
Towards a Multi-Level Explainability Framework for
Engineering and Understanding BDI Agent Systems
Elena Yan1,*, Samuele Burattini1,*, Jomi Fred Hübner2,* and Alessandro Ricci1,*

1Alma Mater Studiorum, University of Bologna - Cesena Campus, Via dell’Universitá 50, 47521 Cesena (FC), Italy
2Federal University of Santa Catarina, 88040-900 Florianópolis (SC), Brasil

Abstract
Explainability is more and more considered a crucial property to be featured by AI-based systems,
including those engineered in terms of agents and multi-agent systems. This property is primarily
important at the user level, to increase e.g. system trustworthiness, but can play an important role
also at the engineering level, to support activities such as debugging and validation. In this paper, we
focus on BDI agent systems and introduce a multi-level explainability framework to understand the
system’s behaviour that targets different classes of users: developers who implement the system, software
designers who verify the soundness and final users. A prototype implementation of a tool based on the
JaCaMo platform for multi-agent systems is adopted to explore the idea in practice.

Keywords
BDI Agents, Explainable AI, Debugging

1. Introduction

Explainability emerged in recent years as an important desired property for AI-based systems [1].
Among these systems, autonomous agents and MAS play a prominent role [2]: explainability in
that case mainly concerns the decisions and actions that agents autonomously make and perform
in order to accomplish their tasks. The key concept is to provide a level of understanding of the
behaviour through (usually text based) explanations that can better convey the decision making
processes and enable users to validate the motivations of the choices taken by the AI system –
being it an agent, a Convolutional Neural Network or a cutting-edge generative system.

Actually, explainability is a crucial property not only from a user perspective, but also from an
engineering one, to support activities of developers and designers involved in debugging [3] and
validation of the system behaviour [4, 5]. In this context, the model and architecture adopted
for designing and programming agents can play a key role. In particular, high-level cognitive
models/architectures such as Belief-Desire-Intention (BDI) [6] provide in principle a natural
support to explainability by design. This has been clearly recognized in literature by different

WOA 2023: 24th Workshop From Objects to Agents, November 6–8, Rome, Italy
*Corresponding author.
†
These authors contributed equally.
$ elena.yan@studio.unibo.it (E. Yan); samuele.burattini@unibo.it (S. Burattini); jomi.hubner@usfc.br
(J. F. Hübner); a.ricci@unibo.it (A. Ricci)
� 0009-0000-6660-9378 (E. Yan); 0009-0009-4853-7783 (S. Burattini); 0000-0001-9355-822X (J. F. Hübner);
0000-0002-9222-5092 (A. Ricci)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:elena.yan@studio.unibo.it
mailto:samuele.burattini@unibo.it
mailto:jomi.hubner@usfc.br
mailto:a.ricci@unibo.it
https://orcid.org/0009-0000-6660-9378
https://orcid.org/0009-0009-4853-7783
https://orcid.org/0000-0001-9355-822X
https://orcid.org/0000-0002-9222-5092
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org


approaches in the last two decade [7, 4], including works about exploiting explainability for
debugging BDI agents [3, 8], and validating BDI agent behaviour [5].

Existing works based on BDI agent programming languages/platforms typically work on
traces generated by the agent at runtime, and build explanations based on the specific operational
semantics on which the specific agent programming language is based. The level of abstraction
of the explanation is then the one, directly provided by the agent programming language
adopted.

In this paper, we argue that explaining and understanding that behaviour and system could be
important at multiple levels of abstraction, from developers working at the implementation level
with e.g. some specific agent programming languages, up to designers and engineers that may
want to abstract from details of the specific technologies used to implement agents focusing
more at the architectural level, and finally the domain expert and user level, who focus on the
functional and non-functional requirements of the system as a whole, abstracting from how the
system has been built. In that perspective, in this paper we propose a multi-level explainability
framework, a conceptual framework and a supporting prototype tool that make it possible to
create narratives explaining the behaviour of an agent at multiple levels of abstractions, meant
to be useful at different levels – developers, designers, users.

The remainder of the paper is organised as follows. In Section 2 we provide an overview of
the conceptual framework, and then we discuss the three main levels that we identified: the
implementation level (Section 3), the knowledge level (Section 4) and the domain level (Section
5). In Section 6 we describe a prototype implementation of a tool to generate such explanations,
based on an existing MAS platform (JaCaMo [9]). Finally, in Section 7 we reflect on the open
challenges to bring this approach to its full potential and future work.

2. Logs as Narratives to Explain and Understand - A Multi-Level
Perspective

In this paper, we build on top of the idea of using logs to examine the behaviour of a software
system by applying it to multi-agent systems with a novel angle which is to include multiple
levels of explanation generated from the same set of logs. Commonly, explainability in agent
systems is achieved focusing on a single agent that produces a single explanation for a single
purpose. Our research introduces a different approach by presenting an explainability framework
for agents and multi-agent systems that deals with multiple levels of abstraction that can be
used with different purposes by different classes of users.

