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Abstract
Multi-Agent Systems (MASs) are a widely used paradigm for modeling agents that interact with each other
to solve problems. Genetic algorithms represent methods mimicking natural evolution and have been
successfully applied in various domains, including MASs. While evolving controllers for homogeneous
agents can be considered a relatively trivial task, evolving a collective ability in a group of heterogeneous
agents strongly depends on the individual’s characteristics. In a genetic algorithm, the selection of
the individuals forming the MAS is random and the evaluation of the group performance is affected
by both the agent’s ability and the environmental complexity. Consequently, the emergent dynamics
of the system can be highly unpredictable, and the success or failure of the MAS may be inaccurately
evaluated. To mitigate the effect of chance, we proposed a novel technique - called n-mates evaluation -
which allows for a better estimation of each individual’s effectiveness and its contribution to the final
performance of the MAS. Results collected from three different cooperative benchmark tasks indicate
that the proposed method is effective and outperforms a traditional genetic algorithm.

Keywords
Genetic algorithms, multi-agent simulation, emergent behaviors, optimization strategies

1. Introduction

Multi-agent systems (MASs) have emerged as a significant research area that has found applica-
tions in various fields, including industrial applications, robotics, economics, social sciences, and
more. MASs offer flexible and decentralized approaches to problem-solving, allowing adaptation
to changes in dynamic and complex environments [1, 2]. Involving interactions of multiple
autonomous entities to achieve collective goals, agents in MASs are capable of perceiving their
environment and making decisions or actions to achieve their individual objectives while also
considering the impact on the overall system [3]. The coordination and communication among
them can lead to emergent behaviors that often cannot be achieved by individual agents or with
centralized control. The study of multi-agent systems involves understanding agent behavior,
interaction protocols, negotiation strategies, and mechanisms for achieving cooperation or
competition among agents [1].
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Genetic algorithms (GAs) [4] are methods modeling the evolution of natural organisms that
are widely used to solve optimization problems. Examples of successful application of GAs to
MAS tasks can be found in [5–12]. While genetic algorithms (GAs) have emerged as valuable
tools for solving complex optimization and search problems in various fields [13–15], in the
context of multi-agent systems, they offer a powerful approach to optimize agent behaviors,
interactions, and strategies [16, 17]. The application of genetic algorithms within multi-agent
simulation scenarios offers several benefits and challenges. Firstly, genetic algorithms stand out
in exploring a diverse space of solutions. Especially in MASs, this ability allows the exploration
of alternative strategies and possible emergent behaviors, enabling efficient problem resolution.
In particular, multi-agent simulations aim to study emergent behavior arising from interac-

tions between agents. Thus, GAs provide a means to uncover patterns of emergent behavior
and study their underlying mechanisms. Furthermore, since MASs often require agents to adapt
to dynamic environments and diverse situations, GAs furnish the opportunity to evolve agents
that learn optimal strategies over time, improving their performance in response to changing
conditions, taking into account multiple objectives and constraints. This is particularly benefi-
cial in complex scenarios where solutions are based on various factors, leading to improved
cooperation, coordination, and conflict resolution within multi-agent systems. Examples of
genetic algorithms applied to MASs can be found in [18–23].

As pointed out in [24, 25], the use of heterogeneous agents in MASs remains an open question.
Moreover, the evolution of collective behaviors in groups of heterogeneous agents is affected
by two main factors: (i) the ability of each individual in the MAS and (ii) the variability of the
environmental conditions. This implies that groups formed by skilled individuals acting in a
simple environment are more likely to be selected compared to groups containing individuals
with less capable partners in complex scenarios. In other words, randomness and chance could
alter the evaluation of the individual’s capability, ultimately hindering the discovery of truly
effective individuals [19, 26, 27]. To deal with such issues, we introduce a new method - called
n-mates evaluation - allowing us to better estimate the individual’s capability within a MAS.
Specifically, we designed three evolutionary scenarios involving a simple two-agent MAS, in
which individuals have to collaborate in order to solve the problems. The considered problems
represent benchmark tasks in the areas of swarm and evolutionary robotics. Differently from
traditional methods evaluating random pairs, the n-mates evaluation technique evaluates each
individual with 𝑛 different partners sampled from the population and computes its performance
as the average of the 𝑛 evaluations. In this work, we empirically set 𝑛 = 5 and combined our
method with a standard genetic algorithm. We then compared its performance with the genetic
algorithm, which serves as our baseline. Based on our experiments, the results indicate that the
former approach outperforms the latter algorithm. Furthermore, evolved individuals are more
adaptive to both the partner’s capability and the different environmental conditions.

