward machine that operates in conjunction with the RML monitor. Consequently,
our approach is algorithm-agnostic and does not require modifications to the RL algorithm.
Additionally, leveraging existing frameworks, we can retrain acquired policies to optimize
compliance with specifications.

Figure 1: Representation of RMLGym with the RML monitor as a reward machine. The diagram uses
𝑈𝑁𝑁 to represent action probabilities, 𝑠 and 𝑜 for state information, and 𝑑 and 𝑣 to denote an event
and verdict respectively.

As depicted in Figure 1, the RL training process using the RMLGym tool comprises three
primary components: the Agent, the RMLGym environment, and the RML reward monitor.
The agent component in RMLGym is a pre-existing RL agent (implemented using various RL
algorithms). The RMLGym environment extends the capabilities of OpenAI’s gym environment
(as shown in Figure 1). In the following, we focus on the most relevant introduced component,
that is the RML reward constructor.



3.1. RML Reward Constructor

The RML reward constructor plays a pivotal role within RMLGym. It is responsible for generating
the reward, which acts as the reward machine. The reward constructor serves as an intermediary
between the gym environment and the RML reward monitor. The integration of the Gym
environment and the RML reward constructor results in the creation of the augmented gym
environment known as RMLGym.

The reward constructor collects updated state information from both the plant and the
observer OpenAI components. It then generates data intended for transmission to the RML
reward monitor. Upon receiving a decision from the reward monitor, the constructor produces
a reward based on the assessment received. For example, when dealing with Boolean values, a
𝐹𝑎𝑙𝑠𝑒 verdict may result in a negative numerical reward.

3.2. RML Reward Monitor

This paper’s central focus is on integrating runtime verification into the reinforcement learning
framework to validate the environment’s state. The RML reward monitor is responsible for this
runtime verification task. The monitor operates concurrently with the RL training process and
reacts to incoming signals. It establishes a WebSocket connection and awaits incoming signals.
Upon receiving a signal from the RMLGym environment’s reward constructor, the monitor
verifies the signal against the specified criteria (the formal property of interest). Subsequently,
it generates a verdict based on the verification process and transmits it back to the reward
constructor. All of this is accomplished by utilizing the existing RML engine [6].

4. Implementation

In this section, we introduce RMLGym, which extends OpenAI’s Gym with RML integration.
We discuss its key components: RMLGym environment, RL algorithms, RML specifications, and
RML monitor implementation.

First, we cover RMLGym’s development, showcasing how it enhances Gym with RML moni-
tors for real-time RL training verification. Next, we explain the RML ecosystem setup, including
specification generation, installation, integration, event structure, and provide a sample specifi-
cation. Finally, we detail RL training using RMLGym, including algorithm configuration and
utilization.

4.1. Gym Environment extension

In RMLGym, we use a YAML file to take configuration from the user. The YAML config file
contains information about the environments, reward monitors, states, and rewards. Secondly,
we override the functions such as 𝑠𝑡𝑒𝑝 (), 𝑚𝑎𝑘𝑒 (), and 𝑐𝑙𝑜𝑠𝑒 (). We also added a new function
called 𝑚𝑜𝑛𝑖𝑡𝑜𝑟_𝑟𝑒𝑤𝑎𝑟𝑑 () to perform the duty of the Reward Constructor.



1 env_name: CartPole-v0
2 host: 127.0.0.1
3 port: 8081

Listing 3: Initial information to be provided through YAML config.

1 variables:
2 - name: pos
3 type: float
4 location: obs
5 identifier: 0
6 - name: angle
7 type: float
8 location: obs
9 identifier: 2

Listing 4: The sample of observation details provided in the configuration file.

4.1.1. YAML configuration file

Listing 3 shows the initial configurations added to the YAML file. The first variable, 𝑒𝑛𝑣_𝑛𝑎𝑚𝑒,
is a parameter for specifying the name of the environment. The environment name should
correspond to an environment available in OpenAI’s gym. This example uses the CartPole
environment from the gym. The second and third parameters in the configuration provide
details about the monitor. The RML reward monitor is available on a WebSocket. The ℎ𝑜𝑠𝑡
parameter specifies where the monitor is located, and the 𝑝𝑜𝑟𝑡 parameter specifies which port
the monitor is available on. As an example, in Listing 3, RMLGym looks for the monitor at host
127.0.0.1:8081.

