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Abstract
Geomagnetic-based indoor positioning has been widely studied as an alternative to WiFi-based indoor
positioning systems. However, the geomagnetic-based approach is challenging in practice due to its
limited feature diversity and susceptibility to noise. Also, geomagnetic ground-truth locations are difficult
to be obtained. This study aims to overcome the inherent limitation of magnetic data and discrepancies
between testing conditions and real-world scenarios, where the ground-truths are unknown.

By employing the dynamic time warping with global invariances(DTW-GI), we figure out that the
time-series magnetic sensor readings can become a representative feature set, which can be mapped as
spatio-temporal features according to a moving trajectory regardless of the ground-truth information.
Because we find out the magnetic data is spatial and temporal, a deep multimodal neural network with
autoencoders is designed for positioning estimation model, and its objective function is made to map
them on target trajectories.

From the landmark experiments in which only we know corner locations, the proposed positioning
model is evaluated effectively to encode representations of the magnetic data and decode them to the
trajectories between the landmarks with 96.90 percent accuracy.
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1. Introduction

Indoor positioning has received significant attention over the years due to the growth of the
location-based services market. Recent technological advances and demand from various
industries further accelerate research and development of indoor positioning solutions. Particu-
larly, modern smartphones with various types of sensors provide accessibility to ubiquitous
positioning systems[1, 2, 3].

While technologies such as Ultra-Wideband (UWB)[4], Bluetooth Low Energy (BLE)[5], and
WiFi[6, 7] are the reliable and typical implementations for indoor positioning, their depen-
dency on physical anchors limits usage where device installation is undesirable. To address
the issue, geomagnetic-based approach has arisen as an alternative [8, 9]. With magnetic
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patterns generated by ferromagnetic objects like columns, elevators, and walls within buildings,
geomagnetic-based positioning distinguishes different indoor locations[10, 11].

The primary challenge encountered in geomagnetic-based indoor positioning is its inherent
physical limitations. Unlike WiFi-based methods that leverage the number of access points
as rich feature dimensions, geomagnetic-based approach relies solely on three-axis measure-
ments[12]. This limited feature diversity challenges the accurate positioning process based on
magnetic patterns[13]. Moreover, sensitivity of magnetometers necessitates adequate calibra-
tion. Magnetometers are prone to biases induced by common materials with soft- and hard-iron
properties.[14] In other words, daily exposure to magnetic objects can distort the magnetic field
of devices, resulting in sensor bias and adversely affecting the accuracy of the data acquisition.
Thus, calibration is conventionally necessary to mitigate biases and compensate for sensor

distortions caused by external elements. However, calibrating for every usage in practical appli-
cations using smartphone sensors is not feasible, leading to discrepancies between real-world
environments and controlled testing conditions, resulting in inaccurate indoor positioning[15].

This study aims to reduce the discrepancies generated from uncalibrated sensors and identify
the representations of space-oriented features. Accordingly, we (1) extract spatio-temporal
features from both magnetic patterns and trajectories with time-series similarity measures of
latent space and (2) develop a position inference model that points to the target space with
consideration of deep-embedded features.

2. Background

Because magnetic patterns can be captured by a movement along the space, different walking
speed and pattern generates different pattern. Also, noise and fluctuation of sensors generate
different anomalies in the same area. Therefore, researches on geomagnetic indoor positioning
systems involve feature extraction and pattern recognition to identify robust representation.[16,
13, 17].

Qu Wang et al.[16] proposed an indoor positioning system that combines the detection of
magnetic loop closure with the calibration of pedestrian dead reckoning (PDR) trajectories using
formerly collected magnetic patterns stored in a database. By detecting magnetic loop closure,
when a person passes through a physical location previously visited, the system can identify
known locations and utilize them to calibrate the PDR trajectory. The magnetic patterns stored
in the database are reference points for accurate positioning. AMID(Accurate Magnetic Indoor
Localization Using Deep Learning) system[13] is one of the earliest studies of geomagnetic-based
indoor positioning using a deep neural network by converting magnetic patterns into images,
which are then classified to enable precise indoor positioning.

