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Abstract
Cooperative Inter-vehicle Distance (IVD) estimation algorithms such as Absolute Position Differencing
(APD), Single-Differencing (SD), and Double-Differencing (DD) are promising and cost-effective solutions
thanks to Global Navigation Satellite System (GNSS) observables. These algorithms directly utilize
pseudorange measurements, i.e., the estimated distance between the antennas of satellites orbiting the
Earth and the GNSS receiver installed on the vehicle. However, an accurate IVD estimate using these
techniques is dependent on exact satellite coordinates, as any GNSS pseudorange requires precise satellite
positions. To compute satellite positions, the satellite’s distributed navigation message or interpolation
methods can be employed. This paper examines the performance of the Lagrange interpolation approach
for estimating satellite locations epoch-by-epoch in a real-world experiment in the IVD estimation
problem. The experimental results demonstrate that the Lagrange interpolation method performs
effectively with sub-centimeter accuracy in the IVD estimation problem. Furthermore, the results
indicate that even in a short study duration of 15 minutes, using outdated fixed-satellite positions
influences IVD estimation accuracy and causes increased uncertainty.

Keywords
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1. Introduction

Autonomous Vehicles (AVs) play a pivotal role in future mobility. It promises several advantages,
including simplified driving, reduced traffic congestion and accidents, increased safety, and
improved energy efficiency of the transportation system [1]. As a key component of AVs, robust
and precise localization has been widely investigated in recent years [1,2]. The architecture
supporting autonomous driving generally comprises five functional systems: localization, per-
ception, planning, control, and system management [3]. These systems need precise information
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on the vehicle’s position and Inter-Vehicle Distance (IVD) measurements [1].
The global navigation satellite system (GNSS), which estimates the vehicle position from

the pseudorange (an estimate of the distance between a satellite and a GNSS receiver installed
on the vehicle) measurements from several satellites, is the most popular method for vehicle
localization [2]. However, due to existing errors such as satellite clock error, multipath error,
and ionospheric delay of pseudorange, the GNSS positioning performance is not satisfactory
[2]. There is a growing body of literature that recognizes cooperative localization methods as
an alternative solution for improving positioning accuracy by sharing localization information
between two or more sources, i.e., vehicles and infrastructure, via emerging vehicular com-
munication technologies [4–6]. Cooperative IVD estimation algorithms can be classified as
ranging-based or non-ranging-based [2]. For IVD estimation in ranging-based methods, signal
strength variations such as radio signal strength [7], Time of Arrival [8], round trip time [9] or
Time Difference of Arrival [10] can be used. However, these approaches are often costly since
they require additional infrastructure and hardware to be implemented. In addition, the fast
vehicle speed may also introduce noise or errors in estimated distances [2]. The non-ranging
cooperative localization algorithm that directly utilizes each vehicle’s pseudorange measure-
ments can be used as a cost-effective alternative for vehicle localization and IVD estimation
thanks to GNSS observables, i.e., pseudorange [2],[6],[11,12].

Any pseudorange in GNSS requires the computation of the satellite location, and the method-
ologies for doing so are well-known in the literature [13]. We may use Kepler’s law to determine
satellite locations utilizing distributed navigation messages from the satellite, such as RINEX
(Receiver Independent Exchange Format) or RTCM (Radio Technical Commission for Maritime
Services) [13,14]. To this end, the receiver observation data (e.g., RTCM) should be converted
to RINEX format for post-processing and RTKLIB, an open-source program package for GNSS
positioning, can be used [15]. Interestingly, using archival data from the International GNSS
Service (IGS) [16] is an easy way to use satellite locations in post-processing. However, since
IGS data is often provided in 15-minute intervals and we do not have access to satellite positions
epoch-by-epoch, several interpolation algorithms have been proposed including Lagrange in-
terpolation [17], Chebyshev polynomial fitting [18], Newton’s divided difference interpolation
polynomial [19], and Cubic spline interpolation [19].

