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Abstract
Neural-symbolic methods have gained considerable attention in recent years because they are valid
approaches to obtain synergistic integration between deep reinforcement learning and symbolic reinforce-
ment learning. Along these lines of research, this paper presents an extension to a recent neural-symbolic
method for reinforcement learning. The original method, called State-Driven Neural Logic Reinforce-
ment Learning, generates sets of candidate logic rules from the states of the environment, and it uses
a differentiable architecture to select the best subsets of the generated rules that solve the considered
training tasks. The proposed extension modifies the rule generation procedure of the original method to
effectively capture a recursive pattern among the states of the environment. The experimental results
presented in the last part of this paper provide empirical evidence that the proposed approach is beneficial
to the learning process. Actually, the proposed extended method is able to tackle diverse tasks while
ensuring good generalization capabilities, even in tasks that are problematic for the original method
because they exhibit recursive patterns.
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1. Introduction

Neural-symbolic methods for reinforcement learning have been extensively studied in the last
few years (e.g., [1]). These methods try to overcome the limitations of deep reinforcement
learning methods while preserving their ability to effectively cope with partially observable and
stochastic environments. Among the mentioned limitations, it is worth noting that, even if deep
reinforcement learning methods obtained notable results on several complex tasks (e.g., [2, 3, 4]),
they typically have limited generalization capabilities (e.g., [5, 6]). Moreover, the models that
deep reinforcement learning methods produce are not easily interpretable. Neural-symbolic
methods for reinforcement learning are expected to overcome both limitations [5].

Three interesting neural-symbolic methods for reinforcement learning are Differentiable Logic
Machine (DLM ) [7], differentiable Neural Logic (dNL) [8], andNeural Logic Reinforcement Learning
(NLRL) [5]. These methods combine differentiable architectures with first order logic, and they
can be used to define agents that learn sets of logic rules that represent strategies to effectively
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solve the target tasks in environments that present uncertainty. However, the mentioned
methods require a large amount of information to guide the search for an effective strategy,
which prevents these methods from being used in real-world applications. It is often difficult,
or even impossible, to define the structure, or even the characteristics of the final solution for
many complex tasks. In addition, these methods often require relevant computational resources
even to deal with toy problems.
This paper presents an extension of a recently proposed neural-symbolic method for rein-

forcement learning, called State-Driven Neural Logic Reinforcement Learning (SD-NLRL) [9]. The
goal of this work is to extend SD-NLRL to capture the recursive patterns among the states of
the environment. A recursive pattern can be defined as a set of atoms in which each pair of
atoms in the set shares at least a constant, and the set can be replaced with a recursive predicate
to obtain a new state which is equivalent to the initial one. In particular, SD-NLRL is based on
NLRL, which is an adaptation of 𝜕ILP [10] for reinforcement learning tasks. In order to solve a
specific task, NLRL requires a large amount of information from the user. The user must specify
different characteristics of the generated rules using a set of hyper-parameters. On the contrary,
SD-NLRL requires information that can be directly obtained from the environment when the set
of the possible states of the environment is known. The algorithm that is the base of this work,
namely SD-NLRL, generates a set of candidate rules directly from the states of the environment.
Then, SD-NLRL employs a modified version of the differentiable architecture of NLRL to select
the best subset of the generated rules that are able to solve the training task.

In [9], SD-NLRL is compared with NLRL on five tasks, but SD-NLRL is not able to solve three
block manipulation tasks because these tasks present recursive patterns, and SD-NLRL is not
able to generate compact and sufficiently general rules from the states. The proposed extension
is able to tackle even block manipulation tasks, as shown in Section 3.
SD-NLRL is closely related to another neural-symbolic method for reinforcement learning

called dNL. dNL builds a neural network that is used to learn a logical formula in conjunctive
or disjunctive normal form. dNL requires the user to specify both the structure of the network
and the number of free variables that can be used in the learned rules. Therefore, as discussed
for NLRL, SD-NLRL requires less information from the user about the structure of the learned
rules, and it does not require the user to size a neural network.
SD-NLRL is also related to Relational Reinforcement Learning (RRL) [11], which combines

Q-learning [12] with a logical representation of states and actions, because they both work
on reinforcement learning using logic. In particular, RRL induces a relational regression tree
that maps a Q-value, which represents the expected rewards for an action taken in a given
state, to each pair of state and action. Several extensions of the original RRL method have
been proposed (e.g., [13, 14, 15]). However, these extensions do not exploit deep reinforcement
learning and related innovations. On the contrary, SD-NLRL can be used to learn logic rules
using a differentiable architecture, which can take advantage of deep reinforcement learning.
Finally, another recent and notable neural-symbolic method for reinforcement learning is

DLM, which defines a neural architecture that mimics a logical deduction process. In order
to obtain interpretable strategies, DLM can be used to learn ground rules only, and it requires
the user to properly size the neural network. On the contrary, SD-NLRL requires the set of all
states, which is a strong requirement but, it does not require the user to tune a neural network
for the specific purpose of mimicking the deduction process.