We start from the idea that explanations in the MAS community have been used either
as support for comprehending the behaviour of a running system [10, 11] or for software
engineering processes such as collaboration with designers and domain experts [12], debug-
ging [8, 13, 14, 15, 16, 17], as well as testing and validation of agent behaviours [18, 19, 20, 12, 21].
All of these use cases require to deal with different levels of abstraction in the generated expla-
nation since they target specific classes of users with different needs and objectives.

When developing explanations though, it is important that they are understandable and
useful to users, the aim is to maximise the perceived usefulness and generate explanations that
are user-friendly. These are key aspects that influence how users can benefit from the provided



explanations. To achieve this, instead of providing explanations in a traditional technical format
or presenting directly with the raw format of the log, explanations are often provided as text in
natural language. In our approach we use the idea of a narrative to indicate a specific level
of abstraction in which the explanation is provided. There are similar works in the literature
that present the explanation in the form of dialogues [22] or stories at the agent level [20],
system or user level [18, 19] to check the correctness of the system. The narrative is particularly
effective in making the explanation accessible to a wider audience. Developers, designers, and
users who are not fully familiar with the technical complexities of agent systems can easily
understand the concepts and motivations when they are presented in a narrative, story-like
form. It’s interesting then to understand whether a unified approach can lead to better results,
allowing users to switch between multiple possible levels of explanation when in need.

The first step to generate explanations is to collect data about the running system: a simple
and valuable approach is derived from the system trace by a logging approach, such as in [3]
and [15], where the authors export traces from the execution system and programmers can ask
why questions for events that require explanations, following the idea of the Whyline approach
[23].

Logging can be either explicit when the developer takes an active part in selecting which
information are logged, or implicit when the overall execution platform captures and builds
traces without external intervention. For our framework, we chose to rely on implicit logging,
in order to be able to store, organise, and rely on the same kind of logs of agents behaviour to
generate automatic explanations of the system’s behaviour without bothering the developer
with additional steps to be included in its code. On top of the data collected with this approach,
we then generate different layers of explanation that target different classes of users with
different purposes.

It is worth noticing that generally the level of explanation is more abstract when it deals with
less technical users, and can be seen as hierarchically built on top of the lower ones. At the
same time, in MAS engineering several dimensions are interesting when we move from a single
agent to a multi-agent systems, namely the interaction dimension that concerns exchange of
messages between agents, the environment dimension concerning the actions of multiple agents
in a shared space and the organisational dimension which considers norms and social structures.
Different levels of explanation are possible also considering these orthogonal dimensions, in
order to target the specific dimension that better resonates with the user of the system. We
refer to this approach as “multi-level explainability”, its idea is represented in Figure 1, from
the multi-level abstraction of the individual agent (Figure 1a) to multiple dimensions involving
the multi-agent system (Figure 1b). The primary levels of abstraction identified in this study
are as follows:

• the Implementation Level We start with a detailed narrative closely related to the Agent
and Multi-Agent System at a technical level that facilitates the developers to understand
the agent’s behaviour. It could also be a good reference for the debugging and testing
phases of the software engineering process.

• the Knowledge Level At this level, we propose using the Belief-Desire-Intention (BDI)
model [6] to represent the cognitive aspect of agents. The BDI model is a valuable
abstraction for explaining the agent’s high-level decisions. BDI agents have beliefs – their



Knowledge Level
Belief

Desire
Intention

Implementation Level

Reasoning 
Cycle Started Goal removedSelect Plan

Intention 
Created

Belief Added

Domain Level

AB
ST

RA
CT

IO
N

High 
temperature

TIME

(a) Multiple levels of abstraction in the agent di-
mension

Text

AB
ST

RA
CT

IO
N

MAS D
IM

ENSIO
N

Agent

Organization

TIME

(b) Multiple dimensions and levels of abstraction
in a multi-agent system

Figure 1: The conceptual idea of multi-level explainability from multiple perspectives

knowledge about the world and themselves, desires – the objective that agents want to
achieve, and intentions – agent’s decision to perform actions for pursuing a particular
goal. [24, 25] Through rational reasoning, the agent has a set of goals to achieve and uses
its knowledge and beliefs to decide the actions to be taken. This is particularly conducive
to the creation of a valid explanation at the knowledge level. Regardless of the specific
implementation of the system. This level is a good abstraction for designers who want
to comprehend the current behaviour system, to interact with other stakeholders and
developers or to formulate new requirements for improving the system.

• the Domain Level The previous level can be extended to a higher one incorporating
the domain-specific knowledge and insights. This vision provides a comprehensive
understanding related to the system’s high-level behaviour and requirements that involve
end-users and domain experts. We believe this is the ultimate level of abstraction that
can be reached, so that users that are expert in the domain can understand seamlessly the
behaviour of the system as if it was described by other humans.

