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Abstract
We introduce a solution for a specific case of Indoor Localization which involves a directed signal, a
reflected signal from the wall and the time difference between them. This solution includes robust
localization with a given wall, finding the right wall from a group of walls, obtaining the reflecting wall
from measurements, using averaging techniques for improving measurements with errors and success-
fully grouping measurements regarding reflecting walls. It also includes performing self-calibration by
computation of wall distance and direction introducing algorithms such as All pairs, Disjoint pairs and
Overlapping pairs and clustering walls based on Inversion and Gnomonic Projection. Several of these
algorithms are then compared in order to ameliorate the effects of measurement errors.
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1. Introduction

Our solution localizes indoor objects using zero initialization, self-calibration and mapping of
the room.

1.1. Motivation

Previous works in this area of research have used triangulation and trilateration techniques in
which the source was at the same location as the receiver. This did not compute the correct
walls in the end. To address this issue, the Indoor Localization of Directed and Reflected Signals
(ILDARS) approach proposes a mathematical model separating the source from the receiver.
Using the information of the direction of the actual signal, reflection from the wall and the time
difference between these, one can then compute the wall distance using various techniques as
mentioned in subsequent sections of the paper.
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Problem Description We refer to our problem as Indoor Localization of Directed and Re-
flected Signals (ILDARS). Given 𝑛-Line of Sight order one reflection and time difference of
arrival measurements (abbreviated from hereon as LOS-T1R-TDoA), we need to compute all
sources such as 𝑆1, 𝑆2, ...., 𝑆𝑛. Assuming that the number of walls is 𝑛 and that atleast two
sources reflect from the same wall, it is possible to solve the problem for two exact inputs in
general position in 3D as well as the problem for two exact inputs in general position in 2D.
This makes a straight-forward generalization with quadratic run-time possible. The practical
problem however remains to find a stable solution for real-world inputs for random sources in
3D.

2. Related Work

Ribiero et al 2011[1] proposes a measure to compute the distance to a wall. Dokmanić et al.
2013[2] writes that a single snap and many microphones as well as reflections from these would
be sufficient to reveal the shape of a room. Plumbey 2013[3] involves a similar observation
as here but without directions. Parhizka et al 2014[4] comes up with a reverberation based
model using Single-channel indoor microphone localization. Öcal et al 2014[5] proposes source
localization and tracking in non-convex rooms. Yang et al [6], design and implement LiFS,
an indoor localization system based on off-the-shelf WiFi infrastructure and mobile phones.
Adelnasser et al 2015 [7] propose SemanticSLAM, a novel unsupervised indoor localization
scheme that uses unique points in the environment as landmarks and combines them with
dead-reckoning in a new Simultaneous Localization And Mapping (SLAM) framework to reduce
both the localization error and convergence time. Ouyang et al 2022[8] present a Survey of
Magnetic-Field-Based Indoor Localization.

3. ILDARS for 3D

The Indoor Localization Directed and Reflected Signals (ILDARS) approach includes input
signals coming in, localization based on reception which involves real-time part with same
inputs and localization using different walls and a self-calibration part. The self-calibration
aspect includes clustering and computation of walls. The output of this consists of position of
sound source. Our approach could also be extended to other types of signals, such as light, from
a mathematical point of view but for a realistic case concerning light, we would also require
mirroring walls and have to take into account scattering from walls.

Problem Description Assume two general positioned sources in 3D, one reflecting wall with
LOS-T1R-TDoA measurements. Given the directions, 𝑣1⃗ and 𝑣2⃗ of two signals, the directions
𝑤1⃗ and 𝑤2⃗ of their reflections from the same wall, the time delays of signals and reflections, Δ1

and Δ2. Compute the distances, 𝑝1 and 𝑝2 from signals to the origin.



3.1. Proposed solution

If 𝑣1⃗, 𝑣2⃗, 𝑤1⃗ and 𝑤2⃗ are not co-planar, compute intersecting direction:

�⃗� =
(𝑣1⃗ × 𝑤1⃗ )× (𝑣2⃗ × 𝑤2⃗ )

| (𝑣1⃗ × 𝑤1⃗ )× (𝑣2⃗ × 𝑤2⃗ ) |
(1)

and normal vector to the wall, �⃗� = 𝑑�⃗�. The term 𝑑 is the distance between the origin and the
wall, following the same construction as in Fig. 6.

