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Abstract
While Human-Robot Interaction (HRI) and Social Robotics achieved significant results, research has
not given the right attention both to the role of the analysis of cognitive processes by a robot and an
extensive interpretation of intelligent collaboration, i.e robot adaptivity, trust, categorization, and so
on. Daily life scenarios involving robots require a kind of collaboration oriented towards the respect
and the achievement of the most relevant users goals, but also to the validation and protection of
other application domains elements (e.g. other agents, available resources). To address this challenge,
computational cognitive models are required, in order to integrate multiple users goals and interests
within the interaction context and support robots to justify the integration process. In this theoretical
paper, we propose a taxonomy, achievable although with certain constraints and occasional imprecision,
of the human action intentions into three distinct classes: practical, socio-normative, and ethical. Building
upon this premise, we outline the development of computational cognitive models aimed at supporting
a useful, effective, acceptable and trustworthy interaction between humans and robots. While our
conceptual framework is applicable across various domains, we will illustrate it with examples drawn
from the domain of Cultural Heritage.
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1. Introduction

In today’s human-centric world, interactions with autonomous systems, such as robots, become
increasingly ubiquitous. To foster a real sense of dependability and trust in artificial intelligent
systems, it is demanding to design systems that are more useful, effective, acceptable and
trustworthy. As articulated by Castelfranchi and Falcone [1], trust is not just the outcome of
the frequency with which an agent produces the expected result; trust is a much more complex
attitude, including a causal attribution, an estimation, an ascription of several internal factors
that play a causal role in the behavior activation and control.

To foster trust in Human-Robot Interaction (HRI), humans should perceive the robot’s be-
havior in mental terms, by ascribing a mind with their representation [2]. Such cognitive
interpretation and narrative of the mechanisms controlling and orienting their behavior, is
just the description at the macro functional level of the underlying micro-computation. The
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micro-level implementation of the regulatory behavioral process is unintelligible [3] and even
irrelevant at that level. Much like in psychology, humans leverage cognitive concepts like belief,
reasoning, decision-making, desire, intention, and so on, to provide a functional description of
how the brain operates. Humans anthropomorphise anything, including AI systems. In such
anthropomorphization they identify other forms of intelligence, i.e. behavior regulation based on
representations and mental/virtual problems or solutions; thus they build a broader, unified
theory of such notions. This approach is evident in collaborative scenarios, like shared plans,
joint action, task delegation.

In multiple everyday robotics scenarios (e.g. elderly assistance [4, 5], cultural heritage [6, 7],
tourism [8] and so on), it is crucial that the robot’s collaboration takes into account both the user’s
primary goals achievement and the validation and safeguarding of other contextual elements,
including other agents, available resources, interested stakeholders. In these contexts, intelligent
collaboration implies more autonomy and even initiative, because it requires more than simple
execution of a prescribed action or plan. Despite some remarkable result in HRI [9], research
has typically overlooked the role of a robot’s cognitive processes analysis and its interpretation
in terms of intelligent collaboration, including smart adoption, trust, categorization, and so on.
Likewise, in the HRI or Social Robotics domains, robots should provide humans with different
levels of help [10]: they should leverage their autonomy, competence and cognitive abilities to
identify better or potential solutions for their goals and needs. This could be autonomously
initiated by the system without the need for negotiation, discussion, or agreement [11]. How
could this advanced form of collaboration be possible without a reciprocal mind ascription
and reading? A robot needs to understand human’s ends, higher goals, expectations, interests,
in order to really help them. And human have to understand what robot do in mental terms,
including its knowledge, beliefs, reasoning and problem-solving strategy. Furthermore, the
robot has to explain what it did or plan to do in terms of the reasons for doing so: data, prediction,
objectives, solutions ans so on. There is no real cooperation without minds representing minds.