2. Method Description

Genetic algorithms (GAs) [4, 14, 28] are popular techniques developed in the 70s with the
original aim of understanding adaptation in living organisms [4]. These methods displayed the
potential to solve many optimization problems and were employed in many different domains



(for some examples see [29–37]). Genetic algorithms are usually employed to evolve neural
network controllers for autonomous agents [10, 34, 38–40].

For the experiments reported in this work, we employed the Generational Genetic Algorithm
(GGA) [6, 41], a slightly modified version of the genetic algorithm developed by Holland in
which no crossover is possible between the population members. Specifically, the GGA evolves a
population of genotypes, each one being a sequence of integer values that encode the connection
weights of a neural network controller (refer to Section 3.4). The transformation to convert
genes into connection weights is shown in Eq. 1:

𝑤 = 𝑤𝑟𝑎𝑛𝑔𝑒 −
𝑔

𝑀𝐴𝑋𝐺
∗ 𝑤𝑟𝑎𝑛𝑔𝑒 ∗ 2.0 (1)

where 𝑔 is the generic gene value (integer), 𝑀𝐴𝑋𝐺 = 255 is the maximum gene value and
𝑤𝑟𝑎𝑛𝑔𝑒 = 5.0 represents the weight range. We used the same settings as in [6].
Fig. 1 shows the pseudo-code for the GGA.

Figure 1: Pseudo-code of the Generational Genetic Algorithm (GGA). The process consists of several
sequential steps. Firstly, an initial population 𝑃𝑜𝑝(0) is formed, and the individuals (also known as
chromosomes or genotypes) are initialized with random values. Each individual represents a potential
solution for the specific problem. Subsequently, all individuals are evaluated, and scores are assigned to
measure their performance in addressing the problem (lines 3-5). The selection process then identifies
the most capable individuals, allowing them to engage in reproduction (line 6). Using the mutation
and/or recombination operators, a new population 𝑃𝑜𝑝(𝑔𝑒𝑛 + 1) is generated (line 7). This cyclic process
continues iteratively until a predetermined criterion is achieved, such as reaching a fixed number of
generations or achieving an optimal problem solution (lines 2-8).

The application of GGA to MASs formed by heterogeneous agents is tightly dependent on
the ability of each member of the group. This implies that the selection of the best individuals
for reproduction might be affected by chance. For example, an effective agent evaluated with an
unable mate can be discarded since the performance of the pair will be poor. Moreover, selected
agents are not retained in the population and the members of the MAS are randomly chosen
at each generation. To cope with this issue, we introduce a novel technique that we called
n-mates evaluation: it consists of evaluating each individual with 𝑛 mates randomly extracted
from the population. The performance of the individual is the average over the 𝑛 evaluations.
In this way, the fitness measure represents a better estimation of the ability of each agent to
deal with the evolutionary task. Furthermore, the fitness value provides an indication of how
adaptive an agent is within the MAS. Because the extraction of mates is purely random, the



n-mates evaluation technique forces each agent to adjust its behavior according to the partner’s
capabilities. In other words, the n-mates evaluation method allows for the generalization of
manifold behaviors, addressing the issue related to agent’s heterogeneity. This is why we
empirically estimate the value of parameter 𝑛 by assigning it as 5. The pseudo-code of the
n-mates evaluation method is shown in Fig. 2.