These abstraction levels are designed to be flexible, allowing different groups of users to access
explanations from different perspectives. Each level of explanation includes all the relevant
information necessary for a complete understanding of that specific abstraction. Consequently,
these levels are considered fully self-contained. This means that all explanations, properties and
tools necessary for the evaluation of behaviour at a given level are enclosed within that level,
avoiding considering the details of other levels.

Explanations at higher levels of abstraction are built on top of explanations at lower levels.
This modular process involves keeping or combining the most relevant explanations and pre-
senting them in a more abstract, higher-level way, depending on the desired level of abstraction.

Although we include in the idea of multi-level explainability also the different dimensions of
a MAS, in this first exploratory study we focused only on the Agent dimension. In the following



sections, the levels presented above will be explained in detail with examples of how they were
defined for the Agent dimension and as such focusing on the explanation of the behaviour of
each individual agent in the system.

3. Narratives for Developers – the Implementation Level

At the implementation level, the explanation of behaviour is presented in a very close way to the
raw log produced with the system execution. It is a low, detailed, and technical level that follows
the operational semantics of the programming language used to code the agents. The narrative
at this level describes the entire history of the agent at a detailed level, including very technical
aspects and the inner workings of the agent. The explanation of the agent can also be extended
to a multi-agent system (MAS) perspective. Considering the fact that each agent is autonomous
and operates with its own cycle and execution time, a multi-agent view requires associating a
log trace for each agent in the system. For a more consistent and robust explanation, a log could
also be associated with the environment and organisation. This narrative can be navigated by
the developer and is an excellent tool for understanding intricate Agent and MAS code and for
engineering phases such as debugging, validation, and testing.

In a debugging scenario, through the explanation of the agents’ decisions and the motivation
leading to such choices, the developer can follow the trace of decisions and actions and find
the cause of the bug or failure in order to correct the problem effectively. In order to locate
the cause of such behaviour, it is essential that the narrative explain how and why an event or
action is occurring. Understanding the reasons behind certain decisions is extremely useful to
help developers during the debugging phases. [3, 26] With an extension to the environment,
the developer can check whether the problem is located in the agent’s program or in the
environment’s program.

During the testing and validation phases, developers can use the explanation of the agents,
take the narrative, and check the requirements to see if they meet them, or compare the narrative
with the user stories of the system to ensure alignment. [19, 20]

Agent programming may be exploited even for classic cognitive agents and multi-agent
systems that use logic-based languages such as Jason [27] for the agent side and JaCaMo [28, 9]
for multi-agent systems with more dimensions. These agent programming languages have
a higher level of abstraction centred on agents with a mental state and reasoning process
consisting of concepts such as beliefs, goals, plans, intentions, actions, etc. In this case, the
logging of the agent’s behaviour follows its reasoning cycle events, providing a detailed trace of
key events in the agent’s decision-making process. It allows developers to keep track of every
change in the agent’s plan library and belief base, record every state of goals and intentions,
register agents’ decisions and actions in pursuit of their goals, and follow interactions with
other agents in the multi-agent system.

We have identified the following types of events and their related narratives according to the
concepts of AgentSpeak and Jason. Operating by the concepts, we can apply the same reasoning
to another language and consider its semantics.



Belief Events – There are events that can change an agent’s belief base, including the
complete addition or removal of a belief or referring only to a source, a new perception from
the environment, or a new message from another agent.

• Belief Added: “Added belief [belief]”
• Belief From Src Added: “Added belief [belief] from source source”
• Belief From Src Removed: “Removed belief [belief] from source source”
• Belief Removed: “Removed belief [belief]
• New Percept: “New [type] percept [percept] from [source]”
• New Speech Act Message: “New speech act message [type] from [source]:
[message]”

Goal Events – Events related to a goal are based on their current state and the agent’s
commitment to achieving them. The initial state of a goal is pending, denoting that it is
essentially a desire at this point. If an applicable plan is discovered, the goal becomes an
intention and the agent fully commits to pursuing it, the state then moves to executing. Then,
because of some events, the state can be waiting or resumed. Finally, a goal may conclude its
lifecycle by moving into one of the three terminal states: dropped - by special internal action,
achieved - successfully completed or failed - if there is no plan or by internal action.