An interesting approach to deal with this challenge is:

• to model the user’s mental states, including their goals, beliefs, plans, and interests, as
well as those of other relevant stakeholders, all aimed at various ends of their actions;

• to separate the practical, social/normative and ethical aspects;
• to compose these different types of mental states, establishing priorities and compatibility,

by exploiting different levels of autonomy in achieving tasks;
• to explain if and how this composition occurred.

Theory of Mind (ToM) [12] is a crucial ability that a robot must possess in order to implement
this type of systematic approach. This involves the robot’s ability to attribute mental states to
the user and exploit these mental states for decision-making.

1.1. Usefulness, Effectiveness, Acceptability and Trust in HRI

Four interaction’s attributes are crucial in HRI scenarios: usefulness, effectiveness, acceptability
and trustworthiness. They can be defined as follows:

• Usefulness: humans should exploit interaction with robots in order to achieve their own
goals.



• Effectiveness: interaction should realize those results, in times and ways that are satisfying
for the specific human subject.

• Acceptability: humans should recognize and agree with the role played by robots in the
interaction, and they should acknowledge and accept the robot’s prerogatives in assuming
that role.

• Trustworthiness: human should trust the robot, in order to start the interaction and
recognize its potential benefits. This entails the human perceiving the robot as possessing
both abilities and will/motivations to pursue the task that will yield the aforementioned
benefits during the interaction. We will expand this concept in section 1.3.

We can analyze the properties defined above in HRI, starting from the main humans needs
when they interact with each other. In any collaborative scenario, every time humans delegate
tasks to other humans, they hold expectations that include, at the very least:

1. to pursue their own goals;
2. to consider broader interests and goals.

In the case 1, the robot has a defined goal to pursue on behalf of the human in that specific
interaction. Firstly, the robot should be able to accurately understand the human’s goals and
how to accomplish them. Furthermore, it should achieve these goals while considering the
effectiveness and acceptability of its role. In addition, its trustworthiness must be assessed.
The effectiveness will depend on the plan that the robot intends to implement to achieve the
goal, and, therefore, on the boundary conditions that will be implemented. This, in turn, will
influence human satisfaction with those conditions.

In the case 2, the robot should understand interests and goals beyond the specific interaction
and provide support for their achievement or protection. For instance, the task explicitly
delegated by the human to the robot could be a part of a more complex goal to which the
robot might be involved, or it could be in contradiction with other goals or interests of the
same human, which the human has not consciously evaluated, and which the robot should
consider. The robot doesn’t merely respond to a request; it conducts a more complex assessment
of the human’s intentions, beliefs, motivations, and interests. Therefore, it implements a plan
capable of satisfying these more complex attitudes. In this case, conflicts can arise, leading to
potentially interesting collaboration. To provide an explicit example in the field of Cultural
Heritage, consider a human visitor to a technologically advanced museum who provides sensors
to collect physiological parameters that can be correlated to the emotional states of its users.
Now, imagine that when the visitor asks the robot to walk into the room where a famous
Picasso painting is placed, the robot decides to suggest a different continuation of the tour.
These suggestions could vary significantly, eliciting different reactions. For instance, the robot
might suggest, based on the user’s profile and an interest in the Italian Renaissance, to visit
Michelangelo’s room instead of seeing the Picasso exhibit, which is in a very crowded room
with long access times. Alternatively, the robot might recommend a short break at the bar
to address detected low blood sugar levels, or it could even call a doctor or ambulance upon
detecting a dangerous abnormality in the person’s heart rate. In these cases, the robot takes
into consideration goals and interests belonging to the user, even if the user isn’t consciously
considering or recognizing them, and these may not align with the task initially assigned by
the user.



1.2. Conflicts in intelligent HRI

It is evident that a form of collaboration as described above can rise conflicts between humans
and robots. These conflicts can be categorized as follows:

• Misunderstandings: the human may not understand the meaning of the robot’s behavior
unless explicitly stated. This can occur when the robot decides to pursue goals different
from those explicitly articulated by the human, even if these alternative goals align with
the human’s own objectives or areas of interest;

• Doubts: the user doubts that the robot is truly motivated by tutorial goals for the human’s
benefit or if it is pursuing its own goals or non-cooperative related to other subjects.

