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Abstract
This paper presents a simulation study of non-ranging-based cooperative positioning algorithms, in-
cluding absolute position differencing (APD), single-differencing (SD), single-differencing with a single
satellite (SD-SS), and double-differencing (DD), for estimating the Inter-Vehicle Distance (IVD) of two
static autonomous vehicles. To this end, a simplified scenario with two autonomous vehicles separated
by 5.2 meters and receiving 99 epochs of Global Navigation Satellite System (GNSS) observables (also
called the pseudorange) from four GPS satellites are considered. Then, a Monte-Carlo simulation is
performed to investigate the performance of the APD, SD, SD-SS, and DD algorithms with different
levels of pseudorange uncertainties, which are assumed to be uncorrelated and have zero means (i.e., no
bias). The simulation results demonstrated that there is no significant difference between SD-based and
DD-based approaches when four satellites are employed. Indeed, the systematic effects affecting the
pseudorange measurements appear to be cancelled out. This is somehow expected since every satellite
system suffers from different systematic measurement uncertainties. The results also indicate that the
DD-based technique has a lower average IVD estimation error than the SD-SS algorithm since it can
eliminate pseudorange uncertainties and any other common biases, implying that using the DD-based
algorithm with multiple satellite systems may result in higher accuracy in the IVD estimation problem.
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1. Introduction

Autonomous vehicles (AVs) represent a potentially disruptive change for different sectors ranging
from industries to transportation. For example, AVs have the potential to improve future mobility
by reducing traffic congestion, increasing vehicle safety, and boosting the energy efficiency of
transportation systems [1]. At the heart of AV, the advanced driver-assistance system (ADAS)
heavily depends on vehicle location and Inter-Vehicle Distance (IVD) measurements [2].
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It is possible to use sensor-based (on-vehicle sensors) technologies such as radio detection
and ranging (Radar), light detection and ranging (LiDAR)[3], or employing a camera system [4]
to obtain a more accurate autonomous vehicle position and the vehicle relative distance to its
surrounding objects or other vehicles. However, they are faced with constraints such as high
cost and insufficient efficiency in harsh weather conditions, as well as limited perceptual fields
[5]. To address the issues of sensor-based technologies, cooperative positioning algorithms,
either ranging-based or non-ranging-based, can be employed [6]. For IVD estimation in ranging-
based methods, signal strength variations such as radio signal strength [7], Time of Arrival [8],
round trip time [9] or Time Difference of Arrival [10] can be used. However, these approaches
are often costly since they require additional infrastructure and hardware to be implemented.
In addition, the fast vehicle speed may also introduce noise or errors in estimated distances
[6]. The non-ranging cooperative localization algorithm that directly utilizes each vehicle’s
pseudorange measurements can be used as a cost-effective alternative for vehicle localization
and IVD estimation thanks to Global Navigation Satellite System (GNSS) observables [11],[12].
Notice that a pseudorange is an estimation of the distance between the antennas of the satellite
orbiting the Earth and the GNSS receiver installed on the vehicle on the ground [11].

Several research studies have extended the concept of non-ranging cooperative positioning
algorithms for IVD estimation [6],[11–13]. Tahir et al.[12] proposed four non-ranging-based
IVD estimation methods as Absolute Position Differencing (APD), Pseudorange Differencing
(PD), Single Differencing (SD), and Double Differencing (DD). While previous studies [6],[12]
have broadly examined the IVD estimation problem using GNSS measurements, these studies
have been limited to only one satellite (i.e., Galileo) and have not taken into account the Multi-
Constellation Multi-Frequency (MCMF) system. MCMF systems are now widely available and
have the potential to achieve centimeter-level accuracy [13,14], hence boosting the overall
robustness of the system. For example, a study [13] investigating IVD estimation using multi-
GNSS in a real-world application reported an absolute IVD estimation error of 42.24 cm and
12.20 cm when two and four satellite systems are employed, respectively.