The remaining of the paper is organized as follows. Section 2 briefly describes SD-NLRL. Sec-
tion 2 also reports the experimental results of SD-NLRL on cliff-walking tasks, for completeness.
Section 3 presents the proposed extension of SD-NLRL, which is useful when the states of the
environment are characterized by recursive patterns. Section 3 also discusses a comparison
between the proposed extension of SD-NLRL and NLRL on block manipulation tasks. Finally,
Section 4 concludes this paper and outlines possible future developments.

2. Background

This section summarizes SD-NLRL, as described in [9], and it briefly introduces Datalog, which
is the language considered throughout this paper. Then, it presents NLRL, which is the neural-
symbolic method for reinforcement learning that is the base of SD-NLRL. Then, SD-NLRL is
briefly presented, discussing the main differences with NLRL. Finally, the experimental results
reported in [9] are presented, for completeness.

2.1. Datalog

SD-NLRL can be used to learn rules that are written in a subset of first-order logic, called Datalog.
In Datalog, there are three main primitives: predicate symbols, variable symbols, and constant
symbols. Predicate symbols, or predicates, denote relations among objects in the considered
domain. Constant symbols, or constants, denote the objects of the considered domain. Variable
symbols, or variables, denote references to unspecified objects of the considered domain. An
atom 𝛾 is defined as 𝑝(𝑡1, … , 𝑡𝑛), where 𝑝 is a predicate and 𝑡1, … , 𝑡𝑛 are terms, which can be
either variables or constants. An atom is called ground when the terms 𝑡1, … , 𝑡𝑛 are constants.
A definite clause is a rule defined as 𝛾 ← 𝛾1, … , 𝛾𝑛, where 𝛾 is the head of the rule, and 𝛾1, … , 𝛾𝑛
is the body of the rule. In this work, the word rule is used as a synonym of definite clause to
improve readability. A predicate defined using ground atoms only is called extensional predicate.
On the contrary, a predicate defined using a set of definite clauses is called intensional predicate.

2.2. NLRL

NLRL is an adaptation of 𝜕ILP, a neural-symbolic method for Inductive Logic Programming [16]
for reinforcement learning tasks. NLRL requires that both the environment and the background
knowledge are presented using ground atoms, and it produces sets of logic rules using program
templates, which are sets of hyper-parameters that describe the form of the generated rules.
In particular, NLRL generates sets of rules before the training phase, and then it can be used
to learn the subset of the generated rules that represent a good strategy to solve the task. In
order to perform rule generation, the user must define both the action predicates, representing
the possible actions, and the auxiliary predicates, used for predicate invention. During the
training phase, NLRL performs a predetermined number of forward chaining steps to obtain
the truth value of the action atoms. A program template indicates both the number and the
arity of the auxiliary predicates, the number of deduction steps 𝑇, and a set of rule templates.
A program template must specify a rule template for each intensional predicate, either action
or auxiliary. A rule template indicates the number of free variables in the corresponding rule



and whether intensional predicates are allowed in the body of the rule. NLRL generates the
candidate rules using a top-down approach, and it enforces several constraints on the produced
rules. Besides the limitations imposed by the program template, NLRL requires that the body of
each rule contains exactly two atoms, and many additional constraints are applied to further
reduce the space of generated rules. Therefore, using a program template, NLRL requires the
user to specify many details on the form of the final solution, which are not always available
for many real-world problems.

In order to select the best subset of rules that solve the training task, NLRL defines a trainable
weight for each generated rule. In particular, the algorithm defines a vector of weights 𝜃𝑝𝑖 for
each predicate 𝑝 and for each rule template 𝑖. Moreover, NLRL defines a valuation vector [10]
𝑒 ∈ 𝐸 = [0, 1]|𝐺|, where 𝐺 is the set of ground atoms. Each component of 𝑒 represents how much
the algorithm believes that the corresponding atom is true. In order to obtain the truth value of
each ground atom, NLRL performs 𝑇 forward chaining steps, and the sequence of deduction
steps for iteration 𝑡 can be formalized as 𝑓 ∶ 𝐸 × 𝐸 → 𝐸, defined as follows:

𝑓 𝑡(𝑒, 𝑒0) = {
𝑔(𝑓 𝑡−1(𝑒, 𝑒0), 𝑒0) if 𝑡 > 0
𝑒0 if 𝑡 = 0

(1)

where 𝑒0 represents the initial valuation vector, and 𝑔 describes a single deduction step, which
can be formalized as:

𝑔(𝑒, 𝑒0) = 𝑒0 +∑
𝑝

⨁
0≤𝑖≤𝑛

∑
0≤𝑗≤𝑘

𝑤𝑝
𝑖,𝑗ℎ

𝑝
𝑖,𝑗(𝑒), (2)

where 𝑛 represents the number of rule templates defined for predicate 𝑝, 𝑘 is the number of
rules produced using the 𝑖-th rule template. 𝑤𝑝

𝑖,𝑗 is the weight of the 𝑗-th rule produced using the
𝑖-th rule template for predicate 𝑝, and ℎ𝑝𝑖,𝑗(𝑒) denotes a forward chaining step using the 𝑗-th rule
produced using the 𝑖-th rule template for predicate 𝑝. The symbol ⊕ denotes the probabilistic
sum, which is defined as 𝑎 ⊕ 𝑏 = 𝑎 + 𝑏 − 𝑎 ⊙ 𝑏, where ⊙ represents the component-wise
multiplication. In order to select a single rule for each rule template, NLRL uses a softmax
function to obtain each weight 𝑤𝑝

𝑖,𝑗 from the underlying vector of weights 𝜃𝑝𝑖 :

𝑤𝑝
𝑖,𝑗 = softmax𝑗(𝜃

𝑝
𝑖 ), (3)

where softmax𝑗(𝑥) =
exp(𝑥𝑗)

∑𝑙 exp(𝑥𝑙)
.