• Goal Created: “Goal [goal] created, state: pending”
• Plan Selected: “Plan [goal] selected, state: executing” – when the agent selected a

plan for committing the goal, the goal becomes an intention, and from there an intention
event is created, and we can have these events:

– Intention Created: “Intention [id] created, state: running, current step:
[current_intention_step]”

– Intention Waiting: “Intention [id] waiting because [reason], state: waiting,
current step: [current_intention_step]”

– Intention Suspended: “Intention [id] suspended because [reason], state: sus-
pended, current step: [current_intention_step]”

– Intention Removed: “Intention id removed because reason, state: undefined”

• Goal Suspended: “Goal [goal] suspended because [reason]”
• Goal Removed: “Goal [goal] removed because the goal is
[achieved/dropped/failed]”

Other Jason events Other significant events in Jason that contribute to the representation
of the agent’s behaviour are:

• Reasoning Cycle Started: “New reasoning cycle started: [number]”
• Plan Events – events that refer to change in the agent’s plan library:

– Plan Added: “Plan [plan] added to the plan library”
– Plan Removed: “Plan [plan] removed from the plan library”



• Action Events – actions that the agent executes for pursuing its goal:

– Internal Action Finished: “Internal action [action] finished”
– External Action Triggered: “External action [action] triggered”
– External Action Finished: “External action [action] executed”
– Executed Deed: “Deed [deed] executed, type: [deed_type]”

• Speech Act Messages – events relating to the exchange of messages with other agents:

– Mailbox Messages: “Messages in mailbox: [type] message from [agent]:
[message], [type] message from [agent]: [message], ...”

– Selected Message: “Selected message: [message]”
– New Speech Act Message: “New speech act message [type] from [agent]:
[message]”

– Send Message: Send [type] message to [agent]: [message]

4. Narratives for Designers – the Knowledge Level

The implementation level has too many technical and code-related aspects, and its narrative
is not particularly suitable for users who are not familiar with programming. Designers, for
example, who want to understand and improve the system are more interested in the aspects of
the system and the agent than the programming aspects related to the specific language. This is
the motivation for the need for a higher and more abstract level.

A good level of abstraction is the cognitive aspect of the agent, which we can exploit the
Belief-Desire-Intention (BDI) abstraction [6] to represent at the knowledge level. This model is
advantageous for generating explanations because it relies on concepts that closely resemble
those used by humans to explain their actions. [5] These mentalistic explanations can follow
human intuitions, as the agent’s behaviour is attributed to the beliefs, desires, and intentions
present in the system at a given time. Specifically, the agent has a set of desires that he wants to
satisfy. Based on his observations of the environment and the features he perceives, the agent
updates its beliefs and finds a more appropriate and favourable plan that enables him to pursue
some desire. The agent then commits to an intention that the agent follows by performing
actions that should leave to the desire’s satisfaction. [24, 29, 25]

The narrative at this Knowledge level is centred around these concepts and reported in first
person to make it more expressive, as if the agents themselves were narrating their experiences
and thought processes. The explanation is more vivid and accessible, allowing users to enter
into the agent’s reasoning and possibly identify themselves with the agent in that specific
situation as we do with other human beings. The events we have identified at this Knowledge
level are shown below.

Belief Events For belief, we have identified three main events related to its possible operations:
adding, removing, and updating.

• New Belief: “I believe [belief] because [reason]”.
• Belief Removed: “I no longer believe in [belief]”.
• Belief Updated: “I update the belief [old_belief] to [new_belief]”.



Select Plan Select Plan

Intention 
Created

Knowledge Level

Implementation Level

Belief Updated

Belief Added

Intention 
Created

Belief RemovedNew Percept

Plan Selected
Belief RemovedSelect Plan Belief Added

Plan Selected Intention 
Created

Desire 
Committed

Figure 2: Example of the connection of the Knowledge and Implementation levels by the mapping of
events of the two levels

Desire Events Desire events follow their own life cycle: creation, commitment, satisfaction,
or dropped.

• New Desire: “I have a new desire [desire] because it is an initial desire”.
• Desire Committed/New Intention: “I committed to desire [desire], and it became a

new intention [intention]”.
• Desire Satisfied: “I have satisfied my desire [desire] because its intention
[intention] has finished”.

• Desire Dropped: “I gave up desire [desire] because its intention [intention]
failed”.

Intention Events Intention represents a commitment or plan formed by an agent to achieve
a specific desired outcome.

• Desire Committed/New Intention: “I committed to desire [desire], and it became a
new intention [intention]”.

• Executing Action: “I executed action [action] because of intention [intention]”.

The proposed narrative is simple and concise, but at the same time, it provides all the
information needed to understand the agent’s behaviour at the Knowledge level.

In our current research, we are focusing on the Jason technology. Given the events at the
implementation level and knowing the operational semantics of Jason and AgentSpeak, we can
devise some rules for patterns of events that can be mapped into a new event at the knowledge
level. An illustrative example of this event mapping is presented in Figure 2. For instance, a
Desire Committed event at the Knowledge level, in which the desire is chosen and the agent
commits to it, is grounded by Select Plan, Plan Selected, and Intention Created events at the
implementation level. While a Belief Updated event is associated with Belief Removed and Belief
Added events at the implementation level. Such a mapping is crucial to build the multi-level
explanation, we argue that given any implementation level, given a mapping it would be possible
to generate a knowledge level explanation of the system, with the benefits that a BDI-based
explanation has from a user understanding perspective.