According to a comparison study [20] of different interpolation techniques for estimating
satellite locations, Lagrange interpolation performed well with higher precision. Additionally,
it can be used to compute satellite coordinates with only two known satellite positions. The
literature [21–23] earlier proposed the application of the Lagrange interpolation algorithm
in GNSS orbit interpolation and gave performance evaluations. However, this is based on
mathematical and theoretical studies rather than a real-world assessment. The motivation for
this investigation stems from the need to evaluate the performance of the Lagrange interpolation
approach in a real-world application. In this study, we examine the performance of Lagrange
interpolation in cooperative IVD estimation techniques using real-world measurements.

The remainder of this paper is structured as follows. A description of the mathematical
formulation of the GNSS pseudorange measurements and cooperative IVD estimation algorithms
is provided in Section 2. Section 3 is concerned with the methodology used for this study.
A discussion of the estimated IVD based on fixed satellite coordinates and epoch-by-epoch
satellite locations obtained via Lagrange interpolation is presented in Section 4. Finally, Section



5, summarizes the work.

2. Problem Formulation

2.1. GNSS pseudorange measurement model

The GNSS observables (raw code pseudorange) denoted by 𝜌, are defined as the estimated
distance between the GNSS receiver installed on vehicle 𝑉 ∈ {𝑉1, 𝑉2, 𝑉3, .., 𝑉𝑛} and a satellite
𝑆 ∈ {𝑆1, 𝑆2, 𝑆3, .., 𝑆𝐴} at any time-step 𝑘, which are modeled as follows [2],[6]:

𝜌𝑆𝑉 (𝑘) = 𝑅𝑆
𝑉 (𝑘) + 𝑡𝑆𝑉 (𝑘) + 𝜀𝑆𝑐 (𝑘) + 𝜀𝑆𝑢(𝑘) (1)

where 𝑅𝑆
𝑉 (𝑘) = ‖

−→
𝑃𝑆(𝑘)−

−→
𝑃𝑉 (𝑘)‖ is the true geometric range between vehicle 𝑉 and satellite

𝑆, the symbol ‖.‖ represents the 𝑙2 norm operation,
−→
𝑃𝑆(𝑘) = [𝑥𝑆(𝑘), 𝑦𝑆(𝑘), 𝑧𝑆(𝑘)]

𝑇 is the
position vector of satellite 𝑆,

−→
𝑃𝑉 (𝑘) = [𝑥𝑉 (𝑘), 𝑦𝑉 (𝑘), 𝑧𝑉 (𝑘)]

𝑇 is the true position vector of
vehicle 𝑉 on the Earth-centered, Earth-fixed (ECEF) coordinate system, 𝑡𝑆𝑉 (𝑘) is the clock
misalignment error between the GNSS receiver installed on the vehicle 𝑉 and satellite 𝑆, 𝜀𝑆𝑐 (𝑘)
indicates the correlated (common) uncertainty induced by the ephemeris and the atmosphere,
and finally, 𝜀𝑆𝑢(𝑘) denotes the uncorrelated uncertainty, which includes the multi-path error,
the thermal noise, and other residual errors [6].

2.2. Cooperative IVD Estimation Algorithms

2.2.1. Absolute Position Differencing (APD)

The GNSS receiver installed on each vehicle is able to compute an estimate of its absolute
position vector in ECEF coordinates after acquiring and tracking the GNSS signal of at least four
satellites. The absolute position differencing (APD) method calculates the estimated distance
between two vehicles at any time-step 𝑘 denoted by �̂�𝑖𝑗(𝑘) = ||

−→
𝑃𝑉𝑗 (𝑘)−

−→
𝑃𝑉𝑖(𝑘)||, i.e.

�̂�𝑖𝑗(𝑘) =
√︁
(𝑧𝑉𝑗 − 𝑧𝑉𝑖)

2 + (𝑦𝑉𝑗 − 𝑦𝑉𝑖)
2 + (𝑥𝑉𝑗 − 𝑥𝑉𝑖)

2 (2)

where
−→
𝑃𝑉𝑖(𝑘) = [𝑥𝑉𝑖(𝑘), 𝑦𝑉𝑖(𝑘), 𝑧𝑉𝑖(𝑘)]

𝑇 and
−→
𝑃𝑉𝑗 (𝑘) = [𝑥𝑉𝑗 (𝑘), 𝑦𝑉𝑗 (𝑘), 𝑧𝑉𝑗 (𝑘)]

𝑇 are the esti-
mated position vectors of vehicle 𝑖 and vehicle 𝑗 obtained at time-step 𝑘 from the GNSS in ECEF
coordinates, respectively.