In order to complete the formalization of NLRL, ℎ𝑝𝑖,𝑗(𝑒) must be defined. Let 𝑐 be a rule,
identified by (𝑝, 𝑖, 𝑗), the corresponding function ℎ𝑝𝑖,𝑗 ∶ 𝐸 → 𝐸 takes a valuation vector containing
the expected truth values of the ground atoms, and it outputs a valuation vector that contains
the truth values of the atoms after the application of 𝑐. Each function ℎ𝑐 is implemented by
a matrix 𝑋𝑐 ∈ ℕ𝑛×𝑤×2, where 𝑤 denotes the maximum number of pairs of atoms that entail a
ground atom. Each 𝑋𝑐 is built before the training phase, and it is defined as follows:

𝑋𝑐[𝑘, 𝑚] = {
𝑥𝑘[𝑚] if 𝑚 < |𝑥𝑘|
(0, 0) otherwise

𝑥𝑘 = {(𝑎, 𝑏) | satisfies𝑐(𝛾𝑎, 𝛾𝑏) ∧ head𝑐(𝛾𝑎, 𝛾𝑏) = 𝛾𝑘}

(4)



where 𝑥𝑘 is a set of indexes pairs, and each pair is a reference to a pair of atoms that logically
entails the ground atom of index 𝑘. Each matrix 𝑋𝑐 typically contains many unused indexes
pairs (0, 0), which must refer to a pair of atoms. Therefore, the algorithm adds the falsum atom
⊥ in 𝐺, and it associates (0, 0) to (⊥, ⊥). During the training phase, NLRL extracts two slices of
𝑋𝑐, namely 𝑋1, 𝑋2 ∈ ℕ𝑛×𝑤, such that 𝑋1 and 𝑋2 extract all the indexes of the first atoms from 𝑋𝑐
and all the indexes of the second atoms from 𝑋𝑐, respectively:

𝑋1 = 𝑋𝑐[_, _, 0] and 𝑋2 = 𝑋𝑐[_, _, 1]. (5)

Then, the algorithm obtains the truth value of each ground atom, obtaining 𝑌1, 𝑌2 ∈ [0, 1]𝑛×𝑤,
using the function 𝑔𝑎𝑡ℎ𝑒𝑟 ∶ 𝐸 × ℕ𝑛×𝑤 → ℝ𝑛×𝑤:

𝑌1 = 𝑔𝑎𝑡ℎ𝑒𝑟(𝑒, 𝑋1) and 𝑌2 = 𝑔𝑎𝑡ℎ𝑒𝑟(𝑒, 𝑋2). (6)

where 𝑔𝑎𝑡ℎ𝑒𝑟, as defined as in [5], is a function that retrieves the values from a valuation vector
given a matrix of indexes. Then, NLRL computes 𝑍𝑐 ∈ [0, 1]𝑛×𝑤, defined as follows:

𝑍𝑐 = 𝑌1 ⊙ 𝑌2. (7)

Finally, the algorithm computes ℎ𝑐(𝑒) as:

ℎ𝑐(𝑒) = 𝑒′ where 𝑒′[𝑘] = max
1≤𝑗≤𝑤

𝑍𝑐[𝑘, 𝑗]. (8)

It is worth noting that the maximum operator realizes a fuzzy disjunction, while the component-
wise multiplication implements a fuzzy conjunction.

2.3. SD-NLRL

SD-NLRL generates the candidate rules directly from the states of the environment. It uses the
list of all possible states, which can be provided by the environment in many situations, and the
number of forward chaining steps 𝑇.

The rule generation function of SD-NLRL, called generates_rules, is shown in Algorithm 1.
The function has three arguments: the set of action atoms 𝐴, the set of states 𝑆, and the set of
background atoms 𝐵. Each state is subdivided into a set of groups 𝑉 using get_groups, and
each group includes a subset of the atoms that are included in the state. In particular, each
atom in a group is directly or indirectly related with other atoms in the same group through
its constants. Therefore, each group has a different set of constants, and it describes a logical
characteristic of the state that gives a contribution to the truth value of the action atom. The
generates_rules function then uses get_shared to obtains, for each pair of group and action,
the constants that are present both in the action atom and in the group. Then, generate_rules
adds the background atoms that include at least one shared constant into the group. Here, only
the shared constants are considered because they represent a connection between the groups
of the state and the action to be performed. The function then obtains the set of unshared
constants, which are the constants that are not shared between the action atom and the group,
after the related background atoms are included. Now, when the unshared constants are not
present, the final rule is produced using unground, which converts each ground term into a