Both studies focus on magnetic patterns for indoor positioning. They acknowledge magnetic
patterns as reliable indicators of specific locations within indoor environments. Additionally,
both studies employ a sliding window technique to extract magnetic patterns instead of relying
solely on the absolute intensity of a reference point. By identifying magnetic pattern changes
by implementing a sliding window approach, these studies aim to improve the performance and
reliability of indoor positioning systems in real-time applications. However, when considering
the practical application of magnetic patterns for indoor positioning, several challenges exist:



Figure 1: The floor plan of the target building with the accessible track highlighted in color.

• Indoor magnetic patterns change dynamically[18].
• Sensor calibration is frequently required to ensure accurate results[19].
• Data collection conditions are not constant, further complicating the positioning process.

As a result, it becomes essential to consider both temporal and spatial information, high-
lighting the need for more robust feature extraction methods. Asadi et al.[20] developed a
model with deep-embedded learning using autoencoders to consider both spatial and temporal
features of trajectory data. The model aims to minimize spatial, reconstruction, and clustering
loss simultaneously, enabling the extraction of meaningful representations that capture the
underlying patterns and relationships within the trajectory data. Vayer et al.[21] introduced
DTW-GI (Dynamic Time Warping with Global Invariances) as an enhanced version of the tradi-
tional dynamic time warping technique[22]. DTW-GI incorporates additional considerations
of axis discrepancies and rotation, making it suitable for comparing sequences that exhibit
both temporal and spatial distortions. DTW-GI metrics, therefore, have found applications in
trajectory analysis, human pose estimation, and other fields.

In this paper, we propose a DNNmodel of different parallel autoencoder structures with a fully-
connected network combined. Autoencoders are designed to build latent feature representations
from magnetic and trajectory data. This feature extracting part reduces discrepancies between
devices resulting from lack of calibration by adapting DTW-GI metrics. Then, the rest part
of the model infers the current location from the latent features. The DTW-GI metric is also
adapted for window size determination of input data features before the model development
steps.



Figure 2: The relative coordinate system of an Android smartphone device, via Android Developers.
(https://developer.android.com/guide/)

3. Smartphone sensor data analysis

Experimental data was collected using magnetometers and inertial measurement units(IMU)
on two different human-held smartphones, for two hours along the same tracks. Figure 1
shows the accessible corridors within the target building. The data acquisition process was
carried out assuming typical daily indoor positioning conditions without sensor calibration.
The magnetometer sample rate was set at 400Hz, while the IMU had a sample rate of 100Hz
which is the default sampling rate of Android sensors. A lower sampling rate of 4 Hz was
chosen to synchronize and integrate the magnetometer and IMU data. Data preprocessing step
includes converting from the local reference frame to the global reference frame using game
rotation vectors provided by the Android sensor system.

3.1. DTW-GI analysis on magnetic sequence data

A magnetometer measures the 3-axis magnetic intensities at a specific location. However, point-
referenced magnetic intensities are insufficient for discerning distinct coordinates accurately.
Sliding window technique is popularly used for enhancing time series data features. Sliding
windows identify space-oriented indoor magnetic patterns making more feature dimensions. For
instance, existing ferromagnetic objects within a particular spatial unit, such as the characteristic
pattern associated with the presence of an elevator, can be treated as indicators or landmarks of
specific locations. By converting sequential magnetic data into time series data representative
of the target space, spatial features can be extracted from the magnetic field and effectively
augment temporal information for indoor positioning purposes.
Magnetic sequence data presents identical patterns at the same position, but uncalibrated

sensors lead to discrepancies between the axis by different devices, as shown in Figure 3. Also,
the fluctuations or variations in magnetic patterns are so minor and subtle, making magnetic-
based indoor positioning challenging.