Figure 2: Pseudo-code of the n-mates evaluation procedure. The method takes as inputs an individual
𝑝 and the population 𝑃𝑜𝑝(𝑔𝑒𝑛) at generation 𝑔𝑒𝑛 (line 1). A set of 𝑛 mates randomly drawn from the
population (line 2). The individual receives a score indicating the performance obtained with a specific
mate (lines 4-6). The actual individual’s performance is obtained by averaging the fitness over the
number of mates (line 7).

We used the n-mates evaluation technique to improve the performance of the GGA. The
resulting algorithm is described in Fig. 3. As it can be observed, the n-mates evaluation method
only affects the agent’s evaluation (i.e., the computation of the fitness value).

Figure 3: Pseudo-code of the n-mates evaluation procedure inserted in the GGA (blue lines 4-9).



(a) (b) (c)

Figure 4: Evolutionary tasks. (a) Foraging: food items are shown in red. (b) Escaping from predator:
the predator, colored in green, moves following the closest detected prey. (c) Aggregation: the arena
contains an aggregation area colored in red.

3. Problem Formulation

In this section, we describe the evolutionary tasks we used. We consider three benchmark
problems largely employed in the fields of swarm and evolutionary robotics [5, 9, 19, 21, 22, 42–
46]. Moreover, the tasks are of increasing complexity, as we will explain in the next subsections.
A screenshot of the environmental setups is provided in Fig. 4. For all the experiments we used
the parameters reported in Table 1. All the experiments have been run by using the FARSA
simulator [47, 48], an open software tool widely used in evolutionary robotics [49–51] and MAS
[6, 52].

Table 1
Experimental parameter settings.

Experiment Parameter Value G.A. Parameter Value
# of replications 20 population size 100

# of evaluation steps 5 × 108 # of reproducing individuals 10
# of episodes 5 # of offspring per individual 10

# of steps per episode 1000 gene range [0, 255]
arena size 2𝑚 × 2𝑚 mutation rate 1%

camera field-of-view (FOV) 90∘ crossover off
camera sectors 6 # of mates {1, 5}

3.1. Foraging

The foraging task is considered a benchmark problem in robotics and MASs [6, 19, 20, 43, 45, 46].
In the classic formulation, a group of agents has to coordinate in order to forage as many food
items as possible [19, 46]. Concerning our evolutionary problem, two E-puck robots [53] are
randomly placed in the environment (Fig. 4(a)). A food item is set in a random position and
cannot be eaten by a single agent. When the agents succeed in eating the item, it suddenly



reappears in a new random position. The goal for the robots is to gather the highest possible
number of food elements. The fitness function is provided in Eq. 2:

𝐹𝑓 𝑜𝑟𝑎𝑔𝑖𝑛𝑔 =
1

𝑁𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠

𝑁𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠

∑
𝑖=1

𝑁𝑒𝑎𝑡𝑒𝑛_𝑓 𝑜𝑜𝑑𝑠 (2)

where 𝑁𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠 is the number of episodes and 𝑁𝑒𝑎𝑡𝑒𝑛_𝑓 𝑜𝑜𝑑𝑠 represents the number of food items
eaten by the two agents. The lower bound for the fitness function is 0.0 (i.e., an agent that
does not eat any food items), while there is no upper bound since the fitness value is tightly
dependent on the agent’s capabilities.

Although the task is quite trivial, it does not necessarily require the collaboration of the two
agents. In fact, the problem can be solved simply if the two agents reach a food element in
distinct time steps. There is no pressure on explicit coordination of the robots. Nonetheless, an
individual capable of reaching quickly the food item might be penalized if evaluated with an
unable partner.