The �⃗� for the case where �⃗� ̸= ±�⃗� is a vector of unspecified length and inside the plane given
by �⃗� and �⃗�, parallel to the reflecting plane. Since we simulate real-world data, we assume
all points and directions in general positions. The Indoor Localization Directed and Reflected
Signals (ILDARS) 3D approach has been shown in Fig. 1.

For 𝑖 = 1, 2,

𝑠�⃗� = 𝑝𝑖𝑣�⃗� (2)

𝑏�⃗� = (𝑢�⃗� × 𝑤𝑖⃗ )× �⃗� (3)

𝑝𝑖 =
Δ𝑖𝑤𝑖⃗ 𝑏�⃗�

((𝑤𝑖⃗ − 𝑣�⃗�) · �⃗�)
(4)

Figure 1: Indoor Localization Directed and Reflected Signals (ILDARS) 3D approach

3.2. Conclusions for this approach

Testing out all combinations of LOS-T1R-TDoA pair leads to conflicts including construction of
false positive walls, multiple walls for a reflection and replicated walls because of erroneous
inputs. The conclusion of ILDARS for 3D is that it does not scale and hence does not compute
the required distances, 𝑝1 and 𝑝2.



4. Design for ILDARS Prototype

For this paper, we define a wall as a simple polygon in a plane and a room as a collection of
walls. We then denote the position of the listener device as �⃗� ∈ R3. Further, we need at least
two sound sources 𝑠1⃗, 𝑠2⃗, . . . , 𝑠�⃗� ∈ R3. The sound sources then emit sound signals which the
listener receives and then computes measurements from. A measurement is a triple (�⃗�, �⃗�,Δ)

Figure 2: Receiver device at position 𝑜 receives one direct and multiple reflected signals from sound
source 𝑠1

where �⃗� is the direction of a direct signal, �⃗� is the direction of a reflected signal, which originates
from the same sound source as �⃗�, and Δ is the time difference between receiving the direct and
the reflected signal as shown in Fig. 6.
Our goal is to compute the position of the sound sources 𝑠1⃗, 𝑠2⃗, . . . , 𝑠�⃗�. Note that, because all
measurement are relative to the sender, we assume �⃗� = 0 in the setup shown here in Fig. 2.
Fig. 3 shows an overview of the design of the ILDARS system: The first step is to find clusters
of measurements, each corresponding to one wall, such that all reflected signals in one cluster
are reflected from the same wall. For this clustering step we introduce two alternatives called
Inversion and Gnomonic Projection.
After the measurements have been clustered, we can use one cluster of measurements to com-
pute the direction of the corresponding wall. Once the wall’s direction is known, we can also
compute the distance.
For computing the direction of the wall, we need to average over selected pairs of measure-
ments. We have three options for selecting such pairs, called All Pairs, Disjoint Pairs and
Overlapping Pairs.
Clustering the measurements and computing the direction and distance of the walls is what we
refer to as the Self-Calibration step. Using the computed wall positions, we can then compute
the position of the sender for a given measurement in the Localization step. The reason for
separating the process into these two steps is that the Self-Calibration step could be executed
once, and then it’s results could be used for new individual measurements in an online variant
of the localization step.



Figure 3: Design of the ILDARS system

5. Self Calibration

As our initial input, we get a large set of measurements from different walls. In the self calibration
phase, we need to separate these measurements by the walls that the respective reflections were
reflected from. In addition to that, we also compute the direction and distance of the wall.

5.1. Clustering

5.1.1. Inversion Approach

From a triple (−→𝑣 ,−→𝑤 ,Δ), we can construct circular segments which intersect with the wall
from which −→𝑤 was reflected, as illustrated in Fig. 4. Assuming the measurements to not contain



any error, circular segments from the same wall would intersect, which could be used to find
reflections from the same wall. With measurement errors, the circular segments would not
perfectly intersect, but segments from the same wall would still be close to each other, meaning
that we need to identify close segments in order to find segments belonging to the same wall.