The purpose of this study is to investigate the basis of four non-ranging-based cooperative
positioning algorithms for IVD estimation, including APD, SD, single-differencing with a
single satellite (SD-SS), and DD, as well as the impact of using multi-GNSS systems on the
mentioned algorithms performance when using single and multiple satellite systems. It should
be emphasized that this simulation and modelling are preliminary steps before evaluating
the performance of the four aforementioned approaches when employing real pseudorange
measurements. We describe the mathematical modelling of the pseudorange measurements and
the formulation of non-ranging-based cooperative positioning algorithms in Section 2. Section
3 provides the Monte-Carlo simulation setup. Section 4 discusses the obtained simulated results,
and finally, conclusions and future works are provided in Section 5.

2. Mathematical Modelling and Formulation

2.1. GNSS pseudorange model

The GNSS observables (raw code pseudorange) denoted by 𝜌, are defined as the estimated
distance between the GNSS receiver installed on vehicle 𝑉 ∈ {𝑉1, 𝑉2, 𝑉3, .., 𝑉𝑛} and a satellite



𝑆 ∈ {𝑆1, 𝑆2, 𝑆3, .., 𝑆𝐴} at any time-step 𝑘, which are modeled as follows [6],[12]:

𝜌𝑆𝑉 (𝑘) = 𝑅𝑆
𝑉 (𝑘) + 𝑡𝑆𝑉 (𝑘) + 𝜀𝑆𝑐 (𝑘) + 𝜀𝑆𝑢(𝑘) (1)

where 𝑅𝑆
𝑉 (𝑘) = ‖

−→
𝑃𝑆(𝑘)−

−→
𝑃𝑉 (𝑘)‖ is the true geometric range between vehicle 𝑉 and satellite

𝑆, the symbol ‖.‖ represents the 𝑙2 norm operation,
−→
𝑃𝑆(𝑘) = [𝑥𝑆(𝑘), 𝑦𝑆(𝑘), 𝑧𝑆(𝑘)]

𝑇 is the
position vector of satellite 𝑆,

−→
𝑃𝑉 (𝑘) = [𝑥𝑉 (𝑘), 𝑦𝑉 (𝑘), 𝑧𝑉 (𝑘)]

𝑇 is the true position vector of
vehicle 𝑉 on the Earth-centered, Earth-fixed (ECEF) coordinate system, 𝑡𝑆𝑉 (𝑘) is the clock
misalignment error between the GNSS receiver installed on the vehicle 𝑉 and satellite 𝑆, 𝜀𝑆𝑐 (𝑘)
indicates the correlated (common) uncertainty induced by the ephemeris and the atmosphere,
and finally, 𝜀𝑆𝑢(𝑘) denotes the uncorrelated uncertainty, which includes the multi-path error,
the thermal noise, and other residual errors [12].

It is considered that the correlated errors for various satellites are equivalent if the localized
vehicles are close [6],[12]. Furthermore, obtaining a model for the uncorrelated errors is
extremely challenging due to the presence of multipath. If the receiver is static, however, the
first-order Auto-Regressive (AR) model is an excellent choice, which is given by [15]:

𝜀𝑆𝑢(𝑘) = 𝐶𝜀𝑆𝑢(𝑘 − 1) + 𝑛𝑢(𝑘) (2)

where 𝐶 indicates the dimensionless AR coefficient value between 0 and 1, 𝑛𝑢(𝑘) represents a
normally distributed random variable and follows the Gaussian distribution with zero mean
and variance 𝜎2

𝑢 i.e., 𝑛𝑢(𝑘) ∼ (0, 𝜎2
𝑢) [6],[12].

2.2. Cooperative Positioning Algorithms

2.2.1. Absolute Position Differencing (APD)

The GNSS receiver installed on each vehicle is able to compute an estimate of its absolute
position vector in ECEF coordinates after acquiring and tracking the GNSS signal of at least four
satellites. The absolute position differencing (APD) method calculates the estimated distance
between two vehicles at any time-step 𝑘 denoted by �̂�𝑖𝑗(𝑘) = ||

−→
𝑃𝑉𝑗 (𝑘)−

−→
𝑃𝑉𝑖(𝑘)||, i.e.