3.2. Escaping from predator

In this scenario, we designed a variant of the “Pursuit and Evasion” problems [42, 44] in which
three E-puck robots are randomly placed in the environment, with one acting as a predator
(Fig. 4(b)). All the agents have the same capabilities. The goal for the evolving agents (acting
as preys, blue in Fig. 4(b)) is to avoid being captured by the predator (green in Fig. 4(b)). This
can be achieved by staying as close as possible. More specifically, the minimum distance that
guarantees the agents cannot be captured by the predator corresponds to the diameter of a
robot. This design choice was made considering that this value prevents the predator from
standing between the agents. The fitness function for the problem is reported in Eq. 3:

𝐹𝑝𝑟𝑒𝑑𝑎𝑡𝑜𝑟 =
1

𝑁𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠

𝑁𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠

∑
𝑖=1

(1.0 − 𝑟𝑜𝑏𝑜𝑡_𝑑𝑖𝑠𝑡
𝑚𝑎𝑥_𝑑𝑖𝑠𝑡

) (3)

where 𝑁𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠 is the number of episodes, 𝑟𝑜𝑏𝑜𝑡_𝑑𝑖𝑠𝑡 is the distance of the agents at the end of
the episode and 𝑚𝑎𝑥_𝑑𝑖𝑠𝑡 is the maximum distance of the robots in the environment. Specifically,
𝑚𝑎𝑥_𝑑𝑖𝑠𝑡 corresponds to the diagonal of the arena. The fitness value is bounded in the range
[0.0, 1.0].
In order to solve this task, the agents may develop two potential capabilities:

1. they can coordinate with each other so as to move close;
2. they may escape from the predator in order to avoid being captured.

It is worth noting that the predator moves according to a predefined routine computing its
direction of motion based on the closest detected prey. A possible solution for the agent under
evaluation is to move rapidly and reach the partner before the arrival of the predator. This
implies that a very fast individual can solve the problem even if the mate is an unable agent
that stays still or turns on the spot.



3.3. Aggregation

Aggregation represents a very simple example of self-organized behavior in various species of
animals [54] and typically comes from a shared decision among the members of the group [55].
Several works demonstrated how an aggregation behavior can emerge through the interaction
of multiple agents in a MAS [5, 9, 21, 22, 56].

Here, we consider two E-puck robots placed in the arena. A red circular area of 30𝑐𝑚 diameter
is randomly located in the environment (Fig. 4(c)). There is a cylinder object (with a diameter
of 2.5𝑐𝑚) placed at the center of the area indicating its presence. The goal for the agents is to
reach the aggregation area and spend as much time as possible within it. The fitness function is
given by Eq. 4:

𝐹𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 =
1

𝑁𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠

𝑁𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠

∑
𝑖=1

𝑁𝑠𝑡𝑒𝑝𝑠_𝑜𝑛_𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛_𝑎𝑟𝑒𝑎

𝑁𝑠𝑡𝑒𝑝𝑠
(4)

where 𝑁𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠 is the number of episodes, 𝑁𝑠𝑡𝑒𝑝𝑠 indicates the number of steps of each episode
and 𝑁𝑠𝑡𝑒𝑝𝑠_𝑜𝑛_𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛_𝑎𝑟𝑒𝑎 represents the number of steps the two agents spent together over
the aggregation area. Similarly to the “escaping from predator” task, the fitness value is bounded
in the range [0.0, 1.0].

Differently from the other evolutionary problems, in this case, the robots are equipped with
an additional ground sensor allowing the agents to recognize the presence of the area when
they pass over it.

In order to solve the evolutionary problem, the agents must develop the following capabilities:

1. explore the environment so as to detect the aggregation area;
2. stay on the area as much time as possible.

Similar to the foraging problem, the agents are not required to explicitly coordinate their
arrival at the aggregation area, nor do they need to detect the other mate. However, only when
both agents are over the area the fitness increases. This implies that a robot capable of detecting
and remaining within the area will not receive a fitness score if its partner is an incapable
agent that remains stationary or rotates in place. Consequently, this task is considerably more
challenging than the other two problems since the agent’s evaluation is strongly dependent on
the mate’s capabilities.