• Susceptibility: the human cannot consider the behavior acceptable and may disagree;
• Refusals: the human cannot consider the robot entitled to make such a proposal in defense

of goals and interests that do not fall within robot’s prerogatives.

The previously described approach to intelligent help for the achievement of goals and interests
beyond the explicit request require addressing, at least, doubts or misunderstandings. Achieving
this requires supporting collaboration through communicative actions by robots capable of
justifying their assumed roles. The explanation of the reasoning process is grounded in the
attributions the robot has made regarding the user’s goals and interests, the value of priorities
identified at different contextual levels, and the chosen satisfaction model for assistance. This
approach should make the rationale behind the algorithms, which aim to find the optimal
solution for user satisfaction, clear. Utilizing a blend of graphical and spoken mechanisms for
presenting these explanatory schemes can enhance the clarity of the collaboration model for
the user.

1.3. Trust in HRI

As mentioned above, a crucial aspect of human-robot interaction concerns trust. Robots should
be capable of both being trustworthy and trusting other agents, whether they are human or
artificial [13]. Analyzing the complex concept of trust in the context of robot collaboration,
as previously described, is a challenging task. One possible approach to tackle this challenge
is by adopting the socio-cognitive trust model developed in [1]. We introduce the concept of
modelling trust/trustworthiness [14] in the following ways:

• Humans’ trust in collaborative robots: we consider how robots, able to carry out behav-
iors with differentiated tutorial levels of intelligent help, are considered trustworthy by
humans.

• Robots able to trust: we develop a robot’s trust model based on different sources of
trust (direct experience, reputation, types of reasoning, etc.) and then evaluate different
performances of these behaviors.

As we said, it is possible to articulate goals and interests of the user not only on the basis of
practical needs but also taking into account social, normative, ethical needs. In this sense, it is
possible to plan a trust-based interaction model for the robot in order to analyse these different
needs separately.



Figure 1: The explanation represents a process that contributes to the definition of the adoption process.

Figure 2: The explanation represents a tool for understanding the adoption, if the user receives the
final results before or in conjunction with the explanation process.

2. Basic elements for implementing Intelligent HRI

What was discussed in Section 1 can only become possible through the definition of a cognitive
architecture [15, 16] that supports a robot’s decision-making system, enabling it to acquire
complex cognitive capabilities. In this paper, we introduce a conceptual framework for iden-
tifying the fundamental elements for building computational cognitive models that support



Figure 3: Performing adaptive and effective reasoning in a dynamic interaction with other cognitive
agents, typically humans, on the basis of several context factors such the practical, social or ethical
goals/needs attributed to the human users involved in the interaction. Modules in red model the
interaction context described in section 2.1; modules in green model the task adoption strategy described
in 2.2; modules in green model the task adoption strategy described in 2.2; modules in blue model the
task explanation described in 2.3; modules in purple model the trust evaluation described in 2.4.

a useful, effective, acceptable and trustworthy interaction between humans and robots. The
design model follows the following lines:

• Representing Interaction: this involves representing the interaction through a set of mental
states of the robot, as well as attributing these mental states to other participants in the
interaction, such as the user and other stakeholders.

• Intelligent Adoption Strategy: the model incorporates an intelligent adoption strategy that
enables the robot to adapt its level of collaborative autonomy based on the representation
of mental states mentioned above, including those that reflect the user’s needs. This
adjustment is made possible through an adaptable autonomy model, offering various
levels of delegated task adoption.

• Explanation Strategy: the model includes a strategy for explaining the adoption process.
This explanation aims to facilitate the end user’s understanding of the reasons that led
the system to adopt the delegated task. The explanation can be an integral part of the
adoption process (as depicted in Figure 1) or provided as a separate tool for understanding
the adoption, particularly if the user receives the final results before or concurrently with
the explanation process (as illustrated in Figure 2).

