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Abstract
While representing the de-facto framework for enabling distributed training of Machine Learning models,

Federated Learning (FL) still suffers convergence issues when non-Independent and Identically Distributed

(non-IID) data are considered. In this context, the local model optimisation on different data distributions

generate dissimilar updates, which are difficult to aggregate and translate into sub-optimal convergence.

To tackle this issues, we propose Peer-Reviewed Federated Learning (PRFL), an extension of the traditional

FL training process inspired by the peer-review procedure common in the academic field, where model

updates are reviewed by several other clients in the federation before being aggregated at the server-side.

PRFL aims at enabling the identification of relevant updates, while disregarding the ineffective ones. We

implement PRFL on top of the Flower FL library, and make Peer-Reviewed Flower a publicly-available

library for the modular implementation of any review-based FL algorithm. A preliminary case study on

both regression and classification tasks highlights the potential of PRFL, showcasing how the distributed

solution can achieve performance similar to that obtained by the corresponding centralised algorithm,

even when non-IID data are considered.
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1. Introduction

Federated Learning (FL) [1, 2] represents the de-facto framework for enabling distributed training

of Machine Learning (ML) and Deep Learning (DL) models. In FL scenarios, a central server

interacts with multiple users – also called clients or workers – to train a ML/DL model jointly.

Each client locally trains its ML model on its private data, while the server aggregates local

updates upon their reception. The clients never share local raw data, instead they propagate

updates from the training process over those data. Therefore, the groundbreaking idea of FL

is for the training process to take into account all clients data while never disclosing their

nature, thus maintaining their privacy [3, 4]. Distributing the computation over all clients FL

also achieves efficiency improvements over centralised training approaches, making FL more

popular than centralised approaches whenever large systems are taken into account [5].

While being so popular, FL does not represent a silver-bullet solution for enabling distributed

training of ML and DL models. One of the most severe shortcomings of FL systems is due to

the locality of model training, with most FL approaches suffering from non-Independent and
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Identically Distributed (non-IID) data issues [6]. In this context, several works have shown how

variability of data distribution, label distribution, and data quality among the clients belonging

to the federation can hinder the optimisation process of FL systems [7, 8, 9]. Conceptually

speaking, the optimisation of several local models on different data distributions generates very

different updates, which are hard to aggregate at server-level and translate into sub-optimal

global model updates.

Inspired by such limitations, in this paper we introduce Peer-Reviewed Federated Learning

(PRFL) as an extension of the traditional FL process inspired by the peer-review procedure,

common in the academic field. PRFL relies on the addition of a validation phase of local updates

produced by each of the clients involved in the federation process. In particular, PRFL splits

each iteration of federated training in two phases, namely the training phase and the review

phase. The training phase corresponds to a single round of traditional FL training. On the

other hand, the review phase corresponds to multiple rounds of communication between the

server and the clients. During this phase the provisional updates produced by each client in the

federation are subjected to one or more validation cycles by other clients, aiming at evaluating

how good the update is for the whole federation. At the end of the review phase, the server

aggregates the resulting provisional updates, depending on the reviews feedback, to obtain the

global round update. The aim of the review phase is the identification of the most valuable

updates to be considered for server-side aggregation, simplifying the procedure when non-IID

data are considered.

The proposed PRFL approach is implemented on top of the popular Flower FL library [10],

enabling the deployment and simulation of peer-reviewed federated learning approaches. A

simple case study is considered to test the performance of PRFL, tackling both classification

and regression tasks, defining a novel distributed training approach for Gradient Boosted

Decision Trees (GBDT) models, which requires revision. The proposed approach achieves

similar performance to the centralised training model, even when non-IID data distributions

are considered.