3.4. Neural Network

The network architecture employed for the experiments described above is depicted in Fig. 5.
We adopted the controller used in [6] with some adjustments. In more detail, we used a feed-
forward neural network with one internal layer of 8 neurons and 2 output neurons encoding
the speeds of the robot wheels. Concerning the input layer, the network has 18 inputs provided
by the linear camera (6 inputs for each of the 3 basic colors) in the case of the “foraging” and
the “escaping from predator” problems. With respect to the “aggregation” task, there are 3
additional inputs provided by the ground sensor (Fig. 5, dashed circles). This comprehensive
network architecture forms the basis of agents’ controllers in our evolutionary experimentation.



The connection weights are derived from the corresponding genotypes and initialized to values
in the range [-5.0, 5.0], as described in Section 2.

4. Results

In this section, we provide the outcomes of our analyses.
Figures 6-8 show the performance of the two algorithmswe used. As it can be seen, the n-mates

evaluation technique allows us to obtain better performances on average than the GGA algorithm
at the end of the evolutionary process in all the considered scenarios. Specifically, results are
statistically significant for both the “foraging” and the “escaping from predator” problems
(Mann-Whitney U test, 𝑝 < 0.05), while there is no difference concerning the “aggregation”
task (Mann-Whitney U test, 𝑝 > 0.05). This indicates that our method is able to discover
solutions generalizing with respect to the capabilities of the partner. To further support this
claim, we run a post-evaluation phase in which evolved individuals are tested with 25 different
partners randomly drawn from the final population. Differently from evolution, the test phase
is deterministic, i.e. individuals experience the same initial conditions at the beginning of each
episode. Overall, we evaluated 2000 individuals. The results of the post-evaluation (see Fig. 9)
demonstrate how the n-mates evaluation technique evolved better generalizing individuals than

Figure 5: The neural network controller used in the experiments. Within the Input layer, there are
specialized receptors for color perception, represented by neurons 𝑅1, ..., 𝑅6 (Red colored receptors),
𝐺1, ..., 𝐺6 (green colored receptors), and 𝐵1, ..., 𝐵6 (blue colored receptors). This results in a cumulative
count of 18 neurons. This configuration is applied to both the “foraging” and “escaping from predator”
tasks. Additionally, in the “aggregation” task, the input layer contains three additional inputs (𝐺𝑟1, ..., 𝐺𝑟3),
related to the ground sensors, bringing the total to 21 neurons. The internal layer, composed of 8 neurons,
exerts influence over motor neurons, determining the speeds of the motors.



Figure 6: Performance of the evolved agents during evolution in the foraging scenario. Green curve
indicates the average performance obtained by the GGA, while the red curve represents the fitness
achieved by applying the n-mates evaluation procedure. Data have been obtained by averaging 20
replications of the experiment.

the GGA algorithm in all three problems (Mann-Whitney U test, 𝑝 < 0.05). This implies that
the former method leads to the discovery of truly effective and adaptive solutions. It is worth
noting that this outcome has been obtained at no computational cost.
Figures 6-8 indicate that the n-mates evaluation method requires a bootstrap phase during

the first part of the evolution before reaching performances comparable to those of the GGA.
Specifically, it requires 108 evaluation steps in the case of the “foraging” and the “escaping
from predator” problems (Figures 6 and 7) and 2 × 108 evaluation steps in the case of the
“aggregation” task (Fig. 8). This is not surprising: at the beginning of the evolution, individuals
are generally bad at dealing with the task. In collective problems involving the cooperation of
heterogeneous agents, evaluating each individual with 𝑛 randommates is more likely to produce
lower performance than the GGA, which evaluates an agent with a single peer. Notwithstanding
this initial slow convergence, the n-mates evaluation procedure is able to evolve effective and
generalizing agents, which adapt their behavior based on the partners’ capabilities.
Our analyses reveal differences among the evolutionary problems. Specifically, both the

n-mates evaluation method and the GGA algorithm obtain good performances on the “foraging”
and the “escaping from predator” problems, while their fitness is quite low in the case of the
“aggregation” task. This difference might be partially ascribed to the different stimuli agents
perceive. In fact, in the former problems, the robots may only receive two types of visual inputs