• Trust & Trustworthiness evaluation: please refer to section 2.4 for a comprehensive discus-
sion.

The Figure 3 illustrates the fundamental components for designing computational cognitive
models that enable a task-oriented intelligent artificial agent, such as a robot, to engage in



adaptive and effective reasoning during dynamic interactions with other cognitive agents,
typically humans. These interactions depend on various contextual factors, including practical,
social, or ethical goals and needs attributed to the human users involved in the interaction. In
the following sections, we will describe the key modules depicted in the figure.

2.1. Modelling the Interaction Context

The primary objective of these modules is to provide an intelligent robot with a knowledge
representation suitable for the specific nature of its collaboration. This enables the agent to
formulate plans for actions based on: i) its knowledge of the ever-changing and dynamic world;
ii) the user it’s collaborating with; and iii) the normative or ethical constraints within the
interaction environment, which are represented as mental states attributed to the user or other
agents involved in the collaboration. To align the task adoption process with the user’s needs,
the agent must profile the user at different levels. For instance, it needs to collect information
pertaining to the classes of mental states we’ve previously defined (practical, social, ethical
mental states). The outcome is an ontological framework that represents the artificial system’s
knowledge while considering the relationships between goals, actions, and rules/norms/ethical
principles applicable to actions, as depicted in Figure 4.

To illustrate these relationships between practical/socio-normative and ethical states of the
world, consider a museum user who finds themselves in room 𝑅1 and requests more fresh
air due to feeling overheated. Suppose the robot has a plan 𝜋1 = 𝑜𝑝𝑒𝑛𝑊𝑖𝑛𝑑𝑜𝑤𝐼𝑛(𝑅1) in its
action repertoire that results in providing fresh air to room 𝑅1. Let’s imagine that 𝜋1 involves
opening a window in room 𝑅1. From a practical perspective, the robot can execute this plan
if all the practical preconditions of 𝜋1 are met, for example having the strength and ability to
open the window and ensuring unobstructed access to it. However, from a socio-normative
perspective, the robot should consider additional constraints. For instance, it should verify if
there are any rules prohibiting the opening of windows in the museum. Even in the absence
of such a prohibition, the robot should assess whether opening the window might disturb
other visitors. Furthermore, from an ethical standpoint, the robot should evaluate the potential
risks. For instance, an open window with a very low sill might endanger the lives of small
visitors. This would not only violate a formal rule but also compromise an ethical principle of
safeguarding the lives of other humans. In this example, the constraints are more objective than
subjective to the user. However, the robot, armed with an accurate model of the user, could also
take into account specific socio-normative and ethical constraints. It could compare these with
other constraints, such as general rules, shared ethical principles, as well as specific regulations
and social constraints established by museum managers and curators.

In general, each robot accesses a plan library Π that plays a crucial role in the robot’s
decision-making process and it is defined as follows:

Π = Π𝑎 ∪Π𝑑 (1)

where Π𝑎 indicated abstract plans (i.e., walk, drive, run are a type of move), while Π𝑑 is the
set of plans that can be decomposed in sub-plans (i.e., travel consists of leaving, moving and
arriving). We consider the plan library as unique and common to all agents, both robots and
humans. Each plan is a tuple 𝜋 =< 𝑝, 𝛾, 𝜆, 𝑏 > (with 𝜋 ∈ Π) that has a body 𝑏 (course of



Figure 4: Venn’s diagram representing (hierarchically) the user’s mental states referred to different
domains: Practical, Socio-Normative, and Ethical.

actions 𝛼𝑖 to execute or sub-goals 𝑔𝑖 to achieve), preconditions 𝛾, constraints 𝜆 and states of
the world 𝑝 it will realize if correctly applied. Please refer to [17, 18] for a much more complete
meaning of plans. If the preconditions and constraints refer only to the practical world, then
we remain in the practical domain. On the other hand, in the case in which the preconditions
and constraints, but also the results, involve formal norms of the community or influence the
sphere of other subjects, then we are in the socio-normative domain. Finally, if they involve the
ethical principles of the subject to whom the robot’s collaboration is addressed, then we are in
the ethical domain.