2.2.2. Single-Differencing (SD)

Fig.1 depicts the single differencing used for the IVD. The SD method estimates the IVD by
subtracting the pseudorange measurements of two vehicles from the same satellite. This
approach can eliminate both the clock imperfect synchronization between the vehicles as well
as the atmospheric delay error. Given that the satellite 𝑆 is sufficiently far from vehicles, the
pseudorange measurements from each vehicle toward the satellite 𝑆 are considered to be parallel



(see Fig.1) [2],[6]. More precisely, given (1) for two vehicles 𝑉𝑖 and 𝑉𝑗 , when computing the
difference we have:

Δ𝜌𝑆𝑉𝑖𝑉𝑗
(𝑘) = 𝜌𝑆𝑉𝑖

(𝑘)− 𝜌𝑆𝑉𝑗
(𝑘) = Δ𝑅𝑆

𝑉𝑖𝑉𝑗
(𝑘) + Δ𝑡𝑉𝑖𝑉𝑗 (𝑘) + Δ𝜀𝑢0(𝑘) (3)

where Δ𝑅𝑆
𝑉𝑖𝑉𝑗

(𝑘) = 𝑅𝑆
𝑉𝑖
(𝑘)−𝑅𝑆

𝑉𝑗
(𝑘) defines the difference between the true distance of vehicle

𝑉𝑖 and vehicle 𝑉𝑗 from the satellite 𝑆, Δ𝑡𝑉𝑖𝑉𝑗 (𝑘) = 𝑡𝑆𝑉𝑖
(𝑘) − 𝑡𝑆𝑉𝑗

(𝑘) denotes the time delay
error, and Δ𝜀𝑢0(𝑘) = 𝜀𝑆𝑢𝑉𝑖

(𝑘) − 𝜀𝑆𝑢𝑉𝑗
(𝑘) represents all the remaining uncertainties, usually

dubbed unusual error [2],[6]. Due to the difference among the measured pseudoranges, the
unusual error appears to be increasing [2]. Since the true distances between the vehicles and
the satellites (𝑅𝑆

𝑉𝑖
(𝑘) and 𝑅𝑆

𝑉𝑗
(𝑘)), are much larger than the distance between the vehicles, we

can estimate the Δ𝑅𝑆
𝑉𝑖𝑉𝑗

(𝑘) as follows [2],[6]:

Δ𝑅𝑆
𝑉𝑖𝑉𝑗

(𝑘) = [−→𝑢 𝑆 ]𝑇
−→
𝐷𝑖𝑗(𝑘) (4)

where −→𝑢 𝑆 =
−→
𝑃𝑆(𝑘)−

−−→
𝑃𝑉𝑖

(𝑘)

‖
−→
𝑃𝑆(𝑘)−

−−→
𝑃𝑉𝑖

(𝑘)‖
is the Line-Of-Sight (LOS) unit vector from vehicle 𝑉𝑖 to satellite

𝑆,
−→
𝐷𝑖𝑗(𝑘) indicates the vehicle distance vector,

−→
𝑃𝑆(𝑘) represents the position vector of the

satellite 𝑆 and
−→
𝑃𝑉𝑖(𝑘) defines the position vector of the reference vehicle 𝑉𝑖 at time-step 𝑘 (see

Fig.1 for reference). By considering 𝑁 common visible satellites for the two vehicles and using
(3), we can build the following measurement matrix:⎡⎢⎢⎢⎢⎣

Δ𝜌1𝑉𝑖𝑉𝑗
(𝑘)

Δ𝜌2𝑉𝑖𝑉𝑗
(𝑘)

...
Δ𝜌𝑁𝑉𝑖𝑉𝑗

(𝑘)

⎤⎥⎥⎥⎥⎦ ≈

⎡⎢⎢⎢⎣
[𝑢1]𝑇 1
[𝑢2]𝑇 1

...
...