Algorithm 1 The function that performs rule generation in SD-NLRL.
1: function generate_rules(𝐴, 𝑆, 𝐵)
2: rules ← {}
3: for each 𝑠 ∈ 𝑆 do
4: 𝑉 ← get_groups(𝑠)
5: for each 𝑔 ∈ 𝑉 do
6: for each 𝑎 ∈ 𝐴 do
7: shared ← get_shared(𝑎, 𝑔)
8: insert atoms 𝑏 ∈ 𝐵 into 𝑔 such that consts(𝑏) ∩ shared ≠ ∅
9: unshared ← get_unshared(𝑎, 𝑔)
10: if unshared = ∅ then
11: 𝑟 ← unground(𝑎, 𝑔, {})
12: rules ← rules ∪ 𝑟
13: else
14: for each 𝑓 ∈ unshared do
15: fixed ← unshared ⧵ {𝑓 }
16: partial_rule ← unground(𝑎, 𝑔,fixed)
17: add 𝑏 ∈ 𝐵 to the body of partial_rule such that 𝑓 ∈ consts(𝑏)
18: r ← unground(𝑎, body(partial_rule), {})
19: rules ← rules ∪ r
20: end for
21: end if
22: end for
23: end for
24: end for
25: return rules
26: end function

new variable. Otherwise, a rule is generated for each unshared constant 𝑓. In particular, the
set of unshared constants that does not include 𝑓 is immediately transformed into variables.
Then, the function adds the background atoms that include 𝑓 to the body of the rule. Finally,
the remaining constants are converted into variables.

The generation of a new rule for each unshared constant is useful to decrease the complexity
of each rule. In fact, the algorithm tries to obtain the most simple characteristics from each
state. Then, the differentiable architecture picks the best subset of rules that solves the training
task. When converting constants into variables, unground starts from the body, which is the
second argument, and it transforms the rule going from left to right. Finally, it changes the
head of the rule, which is the first argument. The last argument is a set of constants, and the
function converts only the constants in the set when the latter is not empty.

SD-NLRL allows an action predicate to be described by an unpredetermined number of rules.
Moreover, there is not limit on both the arity of the predicates and the number of atoms that
are included in the body of the rules. As a consequence, SD-NLRL defines an architecture that



is different from the one used by NLRL, and it defines a single deduction step 𝑔 as:

𝑔(𝑒, 𝑒𝑜) = 𝑒𝑜 +∑
𝑝

⨁
0≤𝑗≤𝑘

𝑤𝑝
𝑗 ℎ

𝑝
𝑗 (𝑒), (9)

where 𝑤𝑝
𝑗 is the weight of rule 𝑗 for predicate 𝑝, and ℎ𝑝𝑗 (𝑒) denotes a forward chaining step using

the rule 𝑗 defined for predicate 𝑝. The values of weights 𝑤𝑝
𝑗 are restricted in [0, 1] applying the

following normalization function:

𝑤𝑝
𝑗 =

max(𝑤𝑝) − 𝑤𝑝
𝑗

max(𝑤𝑝) −min(𝑤𝑝)
. (10)

In order to implement ℎ𝑐(𝑒) for rule 𝑐, SD-NLRL defines a matrix 𝑋𝑐 ∈ ℕ𝑛×𝑤×𝑑 for each rule 𝑐:

𝑋𝑐[𝑘, 𝑚] = {
𝑥𝑘[𝑚] if 𝑚 < |𝑥𝑘|
(0, … , 0) otherwise

𝑥𝑘 = {(𝑎1, … , 𝑎𝑑) | satisfies𝑐(𝛾𝑎1 , … , 𝛾𝑎𝑑) ∧ head𝑐(𝛾𝑎1 , … , 𝛾𝑎𝑑) = 𝛾𝑘}

Then, SD-NLRL computes matrices 𝑋1, … , 𝑋𝑑 ∈ ℕ𝑛×𝑤 before starting the training process. The
algorithm then computes 𝑌1, … , 𝑌𝑑 ∈ ℝ𝑛×𝑤 using 𝑔𝑎𝑡ℎ𝑒𝑟, and it obtains 𝑍𝑐, defined as:

𝑍𝑐 = 𝑌1 ⊙⋯ ⊙ 𝑌𝑑. (11)

Finally, the algorithm defines ℎ𝑐 using (8).
SD-NLRL is able to associate the same value to different rule weights. Note that the proposed

normalization (10) has some problems. In fact, it is not applicable if max(𝑤𝑝) = min(𝑤𝑝), e.g.,
a single weight. Moreover, using this normalization imposes that both a rule with weight 0
and a rule with weight 1 must always be present. These problems can be detrimental in some
situations, although for most real-world applications these problems should not be present.