To summarise, the contribution of our paper are the following:

• we propose a novel peer-review based approach for the federated learning paradigm,

aiming at tackling the non-IID data issues of FL systems;

• we implement Peer-Review Flower (PRFlower)
1
, a Flower-based library implementing

PRFL that is modular and flexible enough to allow for the implementation of almost any

review-based FL approach;

• we test the proposed review-based approach on regression and classification tasks via

the proposal of Federated Least Squares Boosted Trees (FedLSBT) as an extension of the

popular Gradient Boosted Decision Trees (GBDT) models.
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2. Background

2.1. Federated Learning

Most, if not all, FL scenarios consider a central server interacting with multiple clients to jointly

train a shared ML model. Throughout the reminder of this paper we will refer to the central

server simply as server or Central Aggregator (CA), interchangeably. In this context, we consider

a federation network made of 𝑁 clients. Each worker locally trains its ML model on its own

private data for a predefined period of time—namely training iterations. Thus, each federation

client obtains a local update – depending on its available data – over the global ML model. The

FL training procedure relies on clients periodically sending the results of their local training –

under the form of whole model [11, 12], obtained gradient [13, 14], or other possible solutions

– to the server, which is then in charge of aggregating the local updates to compute the joint

global update. Several aggregation solutions have been proposed recently – such as FedAvg

[13], Newton-type methods [15], etc. –, aiming at maximising the effectiveness of the federated

training procedure over different scenarios. Once the global update is available, the server needs

to propagate it to all the federation clients, ensuring synchronisation between clients and the

global federation state. Formally, the objective of FL is to cooperatively find a global model 𝑀
that minimises a finite-sum objective function of the form

min
𝑀∈R𝑑

𝑓(𝑀) where 𝑓(𝑀) =
1

𝐷

𝑃∑︁
𝑖=1

𝐷𝑖𝑓
(𝑖)(𝑀) (1)

where 𝐷 is the overall number of data samples of the global FL problem, while 𝐷𝑖 and 𝑓 (𝑖)(𝑀)
are the number of data samples and the local cost function of the 𝑖-th client, respectively. The

global optimisation process is repeated 𝑇 times aiming at achieving model convergence.

2.2. Federated Learning Frameworks

Currently, a number of open source frameworks support the implementation of federated

learning algorithms, namely:

• FedML [16]: a FL framework based on PyTorch
2
. Its architecture includes a core layer

that contains training logic and implements distributed communication protocols, while

a high-level API allows implementation of various federated learning algorithms.

• PySift [17]: also based on PyTorch, it focuses on distributed secure computation and

differential privacy.

• Tensorflow Federated
3
: developed by Google as an extension of Tensorflow, its architecture

is divided into two levels: a core level which gives the possibility to carry out federated

computations and a higher level API for working with models, datasets and implementing

algorithms. This framework can only be used to simulate federated learning systems as it

does not support distributed real-world deployment.

2
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• Flower [10]: agnostic with respect to the framework chosen to implement the predictive

models, Flower allows both distributed and local deployment, in the form of simulations,

of federated learning systems on heterogeneous devices, with client-side implementations

of the library also available for mobile platforms (iOS, Android, and IoT).

Among the available alternatives, we adopt Flower as the basis for the PRFL framework imple-

mentation, since it is easily extendable, applicable to both distributed contexts and simulations,

and agnostic w.r.t. the underlying ML library used.

2.2.1. Flower’s Architecture

Two sorts of computations exist in FL, namely: (i) computations performed locally by clients

having access to data; and (ii) computations performed by the server to aggregate the clients’

computations results. Flower’s architecture reflects this feature and breaks the algorithmic logic

into two parts, one executed on the clients and one executed on the server. The server-side logic

manages through a series of calls of the Strategy class (i) the clients selection process, (ii) the

configuration of both training and validation of the global model, and (iii) the procedure to

aggregate the results obtained by the clients. Another fundamental component on the server

side is the ClientManager class, which manages a set of ClientProxy objects, each of which

represents a client connected to the server and allows the server to exchange messages with

the client itself. Meanwhile, the client-side logic is purely reactive, where clients – which are

instances of the class Client – await the reception of messages from the server and execute the

handler associated with the type of message received. The types of messages provided by the

Flower protocol and their handlers are:

• GetPropertiesIns: it contains a key-value dictionary. Its reception triggers the execution of

the get properties callback. It can be used to send and receive information between client

and server.

• GetParametersIns: its reception triggers the execution of the get parameters callback

whose result is a message containing the parameters of the client model.

• FitIns: this message carries the global model sent from the server to the client and a

training configuration dictionary. Upon the message reception the client executes the fit

callback whose result must be a message containing: the updated model, the number of

samples used for training and a dictionary containing any other information needed to

be returned to the server.