�̂�𝑖𝑗(𝑘) =
√︁
(𝑧𝑉𝑗 − 𝑧𝑉𝑖)

2 + (𝑦𝑉𝑗 − 𝑦𝑉𝑖)
2 + (𝑥𝑉𝑗 − 𝑥𝑉𝑖)

2 (3)

where
−→
𝑃𝑉𝑖(𝑘) = [𝑥𝑉𝑖(𝑘), 𝑦𝑉𝑖(𝑘), 𝑧𝑉𝑖(𝑘)]

𝑇 and
−→
𝑃𝑉𝑗 (𝑘) = [𝑥𝑉𝑗 (𝑘), 𝑦𝑉𝑗 (𝑘), 𝑧𝑉𝑗 (𝑘)]

𝑇 are the esti-
mated position vectors of vehicle 𝑖 and vehicle 𝑗 obtained at time-step 𝑘 from the GNSS in ECEF
coordinates, respectively.

2.2.2. Single-Differencing (SD-based) algorithm

Fig.1 depicts the single differencing used for the IVD. The SD method estimates the IVD by
subtracting the pseudorange measurements of two vehicles from the same satellite. This
approach can eliminate both the clock imperfect synchronization between the vehicles as well
as the atmospheric delay error. Given that the satellite 𝑆 is sufficiently far from vehicles, the
pseudorange measurements from each vehicle toward the satellite 𝑆 are considered to be parallel



Figure 1: Single-Differencing (SD-based) IVD estimation algorithm

(see Fig.1) [6],[12]. More precisely, given (1) for two vehicles 𝑉𝑖 and 𝑉𝑗 , when computing the
difference we have:

∆𝜌𝑆𝑉𝑖𝑉𝑗
(𝑘) = 𝜌𝑆𝑉𝑖

(𝑘)− 𝜌𝑆𝑉𝑗
(𝑘) = ∆𝑅𝑆

𝑉𝑖𝑉𝑗
(𝑘) + ∆𝑡𝑉𝑖𝑉𝑗 (𝑘) + ∆𝜀𝑢0(𝑘) (4)

where ∆𝑅𝑆
𝑉𝑖𝑉𝑗

(𝑘) = 𝑅𝑆
𝑉𝑖
(𝑘) − 𝑅𝑆

𝑉𝑗
(𝑘) defines the difference between the true distance of

vehicle 𝑉𝑖 and vehicle 𝑉𝑗 from the satellite 𝑆, ∆𝑡𝑉𝑖𝑉𝑗 (𝑘) = 𝑡𝑆𝑉𝑖
(𝑘) − 𝑡𝑆𝑉𝑗

(𝑘) denotes the time
delay error, and ∆𝜀𝑢0(𝑘) represents all the remaining uncertainties, usually dubbed unusual
error [6],[12]. Due to the difference among the measured pseudoranges, the unusual error
appears to be increasing [6]. Since the true distances between the vehicles and the satellites
(𝑅𝑆

𝑉𝑖
(𝑘) and 𝑅𝑆

𝑉𝑗
(𝑘)), are much larger than the distance between the vehicles, we can estimate

the ∆𝑅𝑆
𝑉𝑖𝑉𝑗

(𝑘) as follows [6],[12]:

∆𝑅𝑆
𝑉𝑖𝑉𝑗

(𝑘) = [−→𝑢 𝑆 ]𝑇
−→
𝐷𝑖𝑗(𝑘) (5)

where −→𝑢 𝑆 =
−→
𝑃𝑆(𝑘)−

−−→
𝑃𝑉𝑖

(𝑘)

‖
−→
𝑃𝑆(𝑘)−

−−→
𝑃𝑉𝑖

(𝑘)‖
is the Line-Of-Sight (LOS) unit vector from vehicle 𝑉𝑖 to satellite

𝑆,
−→
𝐷𝑖𝑗(𝑘) indicates the vehicle distance vector,

−→
𝑃𝑆(𝑘) represents the position vector of the

satellite 𝑆 and
−→
𝑃𝑉𝑖(𝑘) defines the position vector of the reference vehicle 𝑉𝑖 at time-step 𝑘 (see

Fig.1 for reference). By considering 𝑁 common visible satellites for the two vehicles and using
(4), we can build the following measurement matrix:⎡⎢⎢⎢⎢⎣

∆𝜌1𝑉𝑖𝑉𝑗
(𝑘)

∆𝜌2𝑉𝑖𝑉𝑗
(𝑘)

...
∆𝜌𝑁𝑉𝑖𝑉𝑗

(𝑘)

⎤⎥⎥⎥⎥⎦ ≈

⎡⎢⎢⎢⎣
[𝑢1]𝑇 1
[𝑢2]𝑇 1

...
...