To generate data that is acceptable to RML monitors, an event should be created and sent to
the monitor. The event can be generated in JSON format using the Reward Constructor, based
on the specification. The Reward Constructor requires the details of the observations, as shown
in Listing 4. The sample in Listing 4 shows a set of details that represent the observations in the
environment. The pos is the position of the cart, and the angle is the angle of the pole. The type
is the data type of the observation, and the location is the details of where the observation can
be found. The identifier is a variable that specifies the index of the observation in the specified
location.

After the event is sent to the monitor, the monitor verifies it and returns a verdict. Listing 5
shows a sample of reward details. RML monitors produce a four-valued logic for verdicts (as
in standard runtime verification of LTL properties [15]). Therefore, Listing 5 represents the
reward associated with each logic value.



1 reward:
2 name: task
3 true: 1
4 currently_true: 0
5 currently_false: 0
6 false: -1

Listing 5: Sample reward details provided in the configuration file.

4.1.2. Overriding gym functions

In order to incorporate Reinforcement Learning (RL) in the gym environment, we made mod-
ifications to existing functions within the gym framework. The gym.Env class serves as the
fundamental class within the OpenAI gym framework. The class encapsulates an environment
characterized by concealed dynamics that exhibit variability contingent upon the specific prob-
lem at hand. The system provides a standardized interface for engaging with the environment,
encompassing functions such as resetting the state, executing actions, receiving rewards and ob-
servations, and determining whether the episode has concluded. The aforementioned functions
establish the structure and scope of the observations and actions within the given environment.

We started with the init()method of the RMLGym class to create an instance of the RMLGym
environment. It takes two parameters: config_path and env. The config_path is a string
that specifies the path to a YAML file that contains the configuration settings for the environment.
The env is an optional parameter that can be used to pass an existing gym environment object.
If env is None, the method will create a new gym environment using the env_name from the
config file. In this part, we initialize the WebSocket, the variables, the socket, and the reward
details.

Then we override the step() function in gym.Env class. This function moves the environ-
ment forward by one step. The function accepts an action as its input and outputs four variables:
observation, reward, done, and info. The return variable ’observation’ is a component of
the observation space within the environment. For instance, it could be an array containing
the positional and velocity data of various objects. The reward is the outcome that the agent
receives as a consequence of its action. The variable ’info’ contains supplementary details that
can be advantageous for the purposes of debugging, acquiring knowledge, and maintaining a
log. For instance, potential components of the system may encompass metrics evaluating the
agent’s efficacy, latent factors influencing outcomes, or personalized incentives. The system is
also capable of distinguishing between truncation and termination; however, this functionality
is expected to be discontinued in the near future. The variable “done” is a Boolean value that
indicates the conclusion of the episode. If the statement is accurate, subsequent invocations of
this function will yield outcomes that are not defined.

In the step() function, we extract the information from observation and info to send
it to the monitor_reward() function which is responsible for reward construction. We also
update the reward info received from the reward constructor to info for debugging purposes.

At the end of each episode, it is necessary to invoke the reset() method to reset this



environment’s state. The reset() function initiates a fresh episode by establishing the initial
state and providing the initial observation as output. The random number generator can
also be reset using the seed parameter, which can take on a numerical value or None. It is
considered optimal to employ a numerical value only once subsequent to the establishment
of the given setting. The options parameter provides supplementary data for the purpose of
resetting, contingent upon the prevailing environment. In addition to its primary functionality
of resetting the observation, the reset() method also provides the user with access to the info
dictionary, which contains additional details pertaining to the observation. Both observation
and information are comparable to the outputs obtained from the step() function. We also
override the reset() function to reset the event details. Apart from the above functions, we
override the function close() to close the web socket initialized for sending events to the
monitor.

4.1.3. The function monitor_reward()

In addition, we have implemented a function named monitor_reward() which serves as the
constructor for rewards. The function serves as an intermediary between the RML monitor
and the environment. The function utilizes the parameter “done” to determine the completion
status of the episode. The function utilizes the data extracted within the step() function and
produces a novel event that is intended to be transmitted to the RML monitor. Once the event
has been created, the function transmits it to the monitor via the initialized web socket and
enters a state of waiting for the response. Upon receiving the response, the function generates
a novel reward and subsequently modifies it to reflect the changes made to the agent. The
monitor reward function is invoked at each timestep.