[𝑢𝑁 ]𝑇 1

⎤⎥⎥⎥⎦
[︃ −→

𝐷 𝑖𝑗(𝑘)
Δ𝑡𝑉𝑖𝑉𝑗 (𝑘)

]︃
(5)

yielding the SD estimates [2],[6]. Next, with an initial estimation of the position of the reference
vehicle 𝑉𝑖, Eq.5 can be solved iteratively, resulting in an estimate of 𝐷𝑖𝑗(𝑘), which can then be
used to determine the distance between both vehicles for each time instant 𝑘 [6]. Notice that
the vehicle distance vector

−→
𝐷 𝑖𝑗(𝑘), obtained via matrix inversion (Least Square Method) of Eq.5

consists of three distance vector components, i.e., (𝑥, 𝑦, 𝑧) and one time delay component. For
IVD, we used the 𝑙2 norm of the first three components.

2.2.3. Double-Differencing (DD)

In the SD-based algorithm of (5), user clock offsets and common biases among those measure-
ments are still present. To eliminate these uncertainties and also any other common biases,
we can utilize a new GNSS measurement and then compute the difference between the SD
estimates obtained from two distinct satellites, say 𝑆𝐴 and 𝑆𝐵 . This is referred to as the double-
differencing (DD) algorithm and is demonstrated in Fig.2. The DD-based approach assumes
that both vehicles can track satellites 𝑆𝐴 and 𝑆𝐵 at the same time. Hence, we first apply an
SD-based algorithm to each vehicle toward the satellites 𝑆𝐴 and 𝑆𝐵 , denoted by Δ𝜌𝑆𝐴

𝑉𝑖𝑉𝑗
(𝑘)



Figure 1: Single-Differencing (SD) IVD estimation algorithm

and Δ𝜌𝑆𝐵
𝑉𝑖𝑉𝑗

(𝑘), respectively, which are obtained from (3). Then, each double difference of such

quantities defined by ∇Δ𝜌𝑆𝐴𝑆𝐵
𝑉𝑖𝑉𝑗

(𝑘) is obtained as [11]:

∇Δ𝜌𝑆𝐴𝑆𝐵
𝑉𝑖𝑉𝑗

(𝑘) = Δ𝜌𝑆𝐴
𝑉𝑖𝑉𝑗

(𝑘)−Δ𝜌𝑆𝐵
𝑉𝑖𝑉𝑗

(𝑘) = Δ𝑅𝑆𝐴𝑆𝐵
𝑉𝑖𝑉𝑗

(𝑘) + Δ𝜀𝑆𝐴𝑆𝐵
𝑉𝑖𝑉𝑗

(𝑘) (6)

where Δ𝑅𝑆𝐴𝑆𝐵
𝑉𝑖𝑉𝑗

(𝑘) = Δ𝑅𝑆𝐴
𝑉𝑖𝑉𝑗

(𝑘) − Δ𝑅𝑆𝐵
𝑉𝑖𝑉𝑗

(𝑘) and Δ𝜀𝑆𝐴𝑆𝐵
𝑉𝑖𝑉𝑗

(𝑘) = Δ𝜀𝑆𝐴
𝑉𝑖𝑉𝑗

(𝑘) − Δ𝜀𝑆𝐵
𝑉𝑖𝑉𝑗

(𝑘).

We can then estimate Δ𝑅𝑆𝐴𝑆𝐵
𝑉𝑖𝑉𝑗

(𝑘) using the same trigonometric idea of SD, that is illustrated
in Fig.2 [2],[6],[11].

Δ𝑅𝑆𝐴𝑆𝐵
𝑉𝑖𝑉𝑗

(𝑘) = [−→𝑢 𝑆𝐴 −−→𝑢 𝑆𝐵 ]
−→
𝐷 𝑖𝑗(𝑘) (7)

where −→𝑢 𝑆𝐴 and −→𝑢 𝑆𝐵 are computed as in (4). Using (6) is then possible to calculate the distance
and the relative positions of two vehicles. Indeed, using the satellite 𝐴 as a reference, the
solution to the DD-based algorithm according to Fig.2 is given by the matrix form [2],[11]:⎡⎢⎢⎢⎢⎣

∇Δ𝜌𝑆1𝑆𝐴
𝑉𝑖𝑉𝑗

(𝑘)

∇Δ𝜌𝑆2𝑆𝐴
𝑉𝑖𝑉𝑗

(𝑘)
...