Knowledge Level Implementation Level
New Belief Belief Added
“I believe b because I annotated it in my mind
for future reference”

“Added belief b”

New Percept
“I believe b because I perceived it from c1” “New percept from c1 : b”

Belief Added
“Added belief b”
New Speech Act Message

“I believe b because Alice told me” “New speech act message tell from Alice: b”

Belief Added
“Added belief b”

Belief Removed Belief Removed
“I no longer believe in b” “Removed belief b”
Belief Updated Belief Removed
“I update the belief b(1) to b(2)” “Removed belief b(1)”

Belief Added
“Added belief b(2)”

Table 1
Correspondence of Belief Events in Knowledge and Implementation level

It is important to also note that these events may not necessarily occur sequentially, there
can be interleaving events, such as a new perception of changes in the environment.

To provide a more detailed overview of this mapping process, Table 1 illustrates the mapping
of Belief related events from the Implementation level to the Knowledge level, while Table 2
illustrates the mapping of Desire and Intention related events.

5. Narratives for Users – the Domain Level

Increasing the abstraction further, we are abstracting from how is done, but we are focusing
on what we want, specifically, we don’t see how the system is behaving, we see what are the
results. From the user’s perspective, we need to have an even more abstract narrative on top
of the knowledge level that concerns the requirements and domain aspects of the system. At
this level, the narrative needs to be related to the domain specifics, similar to user stories [18],
in a way that is more related to the user level. End-users or domain experts can explore this
narrative to comprehend the system from a domain perspective. The narrative at this level
is easy to understand and more accessible to users, even without being familiar with agent
technologies or knowledge abstractions. So when the user asks for an explanation of why the



Knowledge Level Implementation Level
New Desire New Goal Created
“I have a new desire g because it is an initial
desire”

“Goal g created”

“I have a new desire g2 because it is a desire
created from g”

“Goal g2 created”

Desire Committed/Intention Created SelectPlanEvent
“I committed to desire g, and it became a new
intention 1 g”

“Plan options for g are [...] The plan se-
lected for g is g : (count(X) & (X < 3))
<- a1; !g2; a3.”

PlanSelected
“Plan g selected”

Intention Created
“Intention 1 g created, state: running”

Executed action Intention Created
“I’m executed action a1 because of intention 1
g"

“Intention 1 g created, state: running, current
step: a1

External Action Finished / Internal Action
Finished / Execute Deed
“External action / Internal Action / Deed a1 exe-
cuted”

Desire satisfied Intention Removed
“I have satisfied my desire g because its inten-
tion 1 g finished”

“Intention 1 removed, state: undefined”

Goal Removed
“Goal g removed because the goal is achieved”

Desire dropped Intention Removed
“I gave up desire g because its intention 1 g
failed”

“Intention 1 removed, state: undefined”

Goal Removed
“Goal g removed because the goal is failed”

Table 2
Correspondence of Desire and Intention Events in Knowledge and Implementation level

system does something, the answers should be related to the system’s requirements and justified
in terms of the user story and requirements, instead of the agent’s desire or belief. For building
explanations at this level, we may need to infuse knowledge about the description of the system
requirements that make it possible to design the agents, and given the behaviour of agents at
the knowledge level, we should be able to derive why some actions are done in terms of user
and domain level. We need some formalisation of the use cases, and the user stories, this could



Figure 3: Overview of the main components of the framework

be exploited by works in [18, 20].
For domain experts, this level of abstraction can support them in collaborating, reducing

the gap with developers [12], and verifying whether the developed system is consistent with
the domain specification. For end-users, this narrative can help them understand the system,
improving trust and transparency of the system. [30, 2]

This level is still being discussed and it is a future direction of the multi-level explainability
framework.

6. Prototype Implementation

To put our conceptual framework into practice, we have experimented with the development of
a prototype tool for this multi-level explanation idea, using the operation semantics of Jason as
our starting point.

The main components of the multi-level tool that we built in this project are represented in
Figure 3. Since the approach taken for creating explanations is through logging, an important
component of our tool is the logging component, which is responsible for generating the
execution trace for each entity in the system. This logging component captures events and useful
information from the system execution at the lower level and then stores them in file-based
formats that serve as the foundation for generating explanations.

A model component then includes the explanation generation algorithm, which processes
the log and generates an explanation and narrative of the system’s behaviour. This explanation
is presented to the user through a web application. Different users, such as developers, design-
ers, or end users, can access the application and explore the narrative at different levels for
understanding and analysis.

Logging component For developing the logging component1 we have extended the Jason
interpreter with customisation agent architecture that allows logging functionality. This cus-

1The logging component prototype is available at https://github.com/yan-elena/agent-logging, an example of
utilisation is presented at https://github.com/yan-elena/domestic-robot-example.

https://github.com/yan-elena/agent-logging
https://github.com/yan-elena/domestic-robot-example


Figure 4: Overall architecture of the logging component

tomisation primarily focuses on the Agent class and the AgArch, which have been extended
respectively by the classes LoggerArch and LoggerAg.