4.2. RMLGym integration

In this section, we explain the steps for integrating RML with reinforcement learning algorithms
in OpenAI gym.

First, we need to install the RMLGym tool in the system. This can be achieved by cloning the
GitHub repository2 and install it through pip.

Next, we need to create and configure a YAML configuration file. The path of the YAML file
should be passed to the RMLGym environment. Listing 6 shows how we loaded the RMLGym
environment. The configuration file contains the environment name, web socket details, data
details, and reward details, as we discussed previously. In the first line of Listing 6 we can see
how the RMLGym library can be easily imported in the Python environment. In the third line
instead the actual RMLGym environment is created (that is, the environment extended with all
the functionalities to interact with the external RML reward machine).

Listing 7 shows the code we used to import and train PPO on the RMLGym environment.
To train the RMLGym environment, we first load two environments using partial functions:
one for training and one for testing. Both environments are created using the rmlgym.make
function, which takes a configuration path as an argument. The configuration path points to a
YAML file that contains the settings for the RML monitor, the reward constructor, and the gym

2https://github.com/hishamu7776/rml-gym
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1 import rmlgym
2 config_path = './examples/environment.yaml'
3 rml_env = rmlgym.make(config_path)

Listing 6: Code to create a gym environment using RMLGym.

1 from spinup import ppo_pytorch as ppo
2

3 rml_env = partial(rmlgym.make, config_path)
4 test_rml_env = partial(rmlgym.make, config_path_test)
5

6 ppo(rml_env,
7 test_env_fn=test_rml_env,
8 ac_kwargs=dict(hidden_sizes=(64, 64,)),
9 seed=1630, steps_per_epoch=4000, epochs=100,

10 gamma=0.99, pi_lr = 3e-4, vf_lr = 1e-3,
11 train_pi_iters = 80, train_v_iters = 80, lam = 0.97,
12 num_test_episodes = 10, max_ep_len = 200,
13 target_kl = 0.01, save_freq = 1, clip_ratio=0.2)

Listing 7: Code to train PPO using rmlgym.

environment. However, both environments need different monitors to run on two different
web sockets in parallel, so we use different configuration paths for training and testing. The
configuration files also specify the specifications and rewards for each environment, which can
be different depending on our objectives. For example, we can use a stricter specification for
testing than for training, or we can use a sparse reward for training and a dense reward for
testing.

After loading the environments, we call the RL algorithm of choice to be guided by the RML
reward machine previously created and deployed. We pass the rml_env function as the first
argument, which creates the training environment for the agent. We pass the test_rml_env
function as the test_env_fn argument, which creates the testing environment for evaluation.
We also pass a dictionary as ac_kwargs argument, which contains the arguments for the
actor-critic network architecture. The rest of the arguments are related to different aspects
of PPO’s algorithm, such as learning rates, gradient steps, discount factor, GAE parameter,
clipping parameter, target KL divergence, etc. We can tune these arguments to optimize PPO’s
performance on our RMLGym environment.

The PPO function runs PPO on our RMLGym environment for a specified number of epochs.
In each epoch, it collects a batch of data from interacting with the environment using its current
policy. It then updates its policy and value networks using gradient descent on PPO’s objective
function. It also evaluates its policy on the testing environment using a different monitor and
specification. It logs and saves various metrics and statistics about its performance, such as



Figure 2: A screenshot of annotated pendulum environment.

episode length, episode return, entropy, KL divergence, etc. It also saves its model periodically
so that we can load it later for analysis or further training.

5. Experimental results

In this section, we describe the experiments we conducted and their results to evaluate the
effectiveness of different RL algorithms in various environments using the RMLGym tool and
RML monitors. The main objective of these experiments is to compare the performance of RL
algorithms with and without RML-based verification and to analyze the impact of RML on the
learning process.

We begin by employing RL algorithms in the pendulum environment provided by the OpenAI
Gym. In this environment, the goal is to find a solution to keep the pendulum in the upright
position.

Since our tool is inspired by STLGym [5], which uses STL for specification and RTAMT tool3

for generating rewards, we first employ the PPO algorithm to compare the results observed for
the conventional rewards, STL rewards, and RML rewards. We then explore multiple algorithms
such as PPO, TD3, and SAC using RML monitor-based rewards.