Therefore, we apply the DTW-GI (Dynamic TimeWarping with Global Invariances) technique
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to measure temporal similarities or differences between sequential data. Unlike conventional
DTW, DTW-GI incorporates the consideration of both axis discrepancies and rotation, making it
suitable for comparing sequences with temporal and spatial distortions, disregarding variations
due to different devices, speeds, and noise levels. Furthermore, by warping the time axis, DTW-
GI enables optimal alignment between two sequences, allowing for non-linear and variable-
speed alignments, thereby enhancing the accuracy and precision of similarity measurements,
particularly for space and time-dependent sequences.

The key concept behind Dynamic Time Warping(DTW) is to find the best alignment by mini-
mizing the cumulative distance between corresponding points in the sequences. It dynamically
constructs a warping path connecting corresponding points in the sequences, allowing for local
deformations in the time axis. The path is determined by considering the distances between
points and neighbors to minimize the overall alignment cost. Given two time series x ∈ ℝ𝑇𝑥×𝑝
y ∈ ℝ𝑇𝑦×𝑝 with the feature dimension 𝑝, the vanilla DTW is calculated as follows:

DTW(x,y) = min
𝜋∈𝒜(x,y)

∑
(𝑖,𝑗)∈𝜋

𝑑(x𝑖,y𝑗) (1)

where 𝒜(x,y) is the set of all alignments, 𝑑 is a ground metric(mostly Euclidean distance),
and 𝜋 is pairs of time series[22].
DTW𝛾 extends the vanilla DTW by a soft-min operator to let DTW differentiable calculation.

In case of 𝛾 = 0,DTW𝛾 is equivalent to the DTW calculation[23].

DTW𝛾(x,y) = min
𝜋∈𝒜(x,y)

𝛾 ∑
(𝑖,𝑗)∈𝜋

𝑑(x𝑖,y𝑗) = −𝛾 log( ∑
𝜋∈𝒜(x,y)

𝑒−∑(𝑖,𝑗)∈𝜋 𝑑(x𝑖,y𝑗)/𝛾) (2)

By considering axial rotation through manifold alignment, the DTW-GI algorithm becomes a
powerful tool for capturing and analyzing spatio-temporal patterns, providing more accurate
and robust results for various applications, including indoor positioning and trajectory mapping.
The DTW-GI calculation is expressed as the cross-similarity matrix 𝐶 between samples from x
and 𝑓 (y), where ℱ stands for a family of functions, 𝑓 for a short-cut optimization function, and
𝑊𝜋 denotes the Frobenius inner product [21]:

DTW𝛾-GI(x,y) = min
𝑓 ∈ℱ

min
𝜋∈𝒜(x,y)

𝛾⟨𝑊𝜋, 𝐶(x, 𝑓 (y))⟩

= min
𝑓 ∈ℱ

−𝛾 log ∑
𝜋∈𝒜(x,y)

𝑒⟨𝑊𝜋,𝐶(x,𝑓 (y))⟩/𝛾 (3)

To specify a trajectory within the global context, similarity scores are calculated for each
of the three axes, measuring the extent of resemblance between corresponding locations in
the sequences. Once the DTW-GI scores for each axis are obtained, their summation yields a
comprehensive measure of total sequential similarity. This summation consolidates information
from all three axes, providing a holistic assessment of the representative patterns in the data.
Scatter plots facilitate the visualization of temporal correspondence, as depicted in Figure 3.
Lighter points in the scatter plots indicate a higher likelihood of representing the same trajectory.
The DTW-GI-based analysis revealed that a 10-second window was sufficient for identifying
spatial representatives from the magnetic data.



Figure 3: Magnetic field variations in each axis captured by smartphone sensors and magnitude.