Figure 4: Circular Segments from three different walls

One approach we use to determine the closeness of two circular segments is to apply Unit
Sphere Inversion to their respective endpoints, which gives us the endpoints of a finite line
segment.
For a given vector �⃗� = (𝑥, 𝑦, 𝑧), we compute it’s inversion 𝑣′ := (𝑥,𝑦,𝑧)

𝑥2+𝑦2+𝑧2
. This definition

is based on the Book "Introduction to Geometry" by Coxeter [9], where it’s also shown that
inverting the points of a circle that goes through the origin results in a line. Since all measure-
ments are relative to the receiver, we can assume that the receiver is at the origin, which means
all circular segments go through the origin. Combining this with the previous observation
from Coxeter, we know that applying the inversion to the circular segments gives us finite line
segments. By doing so, we can reduce the problem of finding close circular segments to finding
close line segments.
Let ℓ be the list of all finite line segments we get from our measurements, we now want to
find subsets of ℓ with close lines which will then be our measurement clusters. We iterate over
each line 𝑙 ∈ ℓ and check whether there is a cluster 𝑐 for which the distance 𝑑(𝑙, 𝑐) is below a
threshold 𝑡. If 𝑑(𝑙, 𝑐) ≤ 𝑡, we add line 𝑙 to cluster 𝑐 and then continue with the next line. Since
we don’t have any clusters in the beginning, we initialize out first cluster with the first line.
When computing the distance 𝑑(𝑙, 𝑐) for a given line 𝑙 and a cluster 𝑐, there are two cases:

𝑑(𝑙, 𝑐) =

{︃
𝑑(𝑙, 𝑙𝑐) if𝑐 = {𝑙𝑐}
𝑑(𝑙, 𝑐𝑒𝑛𝑡𝑒𝑟𝑐) if‖𝑐‖ > 1

(5)

The first case applies if 𝑐 contains only one line 𝑙𝑐. The second case applies if 𝑐 contains at least
two lines. Once we add a second line to a cluster with only one line, we also store the clusters
𝑐𝑒𝑛𝑡𝑒𝑟𝑐, which is initialized with the closest points between two lines and is adjusted if we add
more lines.
Once all lines are added to a cluster, for each cluster of lines we get one cluster of measurements
containing the respective measurements the lines were originally computed from.



In the worst case, we get one cluster per line meaning that our Inversion algorithm has 𝒪(𝑛2)
time complexity, where 𝑛 is the number of measurements.

5.1.2. Gnomonic Projection Approach

As an alternative approach to the Unit Sphere Inversion approach, we can also use Gnomonic
Projection to cluster the circular segments, discussed in section 5.1.1. This technique was
introduced by Rico Giessler [10] as part of his project.
It’s performance is significantly worse, compared to the Inversion approach, as can be seen
later in section 8. In this technique, we first project each circular segment onto the unit sphere
with radius 1, assuming the receiver to be at the origin. For a vector 𝑣, we simply compute
𝑣′ := 𝑣

‖𝑣‖ to map 𝑣 onto the unit sphere. Applying this normalization to the two end points of a
circular segment, we can then compute the latitude and longitude of the end points using

𝑙𝑎𝑡 = arcsin(𝑧) (6)

𝑙𝑜𝑛 = arctan(𝑦/𝑥) (7)

Next, we choose twelve evenly spaced hemisphere center points ℎ1, . . . , ℎ12 on the unit sphere
with a random rotation. For each of these hemisphere center points, we also compute their
latitude and longitude.
For a given hemisphere center point ℎ𝑖, supposing 𝜙ℎ𝑖

and 𝜓ℎ𝑖
be the latitude and longitude

respectively. For a given end point 𝑝 of an arc on the sphere, 𝜙𝑝 and 𝜓𝑝 are the latitude and
longitude of the point respectively. With this information, we can now compute the gnomonic
coordinates of 𝑝 on the hemisphere around ℎ𝑖 using

𝑥 =
cos(𝜙𝑝) sin(𝜓𝑝 − 𝜓ℎ𝑖

)

cos(𝑐)
(8)

