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Abstract
In this paper, we have achieved positioning performance exceeding the conventional method Weighted
Least Squares (WLS) by applying DNN-based IRLS Net to the indoor environment with multipath effects
including non-line-of-sight (NLOS) signals. Among types of positioning, indoor environments in which
signal shielding and reflection occur frequently are environments where high-precision positioning is
difficult to achieve. We propose 1) IRLS Net, a DNN model that takes its inspiration from Iteratively
Reweighted Least Squares (IRLS), and 2) a learning method that uses a simple ray tracing-free simulation
to effectively train this network. The proposed method encompasses general positioning methods such
as the Time Difference of Arrival (TDOA), and can be applied to conventional positioning technologies
such as Ultra-Wide Band (UWB). The IRLS Net has a deep neural network (DNN) structure in which the
internal state is updated iteratively to reduce the influence of observed values with large errors due to
multipath and NLOS. When training a deep network structure, data collected in various environments is
required to avoid overfitting and achieve sufficient generalization performance. However, it is not easy
to collect actual environment data that encompasses many different indoor environments. It is possible
to use ray tracing to simulate signal reflection and shielding for training data, but preparing a 3D map
for each actual environment is also difficult. Our ray tracing-free simulation focuses on the fact that
the multipath and NLOS effects are compressed into one-dimensional errors at pseudo-distances in the
TDOA information that is preprocessed until the pseudo-distance from the arrival time is calculated.
IRLS Net learned only using the data created through the proposed ray tracing-free simulation and
evaluated it using real acoustic positioning data. As a result, we confirmed that IRLS Net sufficiently
generalized the measured data and report that the result exceeded WLS, which was the baseline for
comparison.
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1. Introduction

Indoor positioning is becoming increasingly important and plays important roles in areas such
as indoor navigation, smart homes and IoT. Positioning methods include TDOA, TOA (Time of
Arrival), and TWR (Two-Way Ranging), which utilize the arrival time of radio waves or acoustic
signals, as well as methods that use RSSI (received signal strength) from Wi-Fi access points
and BT beacons. In TDOA, anchors transmit radio waves or acoustic signals to tags to measure

Proceedings of the Work-in-Progress Papers at the 13th International Conference on Indoor Positioning and Indoor
Navigation (IPIN-WiP 2023), September 25 - 28, 2023, Nuremberg, Germany
Envelope-Open Tetsuro.Sato@sony.com (T. Sato); Hiroyuki.Kamata@sony.com (H. Kamata); Takahiro.Tsujii@sony.com
(T. Tsujii); Kenei.Matsudaira@sony.com (K. Matsudaira); Kosei.Yamashita@sony.com (K. Yamashita)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:Tetsuro.Sato@sony.com
mailto:Hiroyuki.Kamata@sony.com
mailto:Takahiro.Tsujii@sony.com
mailto:Kenei.Matsudaira@sony.com
mailto:Kosei.Yamashita@sony.com
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org


the signal arrival time. When there is no time synchronization between the anchors and tags, a
clock error is added to the arrival times of each anchor. Therefore, the difference in arrival times
between each anchor is used to remove the clock error and to calculate the tag position. This
method is used in GNSS [1] and can be used to estimate positions with high accuracy without
complex communication between anchors and tags.
Multipath and NLOS (Non-Line-of-Sight) are significant problems in TDOA positioning.

Accurate measurement of the signal arrival time greatly affects positioning accuracy, making
it important to secure a direct communication path. The insides of buildings are enclosed
spaces and are environments where a variety of items are placed. Their walls, ceilings and
other obstacles directly block waves and pick up reflections, meaning that arrival times are
measured differently from actual direct paths, leading to large positioning errors. [2] Several
methods such as IRLS (Iteratively Reweighted Least Squares) that optimizes positioning by
receiving signals from a redundant number of anchors and reducing the effect of anchors that
pick up reflected paths other than direct paths [3], and methods that estimates the anchors
affected by NLOS and removes them from the anchors used for positioning [4][5][6] have been
proposed to reduce the impact of these problems. In this study, we propose a novel DNN model
for solving the problems with multipath and NLOS, and in which learning is performed by
generating training data using ray tracing-free simulation. This paper makes the following two
contributions to research on this subject.