∇Δ𝜌𝑆𝐵𝑆𝐴
𝑉𝑖𝑉𝑗

(𝑘)

⎤⎥⎥⎥⎥⎦ ≈

⎡⎢⎢⎢⎣
[𝑢1 − 𝑢𝐴]𝑇

[𝑢2 − 𝑢𝐴]𝑇

...
[𝑢𝑁 − 𝑢𝐴]𝑇

⎤⎥⎥⎥⎦−→
𝐷 𝑖𝑗(𝑘) (8)

Notice that the IVD vector
−→
𝐷 𝑖𝑗(𝑘) is projected in the direction of the difference satellite unitary

vectors −→𝑢 𝑆𝐴𝐵 = −→𝑢 𝑆𝐴 −−→𝑢 𝑆𝐵 for each DD measurement indicated by ∇Δ𝜌𝑆𝐴𝐵
𝑉𝑖𝑉𝑗

(𝑘). Assuming
four satellites, say 𝑆𝐴, 𝑆𝐵 , 𝑆𝐶 , and 𝑆𝐷, and considering 𝑆𝐴 as the reference satellite, the
following system of linear equations derived from (8) can be obtained [11]:⎡⎢⎣∇Δ𝜌𝑆𝐴𝐵

𝑉𝑖𝑉𝑗

∇Δ𝜌𝑆𝐴𝐶
𝑉𝑖𝑉𝑗

∇Δ𝜌𝑆𝐴𝐷
𝑉𝑖𝑉𝑗

⎤⎥⎦ =

⎡⎣𝑢𝑆𝐴𝐵
𝑥 𝑢𝑆𝐴𝐵

𝑦 𝑢𝑆𝐴𝐵
𝑧

𝑢𝑆𝐴𝐶
𝑥 𝑢𝑆𝐴𝐶

𝑦 𝑢𝑆𝐴𝐶
𝑧

𝑢𝑆𝐴𝐷
𝑥 𝑢𝑆𝐴𝐷

𝑦 𝑢𝑆𝐴𝐷
𝑧

⎤⎦⎡⎣𝐷𝑥

𝐷𝑦

𝐷𝑧

⎤⎦ = 𝐺𝑢𝑢
−→
𝐷 𝑖𝑗(𝑘) (9)



where:

−→𝑢 𝑆𝑞𝑟 =

−→
𝑆𝑞(𝑘)−

−→
𝑃𝑉𝑖(𝑘)

||
−→
𝑆𝑞(𝑘)−

−→
𝑃𝑉𝑖(𝑘)||

−
−→
𝑆𝑟(𝑘)−

−→
𝑃𝑉𝑖(𝑘)

||
−→
𝑆𝑟(𝑘)−

−→
𝑃𝑉𝑖(𝑘)||

=

⎡⎢⎣𝑢
𝑆𝑞
𝑥

𝑢
𝑆𝑞
𝑦

𝑢
𝑆𝑞
𝑧

⎤⎥⎦−

⎡⎣𝑢𝑆𝑟
𝑥

𝑢𝑆𝑟
𝑦

𝑢𝑆𝑟
𝑧

⎤⎦
where

−→
𝑆𝑞 and

−→
𝑆𝑟, 𝑞, 𝑟 ∈ {𝐴,𝐵,𝐶,𝐷} are the satellite position vectors and

−→
𝑃𝑉𝑖 is position

vector of the vehicle 𝑉𝑖, all evaluated at the time-step 𝑘. Notice that 4 is the minimum number
of satellites needed to have a solution of the DD-based algorithm, i.e., 𝐺𝑢𝑢 (known as the
geometry matrix) should be non-singular. Usually, if more than 4 satellites are available, a more
precise and effective Least Squares solution is adopted.