• EvalIns: is the message with which the server sends the global model to the client to

validate it on the local test set. Upon the message reception the client executes the evaluate

callback which returns a message containing the desired validation metrics.

Figure 1 shows Flower’s architecture in a simulated environment, highlighting the dependencies

amongst the server-side and client-side components.



Figure 1: Flower’s architecture in a simulated environment.

3. Peer-Reviewed Federated Learning

We introduce Peer-Reviewed Federated Learning (PRFL) as an extension of the traditional FL

process. PRFL relies on the addition of a validation phase of local updates produced by each of

the clients involved in the federation process. Therefore, the optimisation procedure in PRFL

is split in two phases: (i) the training phase, and (ii) the review phase. The training phase

corresponds to the traditional FL training round in which a given number of clients are selected

to produce a set of provisional updates. On the other hand, the review phase corresponds

to multiple rounds of communication from the server to the clients and vice-versa. During

this phase the provisional updates produced by each client in the federation go under one or

more validation cycles by other clients, aiming at evaluating the update goodness for the whole

federation. In this context, a single review cycle includes:

1. The selection by the server of a subset of the clients that participate in the review round.

The number of clients 𝑀 selected for the review round represents an hyperparameter

of the proposed approach, which should be ideally tuned depending on the scenario at

hand. A higher number of reviewers 𝑀 would ideally result in a more meaningful review

process, as they would cover a greater portion of the data available in the federation, but

it would also introduce a higher computational burden and communication overhead.

On the other hand, a smaller 𝑀 makes the review process quicker, but less reliable since

only a small portion of federation data are considered.

2. The distribution by the server to the selected clients of one or more temporary updates



of the global model, possibly together with the global model itself.

3. The validation by the 𝑀 clients participating in the review round of the updates received

from the other clients.

4. The server-side aggregation phase of the results returned by the clients after the review

process, and possibly the production of a new set of provisional updates to the global

model.

At the end of the review phase, the server aggregates the resulting provisional updates to obtain

a new set of global model parameters to replace the current model parameters. The novel global

model parameters can then be re-distributed amongst clients – as in traditional FL setups –,

and the next optimization round can start. Algorithm 1 shows the pseudocode of the training

process defined for PRFL.

Algorithm 1 PRFL training

Input: T, M, n-iterations, review-rounds

Output: trained-global-model

1: send global model to all federation clients

2: for n = 1 . . . n-iterations do
3: select T clients

4: send training instructions to selected clients

5: receive model updates and aggregate them

6: for m = 1 . . . review-rounds do
7: select M clients

8: send global model and candidate model to M clients

9: receive parameters reviews and aggregate them

10: compute stop-review

11: if stop-review then
12: exit review

13: end if
14: end for
15: aggregate candidate models parameters

16: send global model to all federation clients

17: end for
18: trained-global-model = global model

The proposed algorithm is fully generic, and the aggregation procedure – which is dependent

on the reviews received – is kept unspecified on purpose. Depending on the context at hand,

different review-based aggregation procedures may perform differently: therefore we consider

the aggregation policy to be a hyperparameter of our approach, which should be tuned context-

dependently. Throughout our experiments we consider an extension of the FedAvg algorithm

which at each iteration exploits the review phase to carry out a line search useful for determining

the optimal extent of updating the parameters of the global model. More in detail, the global

model update phase is carried out as the following: at the end of each training round, the



individual updates produced by the clients are aggregated using FedAvg, however – unlike in

common FedAvg – the update produced is not directly incorporated into the global model but is

added to it after having been scaled by a quantity determined through a line search procedure

performed by the clients selected for the review phase. Therefore, the review phase is useful to

enable the line search procedure which identifies the optimal scaling quantity for the model

update to be computed. Here it is worth noticing that the selected review process represents a

very simple approach and is not guaranteed to achieve the optimal solution.

3.1. Implementation

We implement PRFL as a Python library extension of Flower. We refer to the library implemen-

tation of PRFL as Peer-Reviewed Flower (PRFlower), which is made publicly available
4

to ease

future use and extension. PRFlower relies on the Flower FL library, and as such the components

created are designed as specialisations of Flower components described in Section 2.2.1. We

consider this setup to maintain maximum compatibility both in terms of interfaces and in

terms of the use of components that do not need to be modified. The focus of our Flower

extension (PRFlower) are the components that model the server, the clients and the learning

strategy, following the reference learning process described in Algorithm 1. Such an approach

makes it possible to avoid defining and modelling completely new entities, while requiring to

appropriately specialise some of the Flower existing entities.