• IRLS Net: We report that we have obtained results from this model inspired by IRLS that
are better than with WLS.

• Ray tracing-free simulation: We demonstrate that the model trained on data generated
by this method can generalize to data in the real environment.

In this study, experiments were conducted using acoustic positioning on real environment
data. The proposed DNN model and simulation method can be applied to other positioning
technologies, such as UWB.

2. Related work

It has been reported that highly precise positioning is possible using IRLS. [3] However, ro-
bustness is insufficient in environments that are greatly affected by multipaths. Here, multiple
studies that apply deep learning to positioning exist, and it has been reported that they demon-
strate high performance. Application of deep learning to GNSS positioning has been proposed.
In [7], a transformer with a structure that does not depend on the order of the observed satellites
is used. Because signals cannot always be received in a fixed order during TDOA positioning,
it is important to have an invariant structure in the order of observations. In our proposed
method, we were able to achieve similar functions with a structure that used simpler average
pooling.
Other examples of applying deep learning to fingerprinting using RSS [8][9], and examples

of applying deep learning to positioning using UWB [10][11] in indoor environments have
been reported. In [8] and [9], a Deep Belief Network with multiple fully connected layers is
used for inference, while in [12], a convolutional neural network is used. In [10] and [11], a



network structure that maintains time-series information such as LSTM is used, and accuracy
is improved by repeating inferences in the time direction. Although time-series information is
not used in our proposal, it has a structure in which iterative multiple position estimation is
performed and in which estimation accuracy is improved.
These previous studies have used real environment data as training data, or are only simu-

lations of training and evaluation. Because applying a method to diverse real environments
requires a great deal of time for collecting various real environment data, several proposals
have been made to reduce the difficulty of collecting real environment data. In [13], a proposal
is made to improve robustness by augmenting real RSS data by changing random values to
machine learning methods for indoor positioning technology. In [14], pseudo data is created
from real data using a generative adversarial network. Although it has been shown that esti-
mation accuracy can be improved by adding training data, real data is still required for data
augmentation.
In [15], in order to reduce microphone noise and TDOA error between microphones, the

study trains with simulation data using an impulse generation model and verifying it with real
data. However, this study focuses on detecting arrival times from signals. Our method proposes
a method of positioning that improves position accuracy in real environments by generating
simulation data that considers TDOA errors in multipath and NLOS environments. In [16],
learning is performed by acquiring LOS, NLOS, and multipath labels via ray tracing using 3D
maps. It requires preparing a 3D map of the target environment. In [17], CIR fingerprints using
ray tracing are used for training. To reduce the difficulty of making a fingerprint again when a
real environment has changed significantly, [18] proposes pre-training with CSI information
created in the simulation and transfer learning with a small number of data collected in the real
environment. These proposals are only effective if the real environment where the positioning
will be used is predetermined. In our method, training is performed using only simulation data
while verification is performed in the real environment. The ray tracing is not used and it is not
limited to a specific environment. Our proposed DNN model trained by our ray tracing-free
simulation operate in various environments without prior preparation.

3. Our method

Section 3 describes how we created simulation data and how the training model works.

3.1. Data generation using ray tracing-free simulation

In the basis of TDOA positioning, tags that receive signals transmitted by multiple anchors
obtain pseudo-distances by measuring the time until the signal arrives. The three-dimensional
positions of the tags are calculated from the pseudo-distances of four or more anchors. The
main causes of errors that reduce the accuracy of TDOA positioning are observation errors,
multipath errors due to reflection effects, and NLOS errors due to shielding effects. These errors
must be taken into account in the training data so that the machine learning model is to make
robust estimates even in a real environment that includes these errors. In particular, errors
derived from multipath and NLOS vary greatly according to the environment. When collecting
data that includes multipath and NLOS in a real environment, it is necessary to acquire data in