3.2. AI-IMU for trajectory calculation

The Inertial Measurement Units (IMU) consist of accelerometers and gyroscopes, informing
the relative displacement and motion. By integrating data from these sensors, IMU can track
changes in position, velocity, and orientation, thereby facilitating the mapping of complete
trajectory or path within the indoor environment. The AI-IMUmodel[2] was utilized to calculate
a moving trajectory in this paper.
As mentioned, the sliding window technique has been applied to enhance the magnetic

pattern within the target space. Consequently, the resulting features inherently pertain to the
trajectory rather than being point-referenced. Thus, aligning them along the corresponding



Figure 4: Scatter plot of DTW-GI analysis results (red representing the reference points for similarity
calculation).

trajectory is essential to represent and analyze the space-oriented magnetic features accurately.
Furthermore, this alignment facilitates a comprehensive connection of the spatial feature of the
magnetic patterns. By integrating data from accelerometers and gyroscopes, the IMU captures
changes in position and computes the relative trajectory.
However, it is essential to acknowledge that the presence of integral error in the gyroscope

readings can introduce drift and inaccuracies during the trajectory mapping process. Despite



the identical nature of the tracks in real-world scenarios, the cumulative effects of integral error
in the gyroscope can lead to deviations from the ground-truth paths in the estimated trajectories.
Various techniques, such as pattern matching, feature extraction, or similarity measures, can
achieve this track identification and alignment. In the next chapter, these spatio-temporal
features are combined to develop a position inference model, and the trajectories with features
will be aligned with the deep learning technique.

4. Spatio-temporal features extraction with autoencoders

Autoencoders are unsupervised learning models that reconstruct input data by compressing
it into a lower-dimensional representation, known as the latent space or bottleneck. The
autoencoder architecture consists of an encoder, which maps the input data to the latent space,
and a decoder, which reconstructs the data from the latent representation. By training the
autoencoders to minimize the reconstruction error, it learns to extract the most representative
features from the input data.

In this research, autoencoders were built to capture the spatio-temporal similarities present
in both the magnetic sequences and trajectories. Consequently, two separate autoencoders
were constructed to extract features from the magnetic patterns and trajectories, respectively,
as shown in figure 5. For both magnetic sequence autoencoder and trajectory autoencoder, each
model reconstructs its respective data with a fixed window size of 10 seconds and a 0.25-second
interval. Each autoencoder in the proposed method consists of five layers, with the third layer
as the bottleneck layer.
The sequential data undergo normalization within the sliding window in the trajectory

encoder before feeding an autoencoder as input data. This approach focuses solely on the local
trajectory and ensures blindness to the global context. Normalizing the trajectory into sliding
windows narrows the analysis and feature extraction process to the local segment within each
window. This localized approach allows for a detailed examination of the temporal dynamics
within the time horizon, enabling accurate analysis and capturing of relevant spatio-temporal
patterns. Furthermore, by being blind to the global context, the trajectory encoder can extract
features and characteristics specific to the local trajectory by understanding the data in the
context of the given time window.

Two autoencoders generate deep embeddings at the bottleneck layer. These deep embeddings,
which represent the encoded features, are subsequently combined. The resulting concatenated
features are then mapped onto the trajectory using a bias term to facilitate the inference of the
current indoor position. This multimodal structure, therefore, consists of two autoencoders and
one deep neural network minimizing the reconstruction losses (𝑅𝐿1, 𝑅𝐿2) and the prediction
loss(𝐿). Therefore the loss function for feature reconstruction is as follows where𝑚 for magnetic,
𝑡 stands for trajectory:

𝑚
∑
𝑚=1

||𝑦𝑚 − 𝑓1(𝑥𝑚)||2 +
𝑡

∑
𝑡=1

||𝑦𝑡 − 𝑓2(𝑥𝑡)||2 (4)

This approach enables the incorporation of spatio-temporal similarities into the positioning
process. The dataset was divided into a 2:1 ratio, with two-thirds of the data used for training



Figure 5: The structure of two autoencoders for spatio-temporal feature extraction and the positioning
model of neural networks with the deep embedding concatenation.

and the remaining one-third for testing. The positioning model of the neural network structure
was trained to identify and indicate the location along the relative trajectory.