• a PeerReviewServer server, extending the original Flower’s Server class. The new server

class must enable the execution of multiple review rounds, the number of which might

be established dynamically—i.e., upon the satisfaction of a pre-defined criterion.

• A PeerReviewClient client – extending Flower’s Client class – which, upon the reception

of specific messages must enable the execution of a review procedure of the model(s)

received from the server, in addition to the original procedures for training and validation

of the predictive model on the local dataset. Our design allows for the review process

to be completely custombisable by the library user, allowing for an additional range of

freedom.

• A PeerReviewNumPyClient client supporting the review process and being equivalent

to the Flower’s NumPyClient class—i.e. it offers immediate support for working with

multidimensional array lists as a representation format for a predictive model.

• A strategy class PeerReviewStrategy that extends the callbacks provided by Flower’s

Strategy by adding appropriate methods to: (i) configure a review round and aggregate

the results in a similar way to what Flower considers for the training round; (ii) aggregate

– at the end of the review phase – the results obtained during the review rounds carried

out; and (iii) verify – at the end of each review round – whether to continue with another

review round or end the current iteration of the server learning cycle.

• A set of appropriate TrainIns/TrainRes and ReviewIns/ReviewRes messages that trigger

clients to execute a training or review round. A ReviewIns message should carry the

4
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Figure 2: UML class diagram representing the main components of Peer-Reviewed Flower.

parameters of one or more global model updates in binary format and a configuration

dictionary, in this way it is possible to provide clients with all the information they

need for the review. Similarly, a ReviewRes message must be able to carry from the

clients to the server a new update for the global model if the algorithm requires it and

a dictionary containing various metrics. Both of these requirements are satisfied by

the original FitIns/FitRes type messages. Therefore, in our PRFlower implementation

we consider defining the ReviewIns and ReviewRes messages as subtypes of FitIns and

FitRes respectively, adding in their configuration dictionary a REVIEW FLAG key-value

pair. The added key acts as a flag to indicate whether the message is used for review –

i.e., REVIEW FLAG = 1 – or training—i.e., REVIEW FLAG = 0. Therefore, a new pair of

TrainIns and TrainRes messages is defined inheriting respectively from FitIns and FitRes

and setting REVIEW FLAG = 0. This implementation choice allows PRFlower to use the

original Flower protocol for the exchange of FitIns and FitRes messages between clients

and servers. Upon its reception, each message will undergo routing in the clients and

server towards the appropriate handlers depending on the value of the REVIEW FLAG

field in the configuration dictionary.

Figure 2 summarises the novel components of the implementation of our PRFlower mechanism

under an UML class diagram, highlighting the dependency between the novel peer review

related classes and the original Flower implementation.

Thanks to its modular design and the advantages of Flower’s generality, the proposed

PRFlower architecture achieves:

• flexibility: the underlying training, review, and aggregation mechanisms are not specified

in the PRFlower implementation, and as such can be specified by the library user, allowing

for the definition of any review-based FL algorithm;

• simplicity: throughout the PRFlower design we ensure that the library allows users to



implement new algorithms by focusing predominantly on algorithmic logic, ignoring –

possibly complex – aspects related to distribution and communication protocols;

• simulation support: extending the Flower library, PRFlower inherits the support for

federation simulation, so that the implemented algorithms can be tested in simple contexts

to evaluate their performance quickly before being deployed on real-world scenarios;

• support for distributed deployment: extending the Flower library, PRFlower also ensures

that algorithms developed and tested in simulated contexts can be transferred to dis-

tributed environments over real-world scenarios, without much effort.

3.1.1. Usage

The distributed deployment of a peer-reviewed federated learning system using PRFlower

involves a set of client nodes and a single server node. A client is a node with a Python

environment running an instance of a class, implemented by the library user, that extends

PeerReviewClient. Meanwhile, the server is a node provided with a Python environment in

which it runs an instance of the PeerReviewServer class. In a distributed environment, the server

communicates with clients via gRPC using the protocol and messages provided by Flower.