The overall architecture of the logging component is presented in Figure 4. Specifically, the
central element of this structure is the EventLogger, which orchestrates the management of
logs from all agents in the system. It is responsible for publishing the events associated with a
specific agent and subsequently saving the log to a file.

The workings of the EventLogger class exploit a map-based data structure, which houses
the event history of all agents. The individual log of a given agent is represented by the
Agent History component. The interface of this component provides methods for including
events and storing the log. Events are encapsulated by the corresponding Event interface,
which provides a uniform structure to represent different types of events. Every event at the
Implementation Level outlined in 3 is instantiated as a class that implements the Event interface,
adapting its structure to the specific characteristics of the event type.

Explanation component The explanation component2 is responsible for presenting the
explanation of the agent system on multiple levels in a comprehensible and user-friendly
manner. We opted to develop a web application for its accessibility and ease of use. This
web application serves as an interface for users to interact with and understand the complex
reasoning and behaviour of the multi-agent system. Users can navigate explanations, view
event narratives, and select the level of abstraction of the narrative.

The application provided functionality to upload the log files generated by the logging com-
ponent. With these log files, the application generates a comprehensive multi-level explanation

2The explanation component prototype is available at https://github.com/yan-elena/agent-explanation, a deployed
application can be accessed directly via this link: https://yan-elena.github.io/agent-explanation.

https://github.com/yan-elena/agent-explanation
https://yan-elena.github.io/agent-explanation


Figure 5: Web application - Narrative at the Knowledge level of the desire get(beer) of the agent owner
in the classic example of the domestic robot

following the mapping identified in the design phases. When a user selects an agent for expla-
nations, the application provides a view of all event narratives at the selected level. Figure 5
shows a narrative for the classic example of the domestic robot3 described in the Jason book [27].
The explanation of the desire get(beer) for the owner agent is shown at the Knowledge level.

In the application, there is also a component for filtering the events of interest, this function-
ality is very useful for visualising the entire life cycle of a particular event. In this case, we
have shown the desire get(beer), and by filtering events, its lifecycle is immediately shown.
In fact, we can see that the agent has an initial desire, then decides to commit it, actions are
performed to achieve the desire, and in the end, it is satisfied.

7. Conclusion and Future Work

In this paper, we presented this new idea of multi-level explanation, identified three possible
levels, and which relevant events are useful for generating the explanation while demonstrating
how it is possible to generate and map these events from one level to the next, taking as a
reference technology Jason.

In the current state, the implemented explainability tool can be used as a basis for com-
prehending multi-agent systems. However, we present below some valuable suggestions and
possible directions for research to further improve the framework.

The first main direction is to move towards the domain level that is still in the discussion phase,
as described in Section 5. We argue that to build this further level, we should include formal

3The example is available on GitHub, configured to be used with the logging component at https://github.com/
yan-elena/domestic-robot-example

https://github.com/yan-elena/domestic-robot-example
https://github.com/yan-elena/domestic-robot-example


descriptions of system requirements, use cases, and system stories for additional information
about the domain. The narrative here should provide explanations at the system level and focus
on the system requirements and objectives at the domain level.

In addition to expanding the level of abstractions, another direction is to expand the di-
mensions of explanation regarding multi-agent systems, encompassing both environment and
organisation aspects, as cited in Section 2. This expansion will involve integrating dedicated
logging components tailored to environmental artefacts and organisational specifications. We
can also apply the idea of multi-level explanation to these dimensions. For example, a low-level
explanation of the organisation can refer to the implementation and technical aspects, while an
explanation at the knowledge level could include specifications of objectives and missions.

Another direction that needs to be improved in order to achieve a more robust framework is
the integration of cause-effect relationships to sequences of events [26]. The complexity lies
in identifying the relationships between the various events, linking them and creating causal
chains. This feature further improves the explanation of the reason behind certain decisions
and allows the root cause to be traced in a robust manner which is extremely useful both for
debugging and improving the understanding of the system from a user point of view.

References

[1] F. Xu, H. Uszkoreit, Y. Du, W. Fan, D. Zhao, J. Zhu, Explainable ai: A brief survey on
history, research areas, approaches and challenges, in: Natural Language Processing and
Chinese Computing: 8th CCF International Conference, NLPCC 2019, Dunhuang, China,
October 9–14, 2019, Proceedings, Part II 8, Springer, 2019, pp. 563–574.

[2] A. Malhi, S. Knapic, K. Främling, Explainable agents for less bias in human-agent decision
making, in: D. Calvaresi, A. Najjar, M. Winikoff, K. Främling (Eds.), Explainable, Trans-
parent Autonomous Agents and Multi-Agent Systems, Springer International Publishing,
Cham, 2020, pp. 129–146.