5. Experimental results

We designed the model to pair inputs from two different datasets of magnetic sequences in
the training phase to align the devices. The structure of the model is one single multimodal
block combining autoencoders and fully connected layers. Two magnetic sequences and one
trajectory are fed to train the representation for the same position, sharing the weights of
the magnetic feature extractor. Soft DTW-GI scores of magnetic sequence in latent space are
calculated as an additional metric to synchronize coinciding data.

The model is designed to predict the position from the magnetic patterns along the trajectory
by minimizing sum of reconstruction losses and soft DTW-GI loss with the window size of 10
seconds, updating with 0.25-second intervals. The magnetic sequence autoencoder and the
trajectory autoencoder demonstrated a reconstruction error of less than 3 percent, as shown
in Table 1, indicating their effectiveness in capturing the underlying patterns and features.
Additionally, the mapping accuracy reached 96 percent, highlighting the performance of the



Figure 6: (left) The prediction results of positioning model. (right) An example of corner detection with
change point analysis.

Table 1
Testing accuracy of prediction outputs by metrics.

MSE MAE MAPE
(Mean squared error) (Mean absolute error) (Mean absolute percentage error)

Mag 0.00 0.03 2.37
Traj 0.01 0.07 4.20

Mapping 0.01 0.04 3.10

models to map the trajectories accurately.
A change point analysis extracted landmarks in the corner points to identify the specific

location. The analysis method involves the computation of trajectory data derivatives within
each window, enabling the identification of notable variations in the data. The corner points are
selected when the sampled data exceeds a predefined threshold. Post-processing is necessary
once corners are defined by the change point algorithms due to possibilities for misidentification
caused by fluctuations in the trajectory. After the corner definition step, the proposed indoor
positioning model maps one unified trajectory and achieves precise localization performance
and accurate positioning by mapping each node at the corners in the target area.

To summarize, integrating multimodal learning for feature extraction and results from change
point analysis make it possible to compute absolute indoor positioning coordinates, resulting
in a comprehensive and accurate representation of the indoor space. This approach ensures
reliable and precise indoor positioning.

6. Conclusion and future study

This study presents a practical implementation with analysis of magnetic sequence data and
IMU-oriented trajectories collected from smartphone sensors. The analysis leverages the DTW-
GI technique in conjunction with a sliding window approach to extract spatio-temporal features



and identify space-oriented magnetic patterns. By measuring temporal similarities using DTW-
GI, similarity scores are computed for each axis and aggregated to provide an overall measure
of sequential similarity. The findings demonstrate that a 10-second window is sufficient for
identifying spatial representatives from the data.
To capture the spatio-temporal similarities in magnetic sequences and trajectories, autoen-

coders, one type of unsupervised learning, are employed. These models compress the data into
a lower-dimensional latent space and reconstruct it, focusing on minimizing reconstruction
errors and extracting informative features. The trajectory encoder specifically operates within
the sliding window, enabling a detailed analysis of temporal dynamics within each window
while disregarding the global context. This localized approach facilitates the capture of intricate
spatio-temporal patterns. Moreover, the trajectory encoder extracts features specific to the local
trajectory, enhancing understanding and utilization within the given time window.

Supervised learning techniques using deep neural networks are then applied, using relative
trajectories as target labels. The models are trained on labeled data to predict relative trajectories
based on landmark nodes. This approach significantly improves the system’s performance to
estimate positions and movements within the target building. In future studies, the integration
of self-supervised learning methods with the DTW-GI technique is planned to map relative
trajectories to precise positioning. This research contributes to developing effective and robust
indoor positioning systems in real-world practical scenarios without sensor calibration, focusing
on the representative pattern.
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