2.2. Modelling the Interaction/Task Adoption strategy

As previously mentioned, the adoption strategy is executed by the robot through actions in
the real world. The system maintains a repertoire of actions and a plan library that organizes
these actions in a coherent manner to achieve specific states of the world, such as goals. The
syntax used aligns with the typical format of practical reasoning plans [19, 18]. A crucial aspect
in ensuring effective collaboration is the creation of a plan library capable of distinguishing
between three defined context: practical, socio-normative, ethical. When the robot adopts a
delegated task, it assesses whether to consider only the practical utility or to include socio-
normative or ethical considerations. It is important to emphasize that even when the robot
chooses to focus solely on the practical context, it can still provide intelligent help rather than a
purely literal response to the delegation. In fact, it can take into consideration other user’s active
goals, which are those goals that the user could reasonably have decided to achieve (through
the delegated goal or otherwise) and that the robot is able to foresee, through the modeling of



the user [20, 7]. In such cases we can refer to this help as critical help or overhelp.
Given a practical task 𝜏 delegated by the user, the robot can implement different forms of

adoption, which we can categorise into:

• Practical Help;
• Socio/normative Help;
• Ethical Help.

The basic assumption is that when practical help is required, the robot can adopt that help
by considering to consider only the constraints imposed by the practical world. However, it
may also evaluate and potentially question socio-normative constraints related to the specific
user, and even take ethical constraints into account, all while considering the needs of that user.
Moreover, each category of help ensures that the intelligent robot can adopt the task in a literal,
critical way or taking into account the user’s active goals that the user itself has not explicitly
requested to achieve [21]. The choice of approach can vary depending on the classification of
mental states within the intelligent system.

To illustrate how a robot can utilize socio-normative and ethical considerations, let’s assume
again that we are with a human visitor to our technologically advanced museum who provides
sensors and other information to collect physiological parameters. Imagine that the user has
requested the robot to plan a museum visit, including a newly decorated stone room. The literal
help on the practical task would lead the robot to define the tour with the required special
room included at the end of the visit. However, by analyzing the museum’s room occupancy
and foreseeing a potential long queue when the user reaches the decorated stone room, the
robot detects a risk of the user missing the visit due to museum closing hours. Understanding
that the user belongs to the category of individuals requiring special assistance (e.g., in a
wheelchair), the robot leverages socio-normative context to issue a priority pass (literal help in
the social-normative context). This allows the user to visit the decorated stone room at the end,
prioritizing accessibility. However, this act of prioritization may raise ethical concerns since it
could affect other visitors’ experiences. Consequently, the robot, mindful of the ethical values,
revises the user’s tour (Literal help in the ethical context). It changes the order of room visits,
ensuring fairness and avoiding the exclusion of other visitors from the decorated stone room.
In this scenario, the robot doesn’t just solve the practical problem of planning a tour but also
strives to accommodate socio-normative constraints and ethical considerations that may arise,
thus enhancing the visitor’s experience and ensuring fairness for all museum-goers.

2.3. Modelling Explanation

The task adoption process that leads an agent to define a final intention (goal to adopt) to carry
out, is based on the set of beliefs, goals, plans (mental states) it exploited during the entire
collaboration with the human user. As argued in [22], the process of intention formation and
intentional action execution is strictly based on specific sets of beliefs. There is a belief-based
model of goal processing that leads an agent to create the intention it commit to carry out, as
final outcome of goal-driven action generation. Based on this assumption and on the model
of belief-based goal processing proposed by [23], we design an explanation model, on the
basis of two conceptual layers, in order to foster behavior interpretability and explaination.