[𝑢𝑁 ]𝑇 1

⎤⎥⎥⎥⎦
[︃ −→

𝐷 𝑖𝑗(𝑘)
∆𝑡𝑉𝑖𝑉𝑗 (𝑘)

]︃
(6)

yielding the SD estimates [6],[12]. Next, with an initial estimation of the position of the reference
vehicle 𝑉𝑖, Eq.6 can be solved iteratively, resulting in an estimate of 𝐷𝑖𝑗(𝑘), which can then
be used to determine the distance between both vehicles for each time instant 𝑘 [12]. Notice



that the vehicle distance vector
−→
𝐷 𝑖𝑗(𝑘), obtained via matrix inversion (Least Square Method) of

Eq.6 consists of three distance vector components, i.e., (𝑥, 𝑦, 𝑧) and one time delay component.
For IVD, we used the 𝑙2 norm of the first three components.

2.2.3. Double-Differencing (DD-based) algorithm

In the SD-based algorithm of (6), user clock offsets and common biases among those measure-
ments are still present. To eliminate these uncertainties and also any other common biases,
we can utilize a new GNSS measurement and then compute the difference between the SD
estimates obtained from two distinct satellites, say 𝑆𝐴 and 𝑆𝐵 . This is referred to as the double-
differencing (DD) algorithm and is demonstrated in Fig.2. The DD-based approach assumes
that both vehicles can track satellites 𝑆𝐴 and 𝑆𝐵 at the same time. Hence, we first apply an
SD-based algorithm to each vehicle toward the satellites 𝑆𝐴 and 𝑆𝐵 , denoted by ∆𝜌𝑆𝐴

𝑉𝑖𝑉𝑗
(𝑘)

and ∆𝜌𝑆𝐵
𝑉𝑖𝑉𝑗

(𝑘), respectively, which are obtained from (4). Then, each double difference of such

quantities defined by ∇∆𝜌𝑆𝐴𝑆𝐵
𝑉𝑖𝑉𝑗

(𝑘) is obtained as [11]:

∇∆𝜌𝑆𝐴𝑆𝐵
𝑉𝑖𝑉𝑗

(𝑘) = ∆𝜌𝑆𝐴
𝑉𝑖𝑉𝑗

(𝑘)−∆𝜌𝑆𝐵
𝑉𝑖𝑉𝑗

(𝑘) = ∆𝑅𝑆𝐴𝑆𝐵
𝑉𝑖𝑉𝑗

(𝑘) + ∆𝜀𝑆𝐴𝑆𝐵
𝑉𝑖𝑉𝑗

(𝑘) (7)

where ∆𝑅𝑆𝐴𝑆𝐵
𝑉𝑖𝑉𝑗

(𝑘) = ∆𝑅𝑆𝐴
𝑉𝑖𝑉𝑗

(𝑘) − ∆𝑅𝑆𝐵
𝑉𝑖𝑉𝑗

(𝑘) and ∆𝜀𝑆𝐴𝑆𝐵
𝑉𝑖𝑉𝑗

(𝑘) = ∆𝜀𝑆𝐴
𝑉𝑖𝑉𝑗

(𝑘) − ∆𝜀𝑆𝐵
𝑉𝑖𝑉𝑗

(𝑘).

We can then estimate ∆𝑅𝑆𝐴𝑆𝐵
𝑉𝑖𝑉𝑗

(𝑘) using the same trigonometric idea of SD, that is illustrated
in Fig.3 [6],[11],[12].