[3] K. V. Hindriks, Debugging is explaining, in: I. Rahwan, W. Wobcke, S. Sen, T. Sugawara
(Eds.), PRIMA 2012: Principles and Practice of Multi-Agent Systems, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012, pp. 31–45.

[4] J. Broekens, M. Harbers, K. Hindriks, K. Bosch, C. Jonker, J.-j. Meyer, Do you get it?
user-evaluated explainable bdi agents, in: Multiagent System Technologies: 8th German
Conference, MATES 2010, Leipzig, Germany, September 27-29, 2010. Proceedings 8, volume
6251, Springer, 2010, pp. 28–39. doi:10.1007/978-3-642-16178-0_5.

[5] M. Winikoff, G. Sidorenko, V. Dignum, F. Dignum, Why bad coffee? explaining bdi
agent behaviour with valuings (extended abstract), in: L. D. Raedt (Ed.), Proceedings
of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22,
International Joint Conferences on Artificial Intelligence Organization, 2022, pp. 5782–5786.
URL: https://doi.org/10.24963/ijcai.2022/810. doi:10.24963/ijcai.2022/810, journal
Track.

[6] M. Bratman, Intention, Plans, and Practical Reason, Cambridge: Cambridge, MA: Harvard
University Press, 1987.

[7] M. Harbers, K. van den Bosch, J.-J. Meyer, Design and evaluation of explainable bdi agents,

http://dx.doi.org/10.1007/978-3-642-16178-0_5
https://doi.org/10.24963/ijcai.2022/810
http://dx.doi.org/10.24963/ijcai.2022/810


in: 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent
Agent Technology, volume 2, 2010, pp. 125–132. doi:10.1109/WI-IAT.2010.115.

[8] M. Winikoff, Debugging agent programs with why? questions, in: Proceedings of the 16th
Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’17, International
Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, 2017, pp.
251–259.

[9] O. Boissier, R. H. Bordini, J. Hübner, A. Ricci, A. Santi, Multi-agent oriented programming
with JaCaMo, Science of Computer Programming 78 (2013) 747–761. URL: http://www.
sciencedirect.com/science/article/pii/S016764231100181X. doi:10.1016/j.scico.2011.
10.004, special section on Agent-oriented Design Methods and Programming Techniques
for Distributed Computing in Dynamic and Complex Environments.

[10] T. Bosse, D. Lam, K. Barber, Tools for analyzing intelligent agent systems, Web Intelligence
and Agent Systems 6 (2008) 355–371. doi:10.3233/WIA-2008-0145.

[11] D. N. Lam, K. S. Barber, Comprehending agent software, in: Proceedings of the Fourth In-
ternational Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS ’05,
Association for Computing Machinery, New York, NY, USA, 2005, pp. 586–593. URL: https:
//doi-org.ezproxy.unibo.it/10.1145/1082473.1082562. doi:10.1145/1082473.1082562.

[12] Á. Carrera, C. A. Iglesias, M. Garijo, Beast methodology: An agile testing methodology
for multi-agent systems based on behaviour driven development, Information Systems
Frontiers 16 (2014) 169–182.

[13] T. Ahlbrecht, An algorithmic debugging approach for belief-desire-intention
agents, Annals of Mathematics and Artificial Intelligence (2023) 1–18. doi:10.1007/
s10472-023-09843-4.

[14] G. Pothier, E. Tanter, Back to the future: Omniscient debugging, IEEE Software 26 (2009)
78–85. doi:10.1109/MS.2009.169.

[15] V. J. Koeman, K. V. Hindriks, C. M. Jonker, Omniscient debugging for cognitive agent
programs, in: Proceedings of the Twenty-Sixth International Joint Conference on Artifi-
cial Intelligence, IJCAI-17, 2017, pp. 265–272. URL: https://doi.org/10.24963/ijcai.2017/38.
doi:10.24963/ijcai.2017/38.

[16] D. Poutakidis, L. Padgham, M. Winikoff, Debugging multi-agent systems using design
artifacts: The case of interaction protocols, in: Proceedings of the First International
Joint Conference on Autonomous Agents and Multiagent Systems: Part 2, AAMAS ’02,
Association for Computing Machinery, New York, NY, USA, 2002, pp. 960–967. URL:
https://doi.org/10.1145/544862.544966. doi:10.1145/544862.544966.

[17] M. Dastani, J. Brandsema, A. Dubel, J.-J. C. Meyer, Debugging bdi-based multi-agent
programs, in: L. Braubach, J.-P. Briot, J. Thangarajah (Eds.), Programming Multi-Agent
Systems, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010, pp. 151–169.