In [9], the performance of SD-NLRL has been evaluated on the same reinforcement learning
tasks that are discussed in the paper that originally introduced NLRL [5]. In particular, SD-
NLRL has been evaluated on two cliff-walking tasks and three block manipulation tasks. The
cliff-walking tasks are CLIFFWALKING and WINDYCLIFFWALKING, where the agent must
move from an initial position to a goal position on a 5x5 grid without going to a cliff position
and using as few moves as possible. The difference between CLIFFWALKING and WINDYCLIFF-
WALKING is that in the second task the agent has a 10% chance of moving downward on the
grid, independently from the taken action.
In [9], the block manipulation tasks are STACK, UNSTACK, and ON. STACK requires the

agent to build a single column of blocks, UNSTACK requires the agent to put all the blocks
on the floor, while in ON the agent must put a specific block onto another specific block. The
evaluation of the learned strategies was made using the same variations of the tasks described
in [5]. In particular, many variations of the same task are used to evaluate the generalization
capabilities of the method. SD-NLRL algorithm fails to solve block manipulation tasks [9]
because it is not possible to subdivide states into small groups of atoms. In particular, in block
manipulation tasks the atoms of the states are connected to each other because all the blocks



Table 1
A performance comparison between NLRL and SD-NLRL on the CLIFFWALKING and WINDYCLIFF-
WALKING tasks. The table is taken from [9], and the optimal returns (Optimal column) are taken from
the paper that introduces NLRL [5].

Environment Task NLRL SD-NLRL Optimal
CLIFFWALKING train 0.862 ± 0.026 0.674 ± 0.292 0.880

top-left 0.749 ± 0.057 0.652 ± 0.200 0.840
top-right 0.809 ± 0.064 0.781 ± 0.038 0.920
centre 0.859 ± 0.050 0.775 ± 0.198 0.920
6x6 0.841 ± 0.024 0.631 ± 0.381 0.860
7x7 0.824 ± 0.024 0.520 ± 0.514 0.840

WINDYCLIFFWALKING train 0.663 ± 0.377 −0.808 ± 0.341 0.769 ± 0.162
top-left 0.726 ± 0.075 −0.536 ± 0.480 0.837 ± 0.068
top-right 0.834 ± 0.061 −0.290 ± 0.548 0.920 ± 0.000
centre 0.672 ± 0.579 −0.350 ± 0.430 0.868 ± 0.303
6x6 0.345 ± 0.736 −0.991 ± 0.093 0.748 ± 0.135
7x7 0.506 ± 0.528 −1.012 ± 0.047 0.716 ± 0.181

are placed upon other blocks or they are on the floor. Therefore, they are connected to the other
blocks directly through the on/2 predicate, or indirectly through the floor constant, which is
common to every pile of block. For example, the following state represents a pile of blocks:

top(a), on(a,b), on(b,c), on(c,floor)

in which block c is on the floor, block b is on block c, and block a is on block b at the top of
the pile. This state produces a single group of atoms. This is a characteristic of the states of
the considered block manipulation tasks. Therefore, SD-NLRL produces complex rules, and the
learning process becomes more computationally demanding as both the number and the size of
the generated rules increase.

Table 1, taken from [9], reports the average returns of SD-NLRL. In order to obtain the results,
5 runs have been made for each training task, and the resulting models have been evaluated
on 100 episodes for each task. Finally, the returns have been averaged over all runs for each
task. The variants of CLIFFWALKING and WINDYCLIFFWALKING, which are used to measure
the generalization capabilities of the algorithm, are 5: top-left, top-right, and center impose a
different starting position of the agent, while 6x6 and 7x7 increase the size of the grid. From the
results shown in Table 1 emerges that SD-NLRL is able to effectively solve CLIFFWALKING, and
it is able to generalize to unseen states. However, the results show great variance, and SD-NLRL
is not able to learn an effective strategy for WINDYCLIFFWALKING. The agent often remains
trapped into a local optimum. This behaviour is justified by the rule generation strategy, which
produces rules from the states of the environment, and it is not able to generate the best rules
for each action predicate.



3. Handling a recursive pattern

One of the main issues of SD-NLRL is that it is not able to handle deeply connected states
because compact rules cannot be generated. This prevented SD-NLRL from generating an
effective strategy for block manipulation tasks. This section presents the proposed extension of
SD-NLRL to deal with a form of deeply connected states. In particular, the considered states
exhibit recursive patterns. The proposed extension can be easily adapted to capture other
recursive patterns within the states. Note that the proposed algorithm behaves as the original
one on cliff-walking tasks because the states of the cliff-walking tasks do not contain recursive
patterns. Therefore, the results shown in Table 1 are still valid for the proposed extension.
As previously discussed, the states of block manipulation tasks discussed in [5] follow a

specific pattern. For example, a pile of blocks is always defined by:

top(𝑥1), on(𝑥1,𝑥2), on(𝑥2,𝑥3), ..., on(𝑥𝑁,floor),

where 𝑁 is a number and on(X,Y) is a predicate which specifies that a block X is on Y, where Y
is either a block or the floor. The other predicate, top(X), specifies that block X is the top block
of a pile. In order to reduce the size and the number of the generated rules, it is important to
capture the recursive patterns within states.