5.1. Pendulum Environment

In this experiment, we used the pendulum environment provided by the OpenAI Gym. This
environment is a classic control environment in which the goal is to swing an inverted pendulum
to an upright position and maintain it there. The pendulum is attached to a fixed point on one
end, and the other end is free to move. The agent can control the pendulum by applying torque
to the free end. The pendulum environment is a challenging environment, as the pendulum is
unstable and can easily fall over. The agent must learn to apply the correct amount of torque at
the right time in order to swing the pendulum up and keep it upright.

5.1.1. Variables of pendulum environment

We used the Pendulum-v1 environment for the experiment, which is available in OpenAI Gym
version 0.15.17. The diagram depicted in Figure 2 illustrates the coordinate system that is
employed for the implementation of the dynamic equations governing the behavior of the

3https://github.com/nickovic/rtamt

https://github.com/nickovic/rtamt


pendulum. There are 3 variables that can be seen in Figure 2. One variable that can be observed
is the angle of the pendulum. The angle 𝜃 is measured in radians and represents the deviation
of the pendulum from the vertical position. A positive theta value indicates a right tilt of
the pendulum, while a negative theta value indicates a left tilt. Another variable that can be
observed by the agent is the angular velocity 𝜔 of the pendulum, which represents the rate of
change of change of theta. The angular velocity of the pendulum denotes the magnitude and
direction of its swinging motion.

The agent has the ability to control 𝜏 , which represents the applied torque on the pendulum
joint. The torque exerted on the pendulum, denoted as 𝜏 , is quantified in units of Newton meters
(N m). A positive value of tau indicates that the agent exerts torque in the counter-clockwise
direction, resulting in a right push on the pendulum. Conversely, a negative value of tau signifies
that the agent applies a torque in the clockwise direction, causing a left push on the pendulum.
In order to maintain stability, the agent must acquire the ability to adapt 𝜏 to 𝜃 and 𝜔. The last
variable in the pendulum environment is the pendulum end’s Cartesian coordinates (𝑥 − 𝑦).
The pendulum tip’s horizontal and vertical positions relative to the joint origin are measured in
meters. The agent cannot directly observe x-y coordinates, but they help visualize and analyze
the pendulum behavior. From theta, trigonometric functions calculate x-y coordinates. L is the
pendulum length, so 𝑥 = 𝐿 · 𝑠𝑖𝑛(𝜃) and 𝑦 = −𝐿 · 𝑐𝑜𝑠(𝜃).

5.1.2. Rewards of pendulum environment

In this experiment, we evaluate four distinct rewards: baseline, STL dense, STL sparse, and
RML rewards. The baseline reward, provided by the gym environment, encourages the agent
to maintain the pendulum in an upright position with minimal energy consumption. It is
calculated using the formula:

𝑟 = −(𝑡ℎ𝑒𝑡𝑎2 + 0.1 * 𝜃_𝑑𝑡2 + 0.001 * 𝜏2)

Here, 𝜃 represents the pendulum’s angle normalized between [−𝜋, 𝜋], 𝜃_𝑑𝑡 is its angular
velocity, and 𝜏 is the applied torque.

The STL dense and sparse rewards from STLGym are based on Signal Temporal Logic
specifications. The specification used in the Pendulum-V1 environment is:

𝑒𝑣𝑒𝑛𝑡𝑢𝑎𝑙𝑙𝑦(𝑎𝑙𝑤𝑎𝑦𝑠((abs(𝜃) ≤ 0.5)))

It expresses the goal of swinging the pendulum to an upright position and maintaining it
there. The dense reward is calculated at every timestep, while the sparse reward is computed
only at the episode’s end. RTAMT computes these rewards based on the STL specification.

The RML reward, generated by our RML monitor, utilizes RML to check if the pendulum’s
angle (𝜃) remains within 0.5 radians from the vertical position at each timestep. It provides a
positive reward of 1 when the condition is met (currently true) and a negative reward of -1
when it’s not (currently false).

RML specification to verify the pendulum-v1 environment’s observation.