Figure 1: Overview of our ray tracing-free simulation

many different indoor environments. In addition, when using ray tracing to precisely simulate
the kind of path that was followed from an anchor to a tag, including reflection and shielding,
it is necessary to have 3D maps for each environment to be simulated and to operate under
computationally expensive.
In this proposal, simulation data is generated for indoor TDOA positioning, but ray tracing

is not used. The generated artificial data is related to the pseudo-distances obtained from
preprocessed signals and is not a simulation of the signal itself. The pseudo-distance is one-
dimensional information that represents the distance between an anchor and a tag. The effects
of multipath and NLOS are also compressed into one-dimensional information, eliminating
the need to know exactly what path the signal emitted from the anchor took to reach the tag.
For example, even if a signal emitted from an anchor reaches a tag after being reflected off the
ceiling or off a side wall, if they have similar distance errors, there is no need to distinguish the
difference between the two errors in terms of pseudo-distance. Therefore, it is not necessary to
prepare precise reflection paths by ray tracing, and it is assumed that errors due to the effects of
multipath and NLOS can be simulated with some extremely simple equations. Assuming that
these error factors occur with a certain probability, pseudo-distance errors 𝐸𝑑𝑖𝑠𝑡 are formulated
as follows.

𝐸𝑜𝑏𝑠 = Bernoulli(𝑝𝑜𝑏𝑠) × Uniform(𝑎𝑜𝑏𝑠, 𝑏𝑜𝑏𝑠) (1)

𝐸𝑒𝑛𝑣 = Bernoulli(𝑝𝑒𝑛𝑣) × Uniform(𝑎𝑒𝑛𝑣, 𝑏𝑒𝑛𝑣) (2)

𝐸𝑑𝑖𝑠𝑡 = 𝐸𝑜𝑏𝑠 + 𝐸𝑒𝑛𝑣 (3)

Here, observation errors are shown as 𝐸𝑜𝑏𝑠, while multipath errors and NLOS errors are
shown collectively as environmental errors 𝐸𝑒𝑛𝑣. 𝐸𝑜𝑏𝑠 is the probability of 𝑝𝑜𝑏𝑠, which was
randomly sampled from the minimum value 𝑎𝑜𝑏𝑠 and the maximum value 𝑏𝑜𝑏𝑠. Environmental



Figure 2: IRLS Net

errors 𝐸𝑒𝑛𝑣 are also expressed with almost the same equation, and the absolute values of the
minimum and maximum values are set to make environmental errors larger than observation
errors. Figure 1 shows an overview of simulation generation. The pseudo-distance without error
is the Euclidean distance between a three-dimensional anchor coordinate 𝑥𝑎, 𝑦𝑎, 𝑧𝑎 and a tag
coordinate 𝑥𝑡, 𝑦𝑡, 𝑧𝑡 and is expressed by Equation 4. 𝐷′ obtained by adding the pseudo-distance
error 𝐸𝑑𝑖𝑠𝑡 to this pseudo-distance is the training data generated by the simulation used in this
proposal.

𝐷 = √(𝑥𝑎 − 𝑥𝑡) + (𝑦𝑎 − 𝑦𝑡) + (𝑧𝑎 − 𝑧𝑡) (4)

𝐷′ = 𝐷 + 𝐸𝑑𝑖𝑠𝑡 (5)

In this simulation, it is possible to create 𝐷′ from any anchor and tag coordinates.

3.2. IRLS Net

We propose IRLS Net as a DNN model for estimating tag position. Figure 2 shows an overview
of IRLS Net. IRLS Net is structured from multiple connected IRLS blocks. The input is different
for the first IRLS block and for other IRLS blocks connected after the first one. In the first block,
the tag position is estimated by inputting the known anchor positions and the pseudo-distances
detected by signal reception. In the second and subsequent blocks, the residual of the pseudo-
distance and the distance from the tag position estimated in the immediately previous block is
used instead of the pseudo-distance itself to re-estimate the tag position. Multiple connected
IRLS blocks are intended to perform multiple position estimations, and the residuals are passed



Figure 3: IRLS Block

on to the subsequent blocks so that the position estimation error is small. This model structure
is inspired by IRLS, a type of gradient method.
IRLS is a method of repeatedly applying the least squares method to update the effect on

estimated values so that less weight is given to outliers and observed values with large errors.
Similarly, IRLS Net has multiple IRLS blocks to make iterative calculations so that residuals are
small. Each IRLS block has a model structure in which learning proceeds in a way that reduces
the effects of outliers and observed values with large errors. During training, the model weights
are optimized with the loss function expressed by Equation 6. When there are 𝑇 IRLS blocks,
MSE Loss is taken for each tag estimate ̂𝑦 𝑡𝑖 and the sum is used as the Loss function 𝐿. The later
IRLS block backpropagates the MSE Loss to the previous IRLS blocks.