𝑦 =
1

cos(𝑐)
· (cos(𝜙ℎ𝑖

) cos(𝜙𝑝)− sin(𝜙ℎ𝑖
) cos(𝜙𝑝) cos(𝜓𝑝 − 𝜓ℎ1)) (9)

with

𝑐𝑜𝑠(𝑐) = sin(𝜙ℎ𝑖
) sin(𝜙𝑝) + cos(𝜙ℎ𝑖

) cos(𝜙𝑝) cos(𝜓𝑝 − 𝜓ℎ1) (10)

Computing the gnomonic coordinates of the two endpoints of an arc gives us the two end
points on a two-dimensional plane, which we refer to as the gnomonic projection.
The intersection graph 𝐺, is then created, where each line in the gnomonic projection is repre-
sented by one node. Two nodes in the intersection graph are connected iff. the respective lines
are intersecting. We finally return the connected components of 𝐺 as our clusters.

5.2. Computation of Wall Direction and Distance

The clustering step, discussed in section 5.1, computes sets of measurements (𝑢, 𝑣,Δ) such that
all reflected signals in one set were reflected from the same wall, apart from some false positives.
We call these sets clusters.
For each cluster, we compute the direction and the distance of the respective wall, which is
necessary to then compute the sender positions in section 6. A wall’s distance and direction is



encoded by it’s wall normal vector which, geometrically can be defined as the vector from the
receivers position to the closest point on the wall.

5.2.1. Computing Wall Direction from two Measurements

For two given measurements (𝑣1⃗, 𝑤1⃗ ,Δ1), (𝑣2⃗, 𝑤2⃗ ,Δ2), for which the reflections are from the
same wall, we can compute the direction of the wall using the nested cross product :

�⃗� =
(𝑣1⃗ × 𝑤1⃗ )× (𝑣2⃗ × 𝑤2⃗ )

| (𝑣1⃗ × 𝑤1⃗ )× (𝑣2⃗ × 𝑤2⃗ ) |
(11)

Due to the non-commutativety of the cross product, we need to either select �⃗� or −�⃗� as the
wall’s direction. We do so by comparing both options �⃗� and −�⃗� to the reflected signals 𝑤1⃗ , 𝑤2⃗
and select the option which minimizes the function 𝑑 : �⃗� ↦→ |�⃗� · 𝑤1⃗ − 1|+ |�⃗� · 𝑤2⃗ − 1|. Note
that all vectors �⃗�, 𝑤1⃗ , 𝑤2⃗ have length 1.
To use the formula above to more than two measurements, we simply apply it to pairs of
measurements and then take the average over all results. This leads to the question which
pairs to use. For measurements 𝑚1, . . . ,𝑚𝑛, we compare the following selections of pairs of
measurements:

• All Pairs: All possible combinations of pairs of measurements. i.e.
(𝑚1,𝑚2), (𝑚1,𝑚3), . . . , (𝑚2,𝑚3), . . . , (𝑚𝑛−1,𝑚𝑛)

• Disjoint Pairs: (𝑚1,𝑚2), (𝑚3,𝑚4), . . . , (𝑚𝑛−1,𝑚𝑛)

• Overlapping Pairs: (𝑚1,𝑚2), (𝑚2,𝑚3), . . . , (𝑚𝑛−1,𝑚𝑛)

Note that using the All Pairs method leads to a quadratic algorithm, while using the Disjoint
Pairs or Overlapping Pairs methods gives us an algorithm with linear time complexity.

5.2.2. Computing the distance of a Wall

Once we know the direction �⃗� of a given wall, we also compute it’s distance. For a given
measurement (�⃗�, �⃗�,Δ), we can compute the position �⃗� of the respective sender using the Wall
Direction formula:

�⃗� = 𝑝�⃗� (12)

𝑝 =
Δ�⃗� · �⃗�

(�⃗� − �⃗�) · �⃗�
(13)

using �⃗� = (�⃗�× �⃗�)× �⃗� We can then compute the distance 𝑑 := ‖�⃗�‖ for

�⃗� =
�⃗�+ (𝑝+Δ)�⃗�

2
· �⃗� (14)

We compute this distance for each available measurement and then take the average over all
results as the final distance of the wall.



6. Localization

6.1. Compute Sender Position using Single Wall

Using a measurement cluster and respective wall normal vector as input, we introduce four
methods for computing the position of a sender for each measurement.