Figure 7: Performance of the evolved agents during evolution with respect to the predator case. Green
curve indicates the average performance obtained by the GGA, while the red curve represents the
fitness achieved by applying the n-mates evaluation procedure. Data have been obtained by averaging
20 replications of the experiment.

provided by both the peer (blue input of the linear camera sensor) and another object that can
be either the food item or the predator. Conversely, in the latter task, the agent has to deal
simultaneously with both visual stimuli provided by the camera (one from the mate and one
from the cylinder inside the area) and the information obtained through the ground sensor. Put
in other words, the agent has to properly manage two different types of inputs and map them
into an effective behavior. Therefore, the “aggregation” problem is more complex than the other
tasks. In addition, this task is strongly more dependent on the partner’s capabilities than the
other problems. Indeed, given the limited dimension of the cylinder object (see section 3.3), the
agents must develop an exploratory capability in order to look for the aggregation area and
reach it. However, if the peer does not display the same ability, the performance of the evolving
agent will be low even if it succeeds in quickly arriving at the target area.

5. Conclusions

MAS is a well-established paradigm across various domains, due to features like flexibility,
decentralization and adaptation to environmental changes. Extensive research has demonstrated
the effectiveness of applying MAS to different fields. However, exploiting the potentiality of
MASs in dealing with heterogeneous agents presents some challenges, mainly dependent on



Figure 8: Performance of the evolved agents during evolution with respect to the aggregation problem.
The green curve indicates the average performance obtained by the GGA, while the red curve represents
the fitness achieved by applying the n-mates evaluation procedure. Data have been obtained by averaging
20 replications of the experiment.

(a) (b) (c)
Figure 9: Performance of the evolved individuals in the post-evaluation phase for each task: (a) Foraging.
(b) Escaping from predator. (c) Aggregation. Boxes illustrate the inter-quartile range of the data, with
the median value indicated by the horizontal line inside each box. The whiskers extend to the most
extreme data points that fall within 1.5 times the inter-quartile range from the box. These data points
were collected from 20 repetitions.

the individual’s characteristics and the specific environmental conditions. In this work, we
presented the n-mates evaluation technique, a novel method able to improve the performance
of a genetic algorithm and, at once, estimate better the actual capability of an individual in
heterogeneous MASs. Specifically, we designed three scenarios in which two agents have to
collaborate so as to solve the evolutionary problems. We demonstrated how our approach is
effective and outperforms a standard genetic algorithm. Moreover, the evolved individuals



represent truly effective solutions, i.e., they exhibit an adaptive behavior regardless of the
capability of the partners they are evaluated with. Notably, the proposed method allows the
discovery of adaptive agents without adding computational complexity to the genetic algorithm
it is combined with since it only affects the agent’s evaluation. However, the technique leads to
the evolution of a population of flexible agents experiencing different environmental conditions,
where the partner’s capabilities are unknown. This, in turn, allows for the optimization of the
exploration-exploitation trade-off because the evolved individuals can immediately adapt to
new random mates without incurring additional costs. As a result, the search space exploration
is reduced, and the evolutionary process can benefit from the solutions found thus far.
The results of our analysis are promising, but further research is needed to validate the

approach more comprehensively. In the future, we plan to extend our study to larger groups of
agents, similarly to the experiments reported in [21, 22]. We are also interested in evaluating the
technique in more challenging domains, in which the capability of each individual is paramount.
Moreover, the parameter 𝑛 has been set empirically. Future work should be devoted to the
analysis of the relationship between the value of 𝑛 and the final performance. In addition,
we are investigating the possibility to adapt the parameter 𝑛 based on the individual’s fitness,
without any need to fix it a priori. Finally, we are considering the use of the n-mates evaluation
procedure in combination with modern evolutionary algorithms, such as OpenAI-ES [20, 57, 58],
which proved their efficacy in many problems including a swarm robotics scenario [21].
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