Finally, the server needs to be provided with the implementation of a federated training strategy

by extending the PeerReviewStrategy class, which implements the callbacks needed to configure

the training, review, and validation phase of the model to be trained, and which is available to

the PeerReviewServer class.

4. Case Study

In this section we showcase the possibilities provided by the PRFlower library and the corre-

sponding PRFL algorithm. As an experimental application of this approach we consider the

implementation of federated training of Gradient Boosted Decision Trees (GBDT) models. We

select this sort of models as they represent the state-of-the-art solution for ML application to

tabular data, and since there still exists a wide gap on the implementation of federated learning

solutions for these models. Few approaches have been proposed in the literature, however their

adoption is not really widespread as they show performance-related issues.

4.1. Gradient Boosted Decision Trees (GBDT)

Gradient boosting is a ML algorithm used for both regression and classification tasks that builds

a predictive model as an ensemble of simpler models called weak learners. Typically, the choice

of these models falls on decision trees—thus the name Gradient Boosted Decision Trees (GBDT).

A GBDT model is built with an iterative procedure that combines at each step one or more

trained trees in such a way to allow the optimisation of arbitrary objective functions as long

as they are differentiable [18]. More in detail, the model learned by a GBDT algorithm has the

following form:

𝐹 (𝑥) = 𝛾0 +
𝑀∑︁

𝑚=1

𝛾𝑚ℎ𝑚(𝑥) (2)



where 𝛾0 is a constant, while ℎ𝑚(𝑥) is a decision tree and its contribution to the model

prediction is weighted by the constant 𝛾𝑚. To train a GBDT model, given a training set

𝐷 = (𝑥𝑖, 𝑦𝑖), 𝑖 = 1 . . . 𝑁 and a differentiable objective function 𝐿(𝑦, 𝐹 (𝑥)), at each iteration

𝑚 = 1 . . .𝑀 we build an 𝐹𝑚(𝑥) model with a greedy approach:

𝐹0(𝑥) = 𝛾0 = argmin
𝛾

𝑁∑︁
𝑖=1

𝐿(𝑦𝑖, 𝛾)

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + argmin
ℎ

𝑁∑︁
𝑖=1

𝐿(𝑦𝑖, 𝐹𝑚−1(𝑥𝑖) + ℎ(𝑥𝑖))

(3)

Approximating to the first order the objective function we obtain:

ℎ𝑚(𝑥) = argmin
ℎ

𝑁∑︁
𝑖=1

ℎ(𝑥)
𝜕𝐿(𝑦𝑖, 𝐹𝑚−1(𝑥𝑖))

𝜕𝐹𝑚−1(𝑥𝑖)

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥)− 𝛾𝑚ℎ𝑚(𝑥)

(4)

therefore, up to a multiplicative constant:

ℎ𝑚(𝑥𝑖) ≃ −
𝜕𝐿(𝑦𝑖, 𝐹𝑚−1(𝑥𝑖))

𝜕𝐹𝑚−1(𝑥𝑖)
(5)

Therefore, at each iteration the gradients of all the samples in the training set are calculated

with respect to the objective function and the model ℎ𝑚(𝑥) is trained to predict the opposite of

these values. In this way, the algorithm performs a sort of gradient descent where the constant

𝛾𝑚 represents the learning rate.

4.2. Federated Least Squares Boosted Trees (FedLSBT)

Starting from the original formulation of the gradient boosting algorithm, we develop Federated

Least Squares Boosted Trees (FedLSBT), suitable for application in a federated context, and

requiring the review phase of global model updates produced by clients. This algorithm enables

training a global GBDT model shared by a set of clients without them exchanging data during

training. Decision trees trained with a randomised procedure, called Extremely Randomized

Trees (ExtraTrees) [19], are used as weak learners. We select ExtraTrees since the randomised

choice of feature values on which to carry out node splits further protect client data privacy.