The discussed block manipulation tasks require the agent to capture the concept of a pile of
blocks, which can be modeled as:

pile(X,Y) :- on(X,Z), on(Z,Y).
pile(X,Y) :- on(X,Z), pile(Z,Y).

The predicate pile/2 is able to capture the chain relation among the blocks. The proposed
extension of SD-NLRL defines the auxiliary predicate pile/2 during the rule generation phase,
and it replaces the occurrences of on/2 in the generated rules with pile(𝐴,𝐵), where 𝐴 and 𝐵
are the constants that limit the sequence on the left and on the right, respectively. An example
of the application of replace_chain is provided:

top(a), on(a,b), on(b,c), on(c,floor), top(d), on(d,floor)

is rewritten as a more compact set of atoms:

top(a), pile(a,floor), top(d), on(d,floor).

In particular, Algorithm 1 is modified adding two lines, as shown in Algorithm 2. The
function replace_chain performs the substitution of the connected predicates, and it applies a
sorting algorithm to the group of atoms. The function sorts the atoms looking at the names of
the predicates. When two predicates have the same name, the function uses the arguments,
proceeding from left to right. The ordering on the atoms is enforced to reduce the number of
generated rules after the call to unground. For example, starting from the following groups of
atoms, which both define a pile of blocks and a single block on the floor:

top(a), pile(a,floor), top(d), on(d,floor),
top(a), top(d), pile(a,floor), on(d,floor),



Algorithm 2 The proposed modification to the rule generation function, the new lines are
marked with frames.
1: function generate_rules(𝐴, 𝑆, 𝐵)
2: rules ← {}
3: for each 𝑠 ∈ 𝑆 do
4: 𝑉 ← get_groups(𝑠)
5: for each 𝑔 ∈ 𝑉 do
6: for each 𝑎 ∈ 𝐴 do
7: shared ← get_shared(𝑎, 𝑔)
8: insert atoms 𝑏 ∈ 𝐵 into 𝑔 such that consts(𝑏) ∩ shared ≠ ∅
9: unshared ← get_unshared(𝑎, 𝑔)
10: if unshared = ∅ then
11: 𝑔 ← replace_chain(𝑔)
12: 𝑟 ← unground(𝑎, 𝑔, {})
13: rules ← rules ∪ 𝑟
14: else
15: for each 𝑓 ∈ unshared do
16: fixed ← unshared ⧵ {𝑓 }
17: partial_rule ← unground(𝑎, 𝑔,fixed)
18: add 𝑏 ∈ 𝐵 to the body of partial_rule such that 𝑓 ∈ consts(𝑏)
19: body(partial_rule) ← replace_chain(body(partial_rule))
20: r ← unground(𝑎, body(partial_rule), {})
21: rules ← rules ∪ r
22: end for
23: end if
24: end for
25: end for
26: end for
27: return rules
28: end function

and considering the action atom move(a,d), if the ordering is not enforced on the body of the
rule the method generates the following rules:

move(X,Z) :- top(X), pile(X,Y), top(Z), on(Z,Y).
move(X,Y) :- top(X), top(Y), pile(X,Z), on(Y,Z).

Therefore, the algorithm would generate two rules that are equivalent. On the contrary, after
ordering the atoms and applying unground, the body of the generated rules would be:

move(Z,X) :- on(X,Y), pile(Z,Y), top(Z), top(X).
move(Z,X) :- on(X,Y), pile(Z,Y), top(Z), top(X).

Therefore, the algorithm generates two equal rules, and one rule can be discarded.



Table 2
A performance comparison between NLRL and the proposed extension on the STACK, UNSTACK, and
ON tasks. The optimal returns (Optimal column) are taken from the paper that introduces NLRL [5].

Environment Task NLRL SD-NLRL Optimal
UNSTACK train 0.937 ± 0.008 0.932 ± 0.002 0.940

swap-2 0.936 ± 0.009 0.935 ± 0.002 0.940
divide-2 0.958 ± 0.006 0.956 ± 0.002 0.960
5-blocks 0.915 ± 0.010 0.906 ± 0.005 0.920
6-blocks 0.891 ± 0.014 0.873 ± 0.009 0.900
7-blocks 0.868 ± 0.016 0.835 ± 0.012 0.880

STACK train 0.910 ± 0.033 0.896 ± 0.056 0.940
swap-2 0.913 ± 0.029 0.899 ± 0.050 0.940
divide-2 0.897 ± 0.064 0.882 ± 0.046 0.940
5-blocks 0.891 ± 0.032 0.840 ± 0.088 0.920
6-blocks 0.856 ± 0.169 0.755 ± 0.122 0.900
7-blocks 0.828 ± 0.179 0.508 ± 0.170 0.880

ON train 0.915 ± 0.010 0.816 ± 0.013 0.920
swap-2 0.912 ± 0.013 0.809 ± 0.028 0.920
swap-middle 0.914 ± 0.011 0.734 ± 0.021 0.920
5-blocks 0.890 ± 0.016 N/A 0.900
6-blocks 0.865 ± 0.018 N/A 0.880
7-blocks 0.844 ± 0.017 N/A 0.860

Replacing low-level concepts with more abstract concepts allows the proposed extension to
reduce both the number and the size of the generated rules. Therefore, the required computa-
tional resources are heavily reduced, and the algorithm is consequently able to complete the
training process for block manipulation tasks. Moreover, the agent is able to generalize to piles
of blocks of unpredetermined length.
The proposed extension changes also the definition of get_shared, which now returns the

set of shared constants among all the atoms in the group together with the action atom. The
function get_unshared has been changed as well. This modification has been made to further
reduce the number of generated rules, although their length can grow because the number of
shared constants is bigger. In fact, the algorithm may add more background knowledge to each
rule. In general, it is not clear which definition should be preferred, and this can represent an
interesting research direction for the future.