Figure 2: Double-Differencing (DD) IVD estimation algorithm

3. Methods and Methodology

3.1. Real-World Experiment Set-up

To evaluate the performance of Lagrange interpolation in a cooperative IVD estimation problem,
we used a real-world experiment scenario in which two static outdoor autonomous vehicles
(𝑉1 and 𝑉2) with LOS views toward GNSS satellites are located in the ECEF coordinates, and
collected pseudorange measurements from different satellites. Fig.3 shows the 15-minute study
interval. As shown in this figure, we picked two available known satellite locations from the
IGS data on April 26, 2022, at 12:45 and 13:00 UTC. Then, we employed Lagrange interpolation
to compute epoch-by-epoch satellite locations for the whole study interval. To this end, we
consider 𝐿𝑠 ∈ {𝑙0, 𝑙1, 𝑙2, ..., 𝑙𝑛} to be the values of the satellite locations, i.e., 𝐿𝑠 = [𝑥𝑠, 𝑦𝑠, 𝑧𝑠],
in time-step at 𝑘 ∈ {𝑘0, 𝑘1, 𝑘2, ..., 𝑘𝑛}. The first and final known satellite positions are then
used as inputs for the Lagrange approach to calculate the approximate value of 𝑙, denoted by
𝐿(𝑘) at any time of 𝑘 as follows [17]:

𝐿(𝑘) = 𝑎0𝑙0 + 𝑎1𝑙1 + 𝑎2𝑙2 + ...+ 𝑎𝑛𝑙𝑛 =
𝑛∑︁

𝑖=0

𝑎𝑖𝑙𝑖 (10)



Figure 3: An interval study of a real environment experiment.

where:

𝑎𝑖 =
(𝑘 − 𝑘0)(𝑘 − 𝑘1)...(𝑘 − 𝑘𝑖−1)(𝑘 − 𝑘𝑖+1)...(𝑘 − 𝑘𝑛)

(𝑘𝑖 − 𝑘0)(𝑘𝑖 − 𝑘1)...(𝑘𝑖 − 𝑘𝑖−1)(𝑘𝑖 − 𝑘𝑖+1)...(𝑘𝑖 − 𝑘𝑛)
(11)

Now, by substituting 𝑘 in Eq.10 with {𝑘0, 𝑘1, 𝑘2,..., 𝑘𝑛}, we obtain:

𝐿(𝑘0) = 𝑙0, 𝐿(𝑘1) = 𝑙1, ...., 𝐿(𝑘𝑛) = 𝑙𝑛 (12)

According to [17], when dealing with Lagrange interpolation (polynomial fitting) for com-
puting satellite coordinates, we typically have an error (Runge’s phenomenon) in the beginning
and ending points of the interpolation. Hence, as proposed in [17], we considered a validity
interval for our satellite positioning by ignoring the starting and ending points, i.e., 10% on the
data set.

3.2. Statistical Measurement Criteria

To quantify the performance of the IVD estimation methods in this study, we compute three
statistical criteria, including the root mean squared error (RMSE), average distance error (Δ𝑑),
and average relative error (𝑅𝐸), which are defined as follows:

𝑅𝑀𝑆𝐸 =

⎯⎸⎸⎷ 1

𝑁

𝑁∑︁
𝑘=1

[︀
𝐷𝑖𝑗(𝑘)− �̂�𝑖𝑗(𝑘)

]︀2 (13)



Δ𝑑 =

∑︀𝑁
𝑘=1 |𝐷𝑖𝑗(𝑘)− �̂�𝑖𝑗(𝑘)|

𝑁
(14)

𝑅𝐸 =
|𝐷𝑖𝑗(𝑘)− �̂�𝑖𝑗(𝑘)|

𝐷𝑖𝑗(𝑘)
(15)

where �̂�𝑖𝑗(𝑘) indicates the average estimated IVD at time-step 𝑘 by SD- and DD-based al-
gorithms, and 𝑁 represents the number of total epochs during the interval period, which is
250. We assume here that the two autonomous vehicles equipped with the GNSS receivers
additionally have a Real-time kinematic (RTK) system that calculates the distance between itself
and the broadcasting satellite. Thus, utilizing the RTK data, the average estimated IVD by the
APD approach given by Eq.2 is assumed to be the actual ground truth (real distance) between
the two vehicles 𝑉𝑖 and 𝑉𝑗 at time-step 𝑘 and indicated by 𝐷𝑖𝑗(𝑘) which is 3.354 (m) during the
study interval.