𝑀𝑎𝑖𝑛 = (𝑔𝑜𝑜𝑑_𝑡ℎ𝑒𝑡𝑎1 ∧ 𝑔𝑜𝑜𝑑_𝑡ℎ𝑒𝑡𝑎2) *



𝐸𝑇𝑠 = { 𝑔𝑜𝑜𝑑_𝑡ℎ𝑒𝑡𝑎1, 𝑔𝑜𝑜𝑑_𝑡ℎ𝑒𝑡𝑎2 }
𝑔𝑜𝑜𝑑_𝑡ℎ𝑒𝑡𝑎1 = { 𝑡ℎ𝑒𝑡𝑎 : 𝑥 } 𝑤𝑖𝑡ℎ 𝑥 ≤ 0.5

𝑔𝑜𝑜𝑑_𝑡ℎ𝑒𝑡𝑎2 = { 𝑡ℎ𝑒𝑡𝑎 : 𝑥 } 𝑤𝑖𝑡ℎ 𝑥 ≥ −0.5

5.1.3. Result of pendulum

In this section, we evaluate the performance of three deep reinforcement learning algorithms
(PPO, TD3, SAC) in the pendulum environment using various rewards: OpenAI Gym’s baseline
reward, STLGym’s STL dense and sparse rewards, and RMLGym’s RML reward. We aim to
assess the RML reward’s learning efficiency, robustness, and behavior quality compared to other
rewards. For the PPO algorithm, we conducted 100 training epochs, each with 4,000 timesteps
and a maximum episode length of 200. The four reward types were used for training. We
evaluate the trained models using the baseline reward, STL sparse reward, and RML reward,
with 10 test episodes for each assessment.

We plotted average returns over time for three types of rewards in Figure 4: baseline reward
based on pendulum angle, velocity, and torque (Figure 4(a)); STL sparse reward based on STL
specifications (Figure 4(b)); and RML reward based on the presented RML specification (Figure
4(c)). All rewards show similar learning efficiency and robustness, outperforming STL sparse
reward. RML reward and STL dense reward slightly outperform baseline, reaching around 130
average return before 250,000 timesteps compared to baseline’s 300,000 timesteps.

Figure 3: Average episode length observed after training PPO algorithm on pendulum environment
with 4 different reward systems.

(a) Baseline reward. (b) STL sparse reward (c) RML reward

Figure 4: Comparative performance analysis of PPO algorithm with different reward methods. Each
subfigure (4a, 4b, 4c) evaluates the models using a different reward metric: Baseline, STL Sparse, and
RML respectively.



Figure 5: Average returns using RML rewards for PPO, TD3, and SAC algorithms.

We also plotted episode lengths over time in Figure 3, which remained constant at 200 steps
for all rewards throughout training. The pendulum environment lacks a termination condition
based on the pendulum state.

Lastly, we evaluated three deep RL algorithms (PPO, TD3, SAC) using RML reward, training
each for 100 epochs with 4,000 timesteps per epoch, and a maximum episode length of 200 in
the pendulum environment.

Figure 5 shows the average return for each algorithm over each timestep. The average return
indicates how effectively the agent can maximize its cumulative reward in each episode by
swinging and balancing the pendulum in the upright position.

Figure 5 shows that SAC and TD3 outperform PPO in terms of learning efficiency and
robustness. The graph shows that SAC and TD3 learn faster and more stably than PPO. The
high average return achieved by SAC and TD3 corresponds to an RML reward of 150, and it
takes less than 20000 timesteps to converge to this reward. This is much faster than PPO, which
takes more than 250000 timesteps to reach its peak. However, PPO only manages to attain a
high return between 120 and 140 approximately.

6. Conclusions and Future Work

In summary, RMLGym is a novel RL framework that utilizes RML for constructing rewards,
significantly enhancing the training of agents to meet complex safety requirements. Through
extensive experimentation with various RL algorithms and environments, RMLGym has con-
sistently demonstrated its effectiveness, often outperforming baseline rewards. Moreover, it
has shown an improved alignment between training and evaluation objectives, promoting the
development of robust RL agents. Despite its success, RMLGym does have limitations, such as
the lack of quantitative rewards and its current reliance on OpenAI Gym. However, it represents
a promising step forward in specifying and learning intricate behaviors in RL environments,
ultimately contributing to scalability and stability in RL.

Looking ahead, future work may explore methods to enhance reward expressiveness with
quantitative rewards, extend RMLGym’s compatibility beyond OpenAI Gym, and apply RML to
non-Markovian problems. These directions hold the potential to further advance the state of
the art in reinforcement learning.
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