∆𝑅𝑆𝐴𝑆𝐵
𝑉𝑖𝑉𝑗

(𝑘) = [−→𝑢 𝑆𝐴 −−→𝑢 𝑆𝐵 ]
−→
𝐷 𝑖𝑗(𝑘) (8)

where −→𝑢 𝑆𝐴 and −→𝑢 𝑆𝐵 are computed as in (5). Using (7) is then possible to calculate the distance
and the relative positions of two vehicles. Indeed, using the satellite 𝐴 as a reference, the
solution to the DD-based algorithm according to Fig.3 is given by the matrix form [6],[11]:⎡⎢⎢⎢⎢⎣

∇∆𝜌𝑆1𝑆𝐴
𝑉𝑖𝑉𝑗

(𝑘)

∇∆𝜌𝑆2𝑆𝐴
𝑉𝑖𝑉𝑗

(𝑘)
...

∇∆𝜌𝑆𝐵𝑆𝐴
𝑉𝑖𝑉𝑗

(𝑘)

⎤⎥⎥⎥⎥⎦ ≈

⎡⎢⎢⎢⎣
[𝑢1 − 𝑢𝐴]𝑇

[𝑢2 − 𝑢𝐴]𝑇

...
[𝑢𝑁 − 𝑢𝐴]𝑇

⎤⎥⎥⎥⎦−→
𝐷 𝑖𝑗(𝑘) (9)

Notice that the IVD vector
−→
𝐷 𝑖𝑗(𝑘) is projected in the direction of the difference satellite unitary

vectors −→𝑢 𝑆𝐴𝐵 = −→𝑢 𝑆𝐴 −−→𝑢 𝑆𝐵 for each DD measurement indicated by ∇∆𝜌𝑆𝐴𝐵
𝑉𝑖𝑉𝑗

(𝑘). Assuming
four satellites, say 𝑆𝐴, 𝑆𝐵 , 𝑆𝐶 , and 𝑆𝐷, and considering 𝑆𝐴 as the reference satellite, the
following system of linear equations derived from (8) can be obtained [11]:⎡⎢⎣∇∆𝜌𝑆𝐴𝐵

𝑉𝑖𝑉𝑗

∇∆𝜌𝑆𝐴𝐶
𝑉𝑖𝑉𝑗

∇∆𝜌𝑆𝐴𝐷
𝑉𝑖𝑉𝑗

⎤⎥⎦ =

⎡⎣𝑢𝑆𝐴𝐵
𝑥 𝑢𝑆𝐴𝐵

𝑦 𝑢𝑆𝐴𝐵
𝑧

𝑢𝑆𝐴𝐶
𝑥 𝑢𝑆𝐴𝐶

𝑦 𝑢𝑆𝐴𝐶
𝑧

𝑢𝑆𝐴𝐷
𝑥 𝑢𝑆𝐴𝐷

𝑦 𝑢𝑆𝐴𝐷
𝑧

⎤⎦⎡⎣𝐷𝑥

𝐷𝑦

𝐷𝑧

⎤⎦ = 𝐺𝑢𝑢
−→
𝐷 𝑖𝑗(𝑘) (10)

where:

−→𝑢 𝑆𝑞𝑟 =

−→
𝑆𝑞(𝑘)−

−→
𝑃𝑉𝑖(𝑘)

||
−→
𝑆𝑞(𝑘)−

−→
𝑃𝑉𝑖(𝑘)||

−
−→
𝑆𝑟(𝑘)−

−→
𝑃𝑉𝑖(𝑘)

||
−→
𝑆𝑟(𝑘)−

−→
𝑃𝑉𝑖(𝑘)||

=

⎡⎢⎣𝑢
𝑆𝑞
𝑥

𝑢
𝑆𝑞
𝑦

𝑢
𝑆𝑞
𝑧

⎤⎥⎦−

⎡⎣𝑢𝑆𝑟
𝑥

𝑢𝑆𝑟
𝑦

𝑢𝑆𝑟
𝑧

⎤⎦



where
−→
𝑆𝑞 and

−→
𝑆𝑟, 𝑞, 𝑟 ∈ {𝐴,𝐵,𝐶,𝐷} are the satellite position vectors and

−→
𝑃𝑉𝑖 is position

vector of the vehicle 𝑉𝑖, all evaluated at the time-step 𝑘. Notice that 4 is the minimum number
of satellites needed to have a solution of the DD-based algorithm, i.e., 𝐺𝑢𝑢 (known as the
geometry matrix) should be non-singular. Usually, if more than 4 satellites are available, a more
precise and effective Least Squares solution is adopted.