3.3. Optimal Geometric Satellite Selection Algorithm

Employing multi-GNSS systems can enhance positioning accuracy, and using more satellites
may gives higher precision in the IVD estimation [12]. However, for the sake of simplicity in
analyzing Lagrange interpolation in satellite positioning, we are examining a group of four
satellites from the available satellites. To this end, in this study, we use the Maximum Volume
Algorithm (MVA) to pick the optimum geometric group of four satellites comprising GPS,
GLONASS, Galileo, and BeiDou to use in the SD- and DD-based IVD estimation techniques.
The MVA is a four-step heuristic technique based on tetrahedron geometry that consists of the
stages listed below [24]:

• Step.1: Select the visible satellite 𝑆1 with the largest elevation angle relative to the
position of the receiver (in our case, 𝑉𝑖).

• Step.2: Choose the visible satellite 𝑆2 having the elevation angle to 𝑆1, i.e., 𝜃𝑆1𝑆2 , close to
109.47∘. Notice that this elevation angle is obtained from a simple geometric consideration
of: cos 𝜃 = −1

3 as detailed in [24].
• Step.3: Pick the visible satellite 𝑆3 that maximizes the volume of the tetrahedron

𝑉𝐴 =
1− 𝑎3

6

[︂√︀
2(1− 𝑎2)(1 + 𝑎3)(1− 𝑎2𝑎3 − 𝑏2𝑏3) + |𝑏2𝑐3|

]︂
(16)

where

𝑎2 = cos 𝜃𝑆1𝑆2 , 𝑏2 = sin 𝜃𝑆1𝑆2 , 𝑎3 = cos 𝜃𝑆1𝑆3 ,

𝑏3 =
cos 𝜃𝑆2𝑆3 − 𝑎2𝑎3

𝑏2
, 𝑐3 = ±

√︁
1− 𝑎23 − 𝑏23.

Notice that the tetrahedron is formed by 𝑆1, 𝑆2, 𝑆3.
• Step.4: Select the satellite 𝑆4 from the remaining visible satellites so that it maximizes

the volume of the tetrahedron
𝑉𝐵 =

1

6
𝑑𝑒𝑡(𝑆) (17)

where 𝑆 is the matrix that contains the line-of-sight vectors corresponding to 𝑆1, 𝑆2, 𝑆3,
and 𝑆4.



Table 1
Best categories of satellites based on MVA and statistical criteria

System
Category

Satellite
Best

Category �̂�𝑖𝑗(𝑘) RMSE Δ𝑑 RE

One System
of Satellites

GPS G5-G16-G18-G31 2.816 1.504 1.343 0.159

GLONASS R9-R15-R18-R19 28.326 25.489 24.972 7.443
Galileo E33-E31-E24-E26 3.294 0.276 0.024 0.007
BeiDou C35-C45-C13-C24 3.947 1.811 1.484 0.174

Two Systems
of Satellites

GPS
GLONASS

G18-G5-R9-R15 11.775 8.563 21.052 2.511

GPS
Galileo

G18-G5-E24-E12 4.292 1.429 2.346 0.280

GPS
BeiDou C35-G5-C24-C45 2.927 1.176 1.066 0.128

Galileo
BeiDou

C35-E1-E24-C29 31.632 32.413 70.696 8.425

Galileo
GLONASS

R18-R15-E24-E26 4.478 2.395 2.810 0.333

BeiDou
GLONASS

C35-R15-C13-C24 3.710 1.659 0.891 0.104

Three Systems
of Satellites

GPS
Galileo
BeiDou

C35-E1-G5-G27 2.873 0.677 1.201 0.142

GPS
Galileo

GLONASS
G18-G23-E24-G5 5.505 2.220 5.379 0.640

Galileo
BeiDou

GLONASS
C35-E1-E24-C29 31.632 32.413 70.696 8.425

Four Systems
of Satellites

GPS
GLONASS

Galileo
BeiDou

C35-E24-G5-R15 3.472 1.035 0.294 0.034

As shown in Fig.4, there are a total of 26 common visible satellites for vehicles 𝑉1 and 𝑉2 for
the study interval depicted in Fig.3. Table.1 shows the results of utilizing the MVA to determine
the optimal geometric arrangement of four satellites. In Table.1, we highlighted the final best
categories of satellites based on the lowest RMSE, lowest average estimated distance, and lowest
relative error on DD/SD algorithms for one-, two-, three-, and four-satellite systems, respectively.
Notice that all the values reported in Table 1 are in meters. Finally, as stated in [12], when four
satellites are used, there is no significant difference between SD and DD methods, which is also
true in our investigation.