Let us consider a scenario in which there are 𝐾 clients, a dataset 𝐷 partitioned into 𝐾
partitions 𝐷𝑘 each stored in a different client and a differentiable objective function𝐿(𝑦, 𝐹 (𝑥)).
In this context, the objective of federated learning is to train a global model 𝐹 (𝑥) by optimising

a function defined as the average of the objective function evaluated over all clients:

𝐹 *(𝑥) = argmin
𝐹

1

𝐾

𝐾∑︁
𝑘=1

1

|𝐷𝑘|
∑︁

(𝑥𝑖,𝑦𝑖)∈𝐷𝑘

𝐿(𝑦𝑖, 𝐹 (𝑥𝑖)) (6)



Like GBDT, FedLSBT also builds the predictive model 𝐹 (𝑥) as an additive ensemble of 𝑇 trees

ℎ𝑡(𝑥) in which the contribution of each tree is weighted by a constant 𝛾𝑡:

𝐹 (𝑥) =
𝑇∑︁
𝑡=1

𝛾𝑡ℎ𝑡(𝑥) (7)

At each iteration 𝑚 = 1, . . . ,𝑀 of federated training, a training round is performed in which

an 𝑆𝑇 subset of clients is sampled and a single review round in which an 𝑆𝑅 subset of clients is

involved – it is possible to take 𝑆𝑅 = 𝑆𝑇 or perform a new sampling of clients. The idea behind

the algorithm is to add |𝑆𝑇 | trees to the global model for each training cycle learned during the

training round, each weighted by a constant determined during the review phase.

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) +

|𝑆𝑇 |∑︁
𝑘=1

𝛾𝑘ℎ𝑘(𝑥) (8)

Each client 𝑘 involved in the training round trains a tree ℎ𝑘(𝑥) on the local training set to

predict the opposite of the gradient of the objective function with respect to the prediction of

the global model and sends the update thus produced to the server. The updates received from

the server at the end of the training phase are then used in the review phase to approximate the

gradients of the objective function with respect to the prediction of the global model considering

all the samples present in the private 𝐷𝑘′ datasets of the clients selected for the review, solving

the following least squares problem with respect to the value of the constants 𝛾𝑘:

min
𝛾1,𝛾2,...,𝛾|𝑆𝑇 |

⎡⎣ ∑︁
(𝑥,𝑦)∈𝐷𝑅

⎛⎝𝜕𝐿(𝑦𝑖, 𝐹𝑚−1(𝑥))

𝜕𝐹𝑚−1(𝑥)
− 1

|𝑆𝑇 |

|𝑆𝑇 |∑︁
𝑘=1

𝛾𝑘ℎ𝑘(𝑥)

⎞⎠2⎤⎦ with𝐷𝑅 =
⋃︁

𝑘′∈𝑆𝑅

𝐷𝑘′

(9)

A problem of this type can be solved efficiently in a federated learning context with peer review

by means of the algorithm reported in Algorithm 2.

Similar to the gradient boosting algorithm, the review phase makes it possible to carry out a

line search useful for determining the optimal weights of the contribution of each weak learner

to the prediction of the global model. However, these values are determined by generally con-

sidering only a subset of all available clients, for this reason it is possible to add a regularisation

factor to the model by scaling each of the constants 𝛾𝑘 learned at iteration 𝑚 by a multiplicative

factor 𝜂 which takes the name of learning rate or shrinkage factor.

4.3. Regression

To prove the FedLSBT effectiveness, we consider applying it to a regression task using the

California Housing Prices dataset
5
. The objective of the task is to predict the continuous variable

corresponding to the average price of a house for each district of California, starting from eight

features that concern the characteristics of the houses in the district. We train the model using

the Mean Squared Error (MSE) objective function. Moreover, to better simulate a real federated

5
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Algorithm 2 FedLSBT training

Input: clients set 𝑆 indexed 1...𝐾 , local training set for each client 𝐷𝑘 = {(𝑥𝑖, 𝑦𝑖)}𝑁𝑘
𝑖=1, differ-

entiable loss function 𝐿(𝑦, 𝐹 (𝑥)), number of iterations 𝑀 , fraction of client participating in

the training round 𝑓𝑇 , fraction of client participating in the review round 𝑓𝑅, learning rate 𝜂.