Map to Normal Vector The Map to Normal Vector method computes the position �⃗� of a
sender using Equation (12), with

𝑝 =
(2�⃗�−Δ�⃗�) · �⃗�
(�⃗� + �⃗�) · �⃗�

(15)

Reflection Geometry The Reflection Geometry method computes the position �⃗� of a
sender using Equation (12), with

𝑝 =
2(�⃗� · �⃗�)(�⃗� · �⃗�)

(�⃗� · �⃗�)(�⃗� · �⃗�) + (�⃗� · �⃗�)(�⃗� · �⃗�)
(16)

where �⃗� = (�⃗�× �⃗�)× �⃗� is a vector parallel to the wall. The diagrams for both the localization
techniques, i.e; computing sender position using a single wall using the Map to Normal and
Reflection geometry have been shown in the Fig. 5.

Figure 5: Visualization of both Map to Normal and Reflection Geometry

Wall Direction The formula for this method has already been introduced in section 5.2.2,
where it is used for computing the distance of a given sender, using just the direction �⃗� of a
wall in Equations (13) and (14).



Figure 6: Visualization of the Wall Direction algorithm

The diagram for this method has been shown here in Fig. 6.

Closest Lines The Closest Lines method computes a senders position by computing the
closest point between two lines. For the lines we choose

𝑔(𝜆) : 𝑥 = 𝜆�⃗� (17)

ℎ(𝜇) : 𝑥 = 𝑜1 + 𝜇𝑤�⃗� (18)

Where 𝑜1 := 2�⃗� is the mirrored receiver position and 𝑤�⃗� := �⃗� − 2(�⃗� · �⃗�) · �⃗�
‖�⃗�‖ is �⃗� mirrored

on the wall. In Fig. 7, line 𝑔 is drawn in green and ℎ is drawn in blue.

Figure 7: Visualization of the Closest Lines algorithm.



6.2. Wall Selection

Note that the introduced methods to compute sender positions only use one wall, while in the
clustering step we compute multiple clusters of measurements from which we can compute
multiple wall normal vectors. This leads to the question which wall to use in the localization
step. We introduce three simple methods for choosing a wall. Largest Cluster will simply use
the wall where the respective measurement cluster contains the most elements. For a different
method called Narrowest Cluster, we compute the average angular distance of the reflected
signals to the wall normal vector that is generated using the respective cluster. We then choose
the cluster which minimizes this value. For our third method, Unweighted Average, we simply
compute each sender position once for each wall and then take the average position for each
sender as the final output.

6.3. Using Multiple Walls for Localization

Another approach to sender localization we introduce is to use multiple walls in one algorithm.
This algorithm titled Closest Lines Extended is based on the Closest Lines approach. For a
given direct signal, we consider all the respective reflected signals which were assigned in the
clustering step, which means for each of the reflected signals we have one wall normal vector.
We then take a line 𝑔 like with Closest Lines and then we also use one additional line for
each pair of wall normal vector and reflected signal, using the same formulas as in the regular
Closest Lines approach. We then use an algorithm introduced in [11] to compute the closest
point between all the lines and then use that as our final sender position.

Figure 8: Visualization of the Closest Lines Extended algorithm



7. Simulation Setup

For testing the presented algorithms, we first generate simulated measurements using 20
randomly placed sender positions in a 2× 2× 2 meters cube. We set the receiver position to be
exactly at the center of the room. For simulating the data, we assume that the receiver receives
one direct signal from each sender and one direct sender from each wall for each sender. We
assume angle of incidence to be equal to the exit angle for the reflected signals.
To get a more realistic simulation of input signals, we apply three types of errors the simulated
data.
Firstly, we use a von Mises distribution to alter the angle of all direct and reflected signals �⃗� and
�⃗�. For the von Mises distribution, we use a concentration value 𝜅 = 131.312. We also use a
normal distribution with a standard deviation of 10𝑐𝑚 to simulate errors on the Δ values. If
this results in a negative Δ, we take the absolute value instead. In addition to the simulated
error on the measurements itself, we also randomly assign 5% of reflected signals to a different
direct signal.