Table 2 shows the performance of the proposed extension for block manipulation tasks. The
results have been obtained following the same procedure that is discussed in the previous
section. The base environment of UNSTACK starts with a single column of blocks. Five variants
of the task are defined: swap-2, divide-2, 5-blocks, 6-blocks, and 7-blocks. swap-2 and divide-2
swap the top two blocks and divide the blocks in two columns, respectively. The other three
variants increase the number of blocks. The base STACK environment starts with all the blocks
on the floor. Five variations of the task are defined: swap-2, divide-2, 5-blocks, 6-blocks, and
7-blocks. swap-2 and divide-2 swap the two blocks on the right and divide the blocks in two



columns, respectively. Similarly to the UNSTACK problem, the other three variants increase the
number of blocks. The base environment of ON starts with a single column of blocks. Similar to
UNSTACK and STACK, three variants are defined with an increasing number of blocks: 5-blocks,
6-blocks, and 7-blocks. Two additional variants of the task are swap-2 and swap-middle, which
swap the top two blocks and the middle two blocks, respectively.

Both SD-NLRL and the proposed extension are based on the official implementation of NLRL,
which is available at github.com/ZhengyaoJiang/NLRL, and they all share the same hyper-
parameters. However, the learning rate and 𝑇 are specific to each task. In particular, 𝑇 was set
to 4 for block manipulation tasks during the training phase. In the evaluation phase, 𝑇 was set
to 7 because more forward chaining steps are needed to obtain the correct truth value of the
action predicates. In fact, the pile/2 predicate presents a recursive definition, and the number
of deduction steps must be greater than the number of recursive calls. The learning rate was
set to 0.05 for all tasks.
As shown in Table 2, the obtained results of both NLRL and SD-NLRL with the proposed

extension are comparable on both STACK and UNSTACK, but NLRL shows an overall better
performance. Moreover, SD-NLRL with the proposed extension shows worse generalization
capabilities than NLRL on STACK. Finally, the results on the ON task shows that NLRL out-
performs the presented algorithm by a considerable margin, and SD-NLRL with the proposed
extension does not effectively generalize to slightly different tasks. In fact, the proposed ex-
tension fails to complete the evaluation process on three variants of ON because the realized
computational graph exceeds the technical limitations of the implementation. In the case of
STACK, the rules that are learned using SD-NLRL suggest that the rule generation process fails
to produce a general rule for the initial state, where all the blocks are on the floor. Therefore, the
algorithm performs worse as the number of blocks increases because more random moves are
needed to build the first pile of blocks. In the case of ON, the task is clearly more difficult than
the other tasks, and both the number and size of generated rules increase because an additional
predicate, goal(X,Y), is required to specify that block X must be placed on block Y. Therefore,
it is even more difficult to generate good candidate rules from states. It is worth noting that,
in all cases, only the rules with a weight greater than 0.3 are reported, for space limitations.
In summary, the presented experimental results provide empirical evidence that the proposed
extension to SD-NLRL is beneficial, even if a much wider experimental campaign is needed to
assess convincing and reliable results.
The following example shows another application of this technique, which could be a task

where a state of the environment describes a sequence of rectangles and circles. In particular,
let rect(X,Y) and circle(X,Y) represent two type of cells that connect positions X and Y
on a path, respectively. Then, the path(X,Y) predicate can be used to define a specific path
structure, represented as a sequence of rectangles and circles:

path(X,Y) :- rect(X,Z), circle(Z,K), rect(K,Y).
path(X,Y) :- circle(X,Z), path(Z,K), circle(K,Y).

Note that this technique can be extended to every recursive pattern within the states, even with
predicates with arity higher than 2 and different forms of recursion. However, the presented
method is not able to automatically detect recursion within states and it does not automatically
define the recursive predicate.

github.com/ZhengyaoJiang/NLRL


In order to provide a comprehensive view on the proposed method, the following part reports
the learned rules of the best model for each block manipulation task. In particular, the learned
rule (on the right) and the corresponding weight (on the left) for STACK are:

1.0 move(Y,M) :- floor(X),on(Y,X),on(Z,X),pile(M,X),top(Y),
top(M),top(Z).