Figure 2: Double-Differencing (DD-based) IVD estimation algorithm

Figure 3: DD-based IVD estimation algorithm and triangle concept

2.3. Geometric dilution of precision (GDOP)

All common GNSS source errors, such as multipath, thermal noise, and atmospheric error,
can impact GNSS accuracy and, as a result, estimated IVD. To distinguish among the different
satellite configurations, we used the GDOP as a figure of merit for the reachable uncertainty
[16–18]. To compute the GDOP, we first assume that all the GNSS range measurements are



(a)

(b)

Figure 4: (a) Satellite trajectories and (b) Satellite configuration for each measurement. In Fig.4 (b)
satellite paths are depicted in red and GDoP values are shown in green.

zero-mean and with equal variance 𝜎2
𝜌 , which yields [16–18]:

𝑊 = 𝜎2
𝜌(𝐺

𝑇
𝑢𝑢𝐺𝑢𝑢)

−1 =

⎡⎢⎢⎣
𝑊11 𝑊12 𝑊13 𝑊14

𝑊21 𝑊22 𝑊23 𝑊24

𝑊31 𝑊32 𝑊33 𝑊34

𝑊41 𝑊42 𝑊43 𝑊44

⎤⎥⎥⎦ (11)

Then GDOP is finally given by [16–18]:

𝐺𝐷𝑂𝑃 =
√︀
𝑊11 +𝑊22 +𝑊33 +𝑊44. (12)
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Figure 5: GDOP analysis

3. Simulation Configuration

This investigation utilizes Monte-Carlo (MC) simulation in MATLAB® with multiple runs
(10,000) with different random errors on the pseudorange measurements. To this end, we
assumed four arbitrary constellations of GNSS satellites, i.e., four GPS satellites called 𝐺1, 𝐺2,
𝐺3, and 𝐺4. As our analysis is a post-processing simulation (i.e., not real-time), we picked 99
satellite locations from International GNSS Service (IGS) data between 00:00 and 08:10 on April
26, 2022 (updated every 5 minutes)[19]. Fig.4 (a) and Fig.4 (b) depict satellite trajectories and
configurations for each measurement, with the highest GDOP, highlighted for both vehicles 𝑉1

and 𝑉2, respectively.
Additionally, we considered that two outdoor autonomous vehicles (𝑉1 and 𝑉2) with LOS

views toward GNSS satellites are located at [4.3495264, 0.8573517, 4.5707671]× 106 (m) and
[4.3495297, 0.8573477, 4.5707662]×106 (m) in the ECEF coordinates, respectively. Hence, after
applying the APD given by Eq.3, 5.2 meters is the estimated distance between two vehicles. We
assume here that the two autonomous vehicles equipped with the GNSS receivers additionally
have a Real-time kinematic (RTK) system that calculates the distance between itself and the
broadcasting satellite. Therefore, utilizing the RTK data, the estimated IVD by the APD approach
is assumed to be the actual ground truth between the two vehicles [18]. For algorithm simulation,
we assumed various levels of pseudorange uncertainty, which were supposed to be uncorrelated
and have zero means (i.e., no bias) [6],[12]. Indeed, a random Gaussian error with a standard
deviation 𝜎 ranging from zero to one by step 0.1 was added to each pseudorange measurement.
Furthermore, we compute two statistical metrics, the standard deviation and average absolute
error on IVD estimation, concerning the ground truth (5.2m). More precisely, in our study, the
average error and standard deviation error define the mean error and the standard deviation of
the absolute error on IVD measurements for each algorithm over 10,000 MC trials, respectively.



Lastly, notice that in our simulation, 𝜎 = 0 (m) is just for the algorithm’s sanity check under ideal
conditions [18]. The further point is that when simulating cooperative positioning algorithms
with multiple satellite systems, we examined Single Differencing (SD) and Double Differencing
(DD) at each epoch using four satellite pseudoranges. Moreover, in Single Differencing with
Single Satellite (SD-SS), at each epoch, all the pseudoranges from the same satellite are utilized,
i.e., at the 𝑘-th epoch, all the pseudoranges from 1 to 𝑘 are used. Hence, data are available for
𝑘 > 3 [6],[12].