Output: learned global model 𝐹𝑀 (𝑥).
procedure FedLSBT(𝑆, 𝑀 , 𝑓𝑇 , 𝑓𝑅)

Initialize model with a constant value: 𝐹0(𝑥) = 0
for 𝑚← 1 to 𝑀 do

Sample a subset of clients 𝑆𝑇 ⊆ 𝑆 : |𝑆𝑇 | = ⌊𝑓𝑇 · |𝑆|⌋
Initialise set of learned updates to the global model: 𝐻𝑚 ← ∅
for 𝑘 ∈ 𝑆𝑇 do

Send global model 𝐹𝑚−1(𝑥) to client 𝑘
Update 𝐻𝑚: 𝐻𝑚 ← 𝐻𝑚 ∪ ClientTrain(𝑘, 𝐹𝑚−1(𝑥))

end for
Sample a subset of clients 𝑆𝑅 ⊆ 𝑆 : |𝑆𝑅| = ⌊𝑓𝑅 · |𝑆|⌋
Initialise: 𝐶 ← 0 ∈ R|𝑆𝑇 |×|𝑆𝑇 |

, 𝑅← 0 ∈ R|𝑆𝑇 |

for 𝑘′ ∈ 𝑆𝑅 do
Send 𝐹𝑚−1(𝑥) and 𝐻𝑚 to client 𝑘′

𝑅𝑘′ , 𝐶𝑘′ ← ClientReview(𝑘′, 𝐹𝑚−1(𝑥), 𝐻𝑚)
Update 𝑅 and 𝐶 : 𝑅← 𝑅+𝑅𝑘′ , 𝐶 ← 𝐶 + 𝐶𝑘′

end for
Compute learning rates: 𝛾 = 1

|𝑆𝑇 |(𝐶
𝑇𝐶)−1𝑅, 𝛾 ∈ R|𝑆𝑇 |

Update model: 𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝜂
∑︀|𝑆𝑇 |

𝑖=1 𝛾𝑖ℎ𝑖(𝑥), ℎ𝑖 ∈ 𝐻𝑚

end for
end procedure

procedure ClientTrain(𝑘, 𝐹 (𝑥))

Compute pseudo-residuals: 𝑟𝑖 = −
[︁
𝜕𝐿(𝑦𝑖,𝐹 (𝑥𝑖))

𝜕𝐹 (𝑥𝑖)

]︁
, (𝑥𝑖, 𝑦𝑖) ∈ 𝐷𝑘

Fit a tree ℎ𝑘(𝑥) using the training set {(𝑥𝑖, 𝑟𝑖)}𝑁𝑘
𝑖=1, 𝑥𝑖 ∈ 𝐷𝑘

Send ℎ𝑘(𝑥) to the server

end procedure

procedure ClientReview(𝑘, 𝐹 (𝑥), 𝐻)

Compute pseudo-residuals: 𝑟𝑖 = −
[︁
𝜕𝐿(𝑦𝑖,𝐹 (𝑥𝑖))

𝜕𝐹 (𝑥𝑖)

]︁
, (𝑥𝑖, 𝑦𝑖) ∈ 𝐷𝑘

for ℎ𝑗(𝑥) ∈ 𝐻 do
Compute predicted residuals on 𝐷𝑘: 𝑟̂𝑗 = [ℎ𝑗(𝑥0), ℎ𝑗(𝑥1), ..., ℎ𝑗(𝑥𝑁𝑘

)]𝑇

end for
Initialise matrix: 𝑃 ∈ R𝑁𝑘×|𝑆𝑇 | ←

[︀
𝑟̂0 𝑟̂1 ... 𝑟̂|𝐻|

]︀
Compute: 𝐶𝑘 ← 𝑃 𝑇𝑃
Compute: 𝑅𝑘 ← 𝑃 𝑇 𝑟
Send 𝑅𝑘 and 𝐶𝑘 to the server

end procedure



learning context, a non-IID partitioning of the data was created based on the value of the latitude

and longitude attributes of the samples. We set the number of federation clients to 30, out

of which we select 10 clients for each training and revision step. Meanwhile, the number of

federation iteration is set to 50.