Figure 4: Common visible satellites for vehicles 𝑉1 and 𝑉2

Table 2
Estimated IVD (m) using DD/SD method with both fixed and interpolated satellite locations

Satellite
Configuration

Satellite
Positions

�̂�𝑖𝑗(𝑘) RMSE Δ𝑑 RE

E33-E31-E24-E26 Lagrange
Interpolation 3.294 0.262 0.024 0.007

Fixed at 12:45 3.545 0.393 0.191 0.057
Fixed at 13:00 3.304 0.276 0.049 0.014

C35-G5-C24-C45 Lagrange
Interpolation 2.927 1.418 0.066 0.128

Fixed at 12:45 3.033 1.498 0.320 0.097
Fixed at 13:00 2.911 1.427 0.442 0.133

C35-E1-G5-G27 Lagrange
Interpolation 2.873 0.505 0.273 0.032

Fixed at 12:45 3.244 0.712 1.324 0.142
Fixed at 13:00 2.824 0.677 1.201 0.157

C35-E24-G5-R15 Lagrange
Interpolation 3.472 1.023 0.275 0.031

Fixed at 12:45 3.555 1.156 0.503 0.058
Fixed at 13:00 3.464 1.035 0.294 0.034

4. Results and Discussion

To assess the Lagrange interpolation, we investigated the DD/SD IVD estimation algorithm in
three situations, including employing satellite locations derived by the Lagrange method and
fixed for 15 minutes at 12:45 and 13:00 UTC. Fig.5 (a) and Fig.5 (b) show the IVD estimate using
the DD/SD approach in those three scenarios for one- and three-system satellites, respectively.
It is apparent from these figures that DD/SD techniques employing Lagrange interpolation
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Figure 5: An illustration of the influence of satellite locations on estimated IVD in the DD/SD technique
for (a) E33-E31-E24-E26 (One system of satellites) and (b) C35-E1-G5-G27 (Three systems of satellites)

and fixed satellite locations at 13:00 UTC are comparable, thus not justifying the increased
complexity of the method.

Furthermore, it can be seen from Fig.5 (a) and Fig.5 (b) that computing the IVD at 12:45 UTC has
an influence on the IVD estimate accuracy and produces additional uncertainty. More precisely,
consider Table.2 and the definition of an absolute accuracy error, i.e., 𝐴𝐸 = |𝐷𝑖𝑗(𝑘)− �̂�𝑖𝑗(𝑘)|.
When utilizing Lagrange interpolation and fixed satellite coordinates at 12:45 UTC, the absolute
error for IVD estimate using DD in one satellite system is 6 cm and 19.1 cm, respectively.
Similarly, in a four-satellite system, the error increases from 11.8 cm to 20.1 cm.

In summary, Lagrange interpolation proves to be a suitable choice for determining satellite
locations in the context of IVD estimation algorithms based on pseudorange measurements for
fully autonomous vehicles when centimeter-level accuracy is crucial and method complexity
is not a major concern. Its ability to provide accurate results between Lagrange interpolation
and fixed satellite positions makes it a sensible option for achieving high precision in such
applications.



5. Conclusion

This study examined the performance of the Lagrange interpolation method for calculating
satellite positions to use in cooperative IVD estimation algorithms in a real-world application
using a single 15-minute dataset. The experimental results indicated a well-functioning Lagrange
interpolation. Moreover, this study demonstrated that utilizing outdated satellite locations for
IVD estimates increases IVD uncertainty from 11.8 cm up to 20.1 cm in four systems of satellites
and from 6 cm up to 19.1 cm in one system of satellites, which is crucial for fully autonomous
vehicles.

Several future works are planned. First, a comparative study will be investigated to analyze
the positions of satellites estimated using Lagrange interpolation in conjunction with broadcast
ephemeris, as well as higher-order interpolations of IGS precise orbits. Second, there will be a
focus on simulating and assessing the performance of Lagrange interpolation in moving vehicles
and for longer study periods exceeding 15 minutes. Finally, as carrier-based techniques are
increasingly utilized by mass-market receivers to enhance accuracy, an examination of their
applicability to the IVD estimation problem will also be undertaken.
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