4. Results and Discussion

Fig.5 depicts the GDoP analysis during 99 epochs for two vehicles, 𝑉1 and 𝑉2. From Fig.5, we
noticed a large error around the epoch 61𝑠𝑡 and assume it was a GDoP issue. Indeed, if we take
a look at the satellite paths (see Fig.4 (a) for reference), there may be moments in which the four
satellites are aligned on a plane. This is evident from the satellite configuration, in which a line
connects the satellite used for each epoch time. We may see the thick line of the configuration
returning the highest GDoP (Fig.5). This is a purely (and known) geometric problem with
(pseudo) ranging systems, so it is all aligned with the theory (as it should be)[16–18].

As mentioned in the literature review, the non-ranging cooperative localization algorithms
employing multiple satellites, such as SD and DD, may provide higher accuracy in IVD estimates.
This statement is validated in this study through simulation. To this end, consider Fig.6 (a), (b),
and (c), which illustrates the standard deviation of the absolute error on IVD estimation for
SD, DD, and SD-SS algorithms, respectively. The most interesting aspect of comparing Fig.6 (a)
and Fig.6 (b) is that there is no significant difference between SD- and DD-based techniques
when the number of employed satellites is four. In contrast, by comparing Fig.6 (a) and Fig.6 (b)
with Fig.6 (c), it can be evidently seen that the standard deviation of the absolute error on IVD
estimation in either SD or DD algorithms is roughly 100 (m), which is much smaller than the
SD-SS algorithm, which is between ≈ [100, 105] (m), demonstrating the role of using multiple
satellites to achieve lower uncertainty for IVD estimation.

Furthermore, Fig.7 (a), (b), and (c) show the average absolute error on IVD estimates for the
SD, DD, and SD-SS approaches, respectively. In the same way, the SD and DD-based methods
functioned identically in terms of an average absolute error on IVD estimation. However, when
comparing Fig.7 (a) and (b) with Fig.7 (c), the DD (SD)-based algorithm has a lower average
absolute error on IVD estimation ≈ [10−2, 100] (m) than the SD-SS algorithm ≈ [10−4, 104] (m),
thus further verifying the message of this paper: using multiple satellite systems (multi-GNSS)
benefits the uncertainty related to the inter-vehicle distance. This is also asserted in [13],[14],
which refers to the use of multi-GNSS systems to achieve better (centimeter-level) accuracy
in satellite-based positioning approaches. Finally, notice that when employing the DD-based
technique, biases from multiple GNSS satellites can be eliminated, which is a considerable
advantage for DD-based algorithm.
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Figure 6: The standard deviation of the absolute error on IVD in (a) SD-based (b) DD-based, and (c)
SD-SS algorithms
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Figure 7: The average of the absolute error on IVD in (a) SD-based (b) DD-based, and (c) SD-SS
algorithms



5. Conclusion

In this study, we used Monte-Carlo simulations to assess the performance of four non-ranging-
based cooperative positioning algorithms such as APD, SD, SD-SS, and DD for the IVD estimation
problem. The simulation results demonstrated that when four satellites were employed for IVD
estimation, there was no considerable difference between SD- and DD-based algorithms. Indeed,
it appears that the systematic effects influencing the pseudorange measurements have been
cancelled out. Hence, it can be concluded that more accurate IVD estimation will be achieved
if more than four satellites are available. Furthermore, this investigation showed that the
DD-based technique has a lower average IVD error ≈ [10−2, 100] (m), than the SD-SS approach
≈ [10−4, 104] (m), suggesting that a DD-based algorithm with multiple satellite systems can be
employed to achieve higher accuracy in IVD estimation problem.

Further research can be defined to determine the effectiveness of the proposed cooperative
localization algorithms, while the vehicles are moving at different speeds and different directions.
Moreover, investigation and experimentation into IVD estimation accuracy using a reliable
method of merging additional data, such as the use of multiple GNSS satellites is recommended.
Finally, further experiments employing the real pseudorange measurements with more than
four satellites, could provide more insight into more realistic IVD estimation problem.
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