In order to evaluate the performance of the model trained with the FedLSBT algorithm

compared to the GBDT model implemented in the scikit-learn
6

library and trained in a centralised

manner, the error is measured on a test dataset composed of a subset of the samples of the

original dataset which are not used in the training phase. The centralised gradient boosting

model is trained in such a way as to make the two algorithms comparable, setting a number of

estimators equal to the number of trees built by the FedLSBT algorithm and setting a number of

samples used for training of each tree equal to the average of the samples present in the dataset

of each client. Section 4.3 shows the results of our experiments. The centralised model performs

better than the FedLSBT federated model which however still manages to achieve a reasonable

performance equal to 88% of the centralised model. The difference in performance between the

two models is what could be expected in a federated learning context, and is mainly due to the

characteristic non-IID distribution of the clients data distribution in the federated training.

Model 𝑟2 score MSE

GBDT 0.72 0.26
FedLSBT 0.63 0.34

4.4. Classification

To prove the generality of the proposed algorithm, we test the performance of FedLSBT over

a classification task. An example was created in which the previous regression problem is

transformed into a binary classification task by assigning each sample (𝑥𝑖, 𝑦𝑖) a class based on

the function:

𝐶(𝑥𝑖) =

{︃
+1 if 𝑦𝑖 ≥ 𝑚𝑒𝑑𝑖𝑎𝑛(𝑌 )

−1 if 𝑦𝑖 < 𝑚𝑒𝑑𝑖𝑎𝑛(𝑌 )
(10)

The objective function used for the classification task is Binary Cross Entropy (BCE), and the

rest of experiment setups – e.g., data partitioning and federated training parameters – are

similar to the regression task setup.

Section 4.4 shows the results of our experiments. The classification accuracy of the centralised

version of the GBDT algorithm is equal to the FedLBST model which also manages to obtain a

better BCE loss value. These results highlight the goodness of the proposed approach, which is

capable to achieve centralized-like performance over non-IID data distribution.

Model Accuracy BCE

GBDT 0.81 2.47
FedLSBT 0.80 0.50

6
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5. PRFL Limitations

While PRFL showed promising performance over different tasks, it does not represent a silver

bullet solution. Accordingly, we here pinpoint some of its limitations. The introduction of

a review phase involving multiple rounds of communication leads to increased latency and

bandwidth usage. This issue represents a particularly relevant limitation when scenarios with

limited network resources are considered. Several different strategies to mitigate this issue

can be identified, mainly based on the smart selection of training clients and reviewers. While

the revision process introduces an additional level of communication burden, there exist few

different approaches in the literature for selecting effectively the clients participating to each

optimisation round that aim at minimising the resource wastes [20, 21, 22]. Similarly, as the

number of clients in a federation increases, the complexity and time required for validation

during the review phase may become a scalability bottleneck. Finally, resource allocation

fairness represents a relevant issue in scenarios where clients have varying computational

and network resources. In this context, it is fundamental to ensure that no client is unfairly

burdened by the reviewing process, thus requiring the definition of ad-hoc fairness-aware

reviewers selection processes.

6. Conclusions and Future Works

In this paper, we tackle the issue of FL model performance over non-IID data distribution

proposing a novel peer-review based approach for the federated learning paradigm. Our system

takes inspiration from the popular procedure of peer review, common in the scientific research

community, to allow the server of a federation to evaluate the local updates received by the

clients in the federation. The underlying idea is to identify the relevant updates as the ones

that perform well on a variety of reviewing clients, while disregarding the updates that prove

to be unsuccessful over a set of various reviewers. The proposed Peer-Reviewed Federated

Learning is implemented on top of Flower, obtaining the first review-enabled FL Python library.

Being designed to be modular and general-purpose, the obtained library (PRFlower) is flexible

enough to allow for the implementation of almost any review-based FL approach. Finally, the

proposed review-based FL approach is tested on regression and classification tasks via the

proposal of Federated Least Squares Boosted Trees (FedLSBT) – an extension of the popular

Gradient Boosted Decision Trees (GBDT) models –, requiring federation and revision to be

optimised. The simple case study highlights the validity of the proposed approach, which

achieves performance similar to the centralised learning setup even with non-IID data.

In the future, we plan to extend the experimental evaluation of PRFL by testing it over a

broad set of tasks and hyperparameter setups, and against a set of FL training protocols. We

also aim at extending the in-depth analysis of PRFL performance to domains different from the

simple tabular data used this far, including computer vision [23, 24], graph processing [25, 26],

natural-language processing [27, 28], and neuro-symbolic models [29, 30].
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