[18] S. Rodriguez, J. Thangarajah, M. Winikoff, User and system stories: An agile approach for
managing requirements in aose, in: Proceedings of the 20th International Conference on
Autonomous Agents and MultiAgent Systems, AAMAS ’21, International Foundation for
Autonomous Agents and Multiagent Systems, Richland, SC, 2021, pp. 1064–1072.

[19] S. Rodriguez, J. Thangarajah, M. Winikoff, D. Singh, Testing requirements via user and
system stories in agent systems, in: Proceedings of the 21st International Conference on
Autonomous Agents and Multiagent Systems, 2022, pp. 1119–1127.

http://dx.doi.org/10.1109/WI-IAT.2010.115
http://www.sciencedirect.com/science/article/pii/S016764231100181X
http://www.sciencedirect.com/science/article/pii/S016764231100181X
http://dx.doi.org/10.1016/j.scico.2011.10.004
http://dx.doi.org/10.1016/j.scico.2011.10.004
http://dx.doi.org/10.3233/WIA-2008-0145
https://doi-org.ezproxy.unibo.it/10.1145/1082473.1082562
https://doi-org.ezproxy.unibo.it/10.1145/1082473.1082562
http://dx.doi.org/10.1145/1082473.1082562
http://dx.doi.org/10.1007/s10472-023-09843-4
http://dx.doi.org/10.1007/s10472-023-09843-4
http://dx.doi.org/10.1109/MS.2009.169
https://doi.org/10.24963/ijcai.2017/38
http://dx.doi.org/10.24963/ijcai.2017/38
https://doi.org/10.1145/544862.544966
http://dx.doi.org/10.1145/544862.544966


[20] S. Rodriguez, J. Thangarajah, M. Winikoff, A behaviour-driven approach for testing
requirements via user and system stories in agent systems, in: Proceedings of the 2023
International Conference on Autonomous Agents and Multiagent Systems, 2023, pp. 1182–
1190.

[21] E. E. Ekinci, A. M. Tiryaki, Ö. Çetin, O. Dikenelli, Goal-oriented agent testing revisited,
in: M. Luck, J. J. Gomez-Sanz (Eds.), Agent-Oriented Software Engineering IX, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2009, pp. 173–186.

[22] L. A. Dennis, N. Oren, Explaining bdi agent behaviour through dialogue, Autonomous
Agents and Multi-Agent Systems 36 (2022) 29.

[23] A. J. Ko, B. A. Myers, Debugging reinvented: Asking and answering why and why not
questions about program behavior, in: Proceedings of the 30th International Conference
on Software Engineering, ICSE ’08, Association for Computing Machinery, New York,
NY, USA, 2008, p. 301–310. URL: https://doi.org/10.1145/1368088.1368130. doi:10.1145/
1368088.1368130.

[24] M. Wooldridge, Introduction to MultiAgent Systems, John Wiley and Sons, 2002.
[25] A. S. Rao, M. P. Georgeff, Bdi agents: From theory to practice, in: International Conference

on Multiagent Systems, 1995.
[26] S. M. Khan, M. Rostamigiv, On explaining agent behaviour via root cause analysis: A formal

account grounded in theory of mind, in: Proceedings of the 26th European Conference on
Artificial Intelligence ECAI, 2023, pp. 30–09.

[27] R. Bordini, J. Hübner, M. Wooldridge, Programming Multi-Agent Systems in AgentSpeak
Using Jason, volume 8, John Wiley & Sons, 2007. doi:10.1002/9780470061848.

[28] O. Boissier, R. H. Bordini, J. Hubner, A. Ricci, Multi-agent oriented programming: pro-
gramming multi-agent systems using JaCaMo, Mit Press, 2020.

[29] R. Kowalski, F. Sadri, From logic programming towards multi-agent systems, Annals of
Mathematics and Artificial Intelligence 25 (1999) 391–419. URL: https://doi.org/10.1023/A:
1018934223383. doi:10.1023/A:1018934223383.

[30] D. Branley-Bell, R. Whitworth, L. Coventry, User trust and understanding of explainable ai:
Exploring algorithm visualisations and user biases, in: M. Kurosu (Ed.), Human-Computer
Interaction. Human Values and Quality of Life, Springer International Publishing, Cham,
2020, pp. 382–399.

https://doi.org/10.1145/1368088.1368130
http://dx.doi.org/10.1145/1368088.1368130
http://dx.doi.org/10.1145/1368088.1368130
http://dx.doi.org/10.1002/9780470061848
https://doi.org/10.1023/A:1018934223383
https://doi.org/10.1023/A:1018934223383
http://dx.doi.org/10.1023/A:1018934223383

	1 Introduction
	2 Logs as Narratives to Explain and Understand - A Multi-Level Perspective
	3 Narratives for Developers – the Implementation Level
	4 Narratives for Designers – the Knowledge Level
	5 Narratives for Users – the Domain Level
	6 Prototype Implementation
	7 Conclusion and Future Work