The learned rule moves a block that is on the floor onto a pile of at least two blocks. Therefore,
SD-NLRL can be used to learn a compact strategy that effectively solves the task, but the learned
strategy is not the best one because some atoms, namely on(Z,X) and top(Z), may be omitted.
The learned rules for UNSTACK are instead:

0.63 move(Y,X) :- floor(X),pile(Y,X),pile(Z,X),top(Y),top(Z).
0.63 move(Z,X) :- floor(X),pile(Y,X),pile(Z,X),top(Y),top(Z).
0.63 move(Y,X) :- floor(X),pile(Y,X),top(Y).
0.36 move(Z,X) :- floor(X),on(Y,X),pile(Z,X),top(Z),top(Y).
1.0 move(M,X) :- floor(X),on(Y,X),on(Z,X),pile(M,X),top(Y),

top(M),top(Z).

In this case, SD-NLRL can be used to learn an effective strategy, but the number of learned rules
is even bigger. In fact, the presented strategy is to move a top block on the floor when there is
a single pile of blocks, two different piles of blocks or a pile of blocks and one or two blocks
on the floor. It is evident that the learned strategy is redundant, and the third rule would be
sufficient to solve the task. Finally, the learned rules for ON are:

1.0 move(M,X) :- floor(X),goal_on(Y,Z),pile(M,X),pile(N,X),
top(M),top(N).

0.64 move(Y,Z) :- floor(X),goal_on(Y,Z),on(Y,X),on(Z,X),
on(M,X),on(N,X),top(Y),top(Z),top(M),top(N).

0.53 move(Y,Z) :- floor(X),goal_on(Y,Z),on(Y,X),on(M,X),
pile(Z,X),top(Y),top(Z),top(M).

0.55 move(Y,Z) :- floor(X),goal_on(Y,Z),on(Y,X),pile(Z,X),
top(Y),top(Z).

The proposed method can be used to learn stacking the goal blocks when they are top blocks.
When it is not possible to directly stack the goal blocks, SD-NLRL can be used to learn to put
a top block on the floor. This strategy is effective but, similarly to the previously discussed
strategies, the number of learned rules is excessive. In particular, the third rule should be
omitted, and the strategy lacks a rule that moves the top block of a pile onto a block on the floor
when the two blocks are the goal blocks. Moreover, the learned rules contain many unnecessary
atoms, e.g. pile(N,X) and top(N) in the first rule. Another example is the second rule that has
been learned for the ON task, which requires that 4 blocks are on the floor. The learned rule is
not only redundant, but also dangerous because it cannot be used in an environment with only
3 blocks. Both these examples show that the learned rules are too much specific with respect
to the states of the training environment. In fact, the training environment defines 4 blocks,
and the generated rules often represent specific situations only. In summary, from this analysis



emerges that, despite being able to learn an effective strategy, many rules that are learned using
SD-NLRL are unnecessary or overly specific. In fact, the agent learns a strategy that is specific
to the training environment. Therefore, generating more compact and general, yet useful, rules
is another important research direction for the future.

4. Discussion

This paper proposed an extension of SD-NLRL, which is a neural-symbolic method for rein-
forcement learning. The proposed extension modifies the rule generation process of the original
algorithm to capture recursive patterns within the states of the environment. The experimental
results show that the proposed extension can be used to learn an effective strategy for block
manipulation tasks, which are problematic for the original method. Moreover, the algorithm
effectively generalizes to unforeseen situations. In particular, when the states exhibit a recursive
pattern, the proposed method can be useful to reduce the number of generated rules and the
required computational resources. Moreover, SD-NLRL performs worse than NLRL but in many
tasks the difference between the algorithms is small in terms of performance, and SD-NLRL
solves the tasks using the states of the environment. On the contrary, NLRL requires the user
to specify the characteristics of the generated rules. Both are strong requirements but, in many
cases, the states of the environment can be automatically obtained from the problem definition,
while it can be difficult to manually tune the program templates for complex tasks. Note that
the proposed extension could be easily generalized to other tasks.
Despite consistently solving the considered tasks, the proposed extension performs worse

than NLRL, and it presents several limitations. In particular, it does not generate sufficiently
general and abstract rules, and this affects also the generalization capabilities of the method.
Moreover, the proposed extension captures only a specific pattern among states and it is not
able to automatically detect recursive patterns within states. The proposed method is also not
able to tackle complex problems because it builds large models and it requires a large amount
of computational resources to solve simple tasks. Moreover, the experimental results suggest
that the proposed extension can be used to learn rules that are either redundant or too much
case-specific. Finally, many limitations of the original SD-NLRL algorithm are still present. In
fact, the proposed extension still needs the set of possible states, and it sometimes remains
trapped into a local optimum during training.
There are many interesting research directions for the future. For example, more effort is

needed to generate abstract and general rules from deeply connected states, and the presented
approach could be extended to automatically detect different type of recursive patterns within
the states. Moreover, the proposed method can be improved by generating the rules iteratively
as the agent visit new states. This prevents the environment from specifying the set of all states,
and it is useful to reduce the number of generated rules, allowing the method to tackle more
complex tasks. Finally, the learning stability should be improved, and more effort is needed to
prevent the agent from learning redundant rules. In summary, despite covering a specific case,
this work provides convincing experimental evidence of the validity of the approach, which
can be a viable means towards successful neural-symbolic reinforcement learning.
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