8. Simulation Results

Using the simulated input data, as described in section 7, we now run all possible combinations
of algorithms on the same inputs. For each computed sender position, we save the euclidean
distance to the actual position of the sender that the respective direct signal was emitted from.
In the following, we will refer to this euclidean distance as the offset. We ran 500 experiments,
each with new random sound source positions, and then analysed all the offset values from all
experiments.
For readability reasons, we use abbreviations for the algorithm names in Fig. 9 to 11. I stands
for Inversion, G for Gnomonic Projection, A for All Pairs, O for Overlapping Pairs, D
for Disjoint Pairs, U for Unweighted Average, N for Narrowest Cluster, L for Largest
Reflection Cluster, C for Closest Lines, W for Wall Direction, R for Reflection Geometry,
E for Closest Lines Extended and M for Map to Normal Vector.
Note that, when the Closest Lines Extended algorithm is used, there is no need to choose one
of the computed walls, since Closest Lines Extended uses all walls. Therefore, all combinations
of algorithms using the Closest Lines Extended algorithm will implicitly use the Unweighted
Average method for wall selection. Fig. 9 represents all combinations of algorithms sorted
in increasing order of mean offset values. This is also verified using the box-whisker plot,
Fig. 13 which shows a similar trend but is specific to the first five most accurate combinations
of algorithms based on mean offset.



Figure 9: All 78 combinations of algorithms sorted according to increasing mean offset.

Fig. 10 represents all combinations of algorithms sorted in increasing order of median offset
values. This is also verified using the box-whisker plot, Fig. 12 with a similar trend but only
shows the first five most accurate combinations of algorithms based on median offset.

Figure 10: All 78 combinations of algorithms sorted according to increasing median offset.

Fig. 11 represents all combinations of algorithms sorted in increasing order of standard
deviation of the offset values.



Figure 11: All 78 combinations of algorithms sorted according to increasing values of standard deviation
of offset

8.1. Most Accurate Combination of Algorithms based on median Offset

Fig. 12 presents the offsets of the five algorithms with the lowest median offset using a box-
whisker plot. The plot shows that the combination of the Inversion clustering method and
the All Pairs method for wall direction computation yields the most accurate results, judging
by the median offset. For wall selection, the Narrowest Cluster method, combined with the
Closest Lines algorithm for localization, gives the most accurate results.

Figure 12: The 5 combinations of algorithms with lowest median offset. The orange Line shows the
median offset. The upper and lower bounds of the boxes indicate the first quartile 𝑄1 and the third
quartile 𝑄3 of the data points. The lower and upper whiskers are placed at 𝑄1 − 1.5 · 𝐼𝑄𝑅 and
𝑄3 +1.5 · 𝐼𝑄𝑅 respectively, where 𝐼𝑄𝑅 = 𝑄3 −𝑄1. Note that outliers outside of the whiskers are not
shown in this graph. The first line of the x-axis labels shows the clustering algorithm used, the second
line specifies the averaging method used for wall direction computation, the third line shows the wall
selection method and the fourth line shows the sender localization method.



8.2. Most Accurate Combination of Algorithms based on mean Offset

Fig. 13 shows the 5 most accurate combinations of algorithms judging by the average offset.
Note that the mean offset, indicated by the green line, for all combinations is significantly higher
than the orange line indicating the respective median. This can be attributed to outliers with
large offset values.
Compared to Fig. 12, the Closest Lines Extended algorithm produces lower average offset
values compared to Closest Lines algorithm using a single wall.

Figure 13: The 5 combinations of algorithms with lowest mean offset. The boxes and whiskers are the
same as in Fig. 12, the added green dashed line indicates the respective mean values. Here, the five
combinations with the least mean are shown.

9. Conclusions and Future Work

In this paper, we illustrate various techniques to compute the distance, 𝑝 between sender and
receiver depending on various configurations of sender-receiver pairs with respect to the wall
and the normal vector to it. We also cover various techniques of grouping multiple reflections
together using projection and inversion. In the final results we compare multiple algorithms
combining several of the aforementioned techniques and come to the conclusion that the
combinations involving Inversion perform significantly better than those with Gnomonic
Projection as can be verified from the mean and median bar as well as box-whisker plots
for the offsets in section 8. As a possible future work, we would like to move forward into
employing the above techniques on real-world experimental data instead of simulations as have
been currently used here since it is not clear how comparable our simulated data is especially
in regards to the simulated errors, compared to data from real-world experiments.
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