Figure 5: A robot can be trusted or trust

The first layer (categorization) provides the robot with the capability to categorize beliefs and
goals involved in the intention creation process. In particular, each belief, which can be by
definition practical, social or ethical, is classified on the basis of their support to the decision
to determine a progression of the goal that will become the intention. Indeed, the intention
creation process is founded on multiple progressive goal states and categories of supporting
beliefs (see [23]). In addition to the beliefs, the capability to have a theory of mind of the user,
allows the robot to reason about those goals explicitly delegated by the user and those ones
that can be attributed to the user and that represent state of affairs that she could be interested
to achieve or that has already planned to achieve in the future. We have already defined this
kind of goals as active goals. At this stage, the robot owns a mental map of a set of beliefs
(adequately classified) and goals involved in the reasoning process that led to choose a specific
intention to adopt. The second conceptual layer (explaination generation) gives to the agent
the capability to work on the mental states (beliefs, goals) produced in the categorization layer
and that represent explanatory information (agent’s reasons), in order to generate different,
contextual, modalities of behavior explanation [24]. The overall explainability process (behavior
interpretability due to the categorization process and behavior explaination due to the generated
explaination) provided by the agent to the human user, is evaluated by her, on the basis of
different dimensions [24].

2.4. Modelling Trust

The goal of this module is to endow the robot with the complex mental attitude of trust, related
to the kind of collaboration provided by the designed robot (see Figure 5). As Castelfranchi and



Falcone formalize [1], trust is the mental counterpart of delegation. This means that robot has to
be able to achieve user’s goals or needs, but it has also able to delegates tasks, on the basis of an
evaluation of other agents (artificial or humans) potentially involved in the interaction. Because
of that, On the one hand, the computational model should give a robot the ability to estimate its
own degree of trust in other agents, human or artificial, and on the basis of this estimate, decide
whether and to whom to delegate specific tasks. On the other hand, the cognitive model should
give a robot the ability to estimate its own level of trustworthiness, starting from different
sources of trust linked to the user [13], in order to evaluate the best behavior to adopt.

3. Final Remarks

This work is expected to contribute, on a theoretical plan, to the field of social cognition and
advanced cognitive robotics by focusing on the collaborative processes between humans and
artificial intelligent systems. As far as the scientific community is concerned, the advancement
of knowledge in the field of HRI and HMI interaction, in particular intelligent collaboration,
represents an increasingly studied research frontier due to the growing diffusion of automatic
and intelligent artificial systems in the life of every day and the enormous limits compared
to an interaction with these tools that is actually natural and compatible with the cognitive
attitudes of humans. This type of approach to human-robot interaction can be effective in many
domains in which robots are involved. As has been demonstrated by field experiments, the use
of intelligent systems capable of supporting an interaction based on analysis of user needs has
proven useful in the museum sector. A robot that is able to adapt an exhibition to the user’s
needs can have a much more positive impact than a robot that does exactly what the user asks
of it.

This type of approach, perhaps taking into consideration the gravity of the task to be carried
out, can also be adopted in other scenarios, such as elderly assistance or even industry. The
robotic industries themselves, increasingly interested in making their platforms permeable to an
interaction as natural as possible with humans, will be involved in this enterprise. As it is known,
several application areas, Industry 4.0 and smart manufacturing are increasingly characterized
by the intensive use of robotic solutions that collaborate with workers to perform various tasks
under their guidance. In some cases, workers interact with robots in critical environments, so
commands should be entered to support accuracy and safety. Recent technological advances
in social robotics are enabling new types of human-machine interactions that incorporate
contextual data. It becomes crucial push research by investigating robotic solutions in which
human-robot interaction is provided indirectly by the robots through real-time input. The robot
can plan subsequent actions, follow a current routine, switch to an alternative routine, or trigger
an alarm.

Finally, it is important to underlie that this kind of approach fits within the conceptual
framework of Human-Centered Artificial Intelligence/Robotics. This means that an ethical
perspective is adopted that empowers the development of an artificial intelligence always at
the service of the person. In fact, if the benefits and advantages deriving from robotization
are unquestionable, an ethical view based on the primacy of the human being through the full
recognition of human dignity is essential.
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