𝐿 =
𝑇
∑
𝑡=1

1
𝑛
∑
𝑖=1

(𝑦𝑖 − ̂𝑦 𝑡𝑖)
2

(6)

During inference, the output of the last IRLS block is treated as the position estimation result.
Each IRLS block has a different weight.

Details on IRLS blocks are shown in Figure 3. TDOA blocks within IRLS blocks are structures
for model acquisition of data without synchronized time, but with variable anchor numbers
and invariable order. It is assumed that time is not synchronized between the anchor and
tag to be estimated. The arrival time differential is non-variable even if the anchor and tag
are unsynchronized. Entering the absolute value of the arrival time differential of all anchor-
tag pair combinations enables a network structure that does not require temporal syncing
between anchors and tags. The common weight FC layer within TDOA blocks takes input from
the positions of two anchors, while the relative distance differential of the pseudo-distance
obtained from the two anchors. This process is performed for all combinations in the anchor
group entered. This is entered into the shared common weight FC layer as produced for all



combinations, and average values for all combinations are sent to the following layer using
average pooling. The average pooling eliminates the need for the fixed number of anchors
used to estimate and for the fixed order of anchor input for passage of all combinations to the
shared common weight FC layer. In the actual operations, it is not guaranteed that signals can
be received from all anchors within boundaries at all times and there are often cases in which
estimation must be performed from only a limited number of anchors. After a TDOA block, the
system performs self-attention and estimates tag positions in all connective layers. Here, the
assumption is multipath signals with data containing impact from NLOS cut for self-attention.

IRLS blocks contain multiple sequential blocks, with the second and subsequent IRLS blocks
sharing the internal state of the previous IRLS block. As shown in Figure 3, the residual found
from the estimated tag positions of the previous IRLS block is entered into the second and
subsequent IRLS blocks, and they repeat self-attention on the internal state. This structure is
expected to have equivalent effects to IRLS as a model structure that estimates tag positions
using only high-certainty observed values and thus reduces the impact of error vectors like
NLOS on data.

4. Experiment

An actual environment dataset was constructed using sonic wave positioning in order to
verify the proposed method. We will present the experimental environment constructed and
the conditions for training IRLS Net based on simulation data, as well as the results of each
comparison of these results.

4.1. Real dataset collection

Extensive research has been conducted on TDOA positioning by sending and receiving sonic
wave signals [19], and it has the potential for positioning without unique devices, using only
consumer speakers and microphones. [20] Our experimental environment using sonic waves
was also constructed for this experiment given the ease of experimental preparation. Eight
consumer speakers are treated as anchors, and a microphone as a tag. Although the speakers
were temporally synchronized by an audio interface, time was not synchronized between
speakers and microphone. Spread spectrum codes emitted by the eight speakers and recorded
by a microphone. By calculating the cross-correlation between the recorded signal and the
original ones, the arrival time of them is detected. The pseudo-distance is the arrival time
multiplied by the speed of sound.

Measurements were taken in four environments, including a conference room with desks and
chairs, and three different living rooms with TVs, sofas and various other small items. Multiple
speaker arrangements were implemented, with the microphone position moved through each
arrangement in a lattice pattern to collect a total of 2950 test data.

4.2. Experimental conditions

The proposed IRLS Net learns from simulation data and performs assessments using actual
environment data obtained under the conditions above. Simulation data was generated via the



Table 1
Accuracy results

Method MAE[m] CDF68%[m] CDF80%[m] CDF95%[m]
LS 0.540 0.231 0.464 3.129
WLS 0.382 0.191 0.321 2.204

No 𝐸𝑑𝑖𝑠𝑡, IRLS Block number 1 0.633 0.503 1.004 2.238
No 𝐸𝑑𝑖𝑠𝑡, IRLS Block number 5 0.792 0.482 1.118 3.325

𝐸𝑑𝑖𝑠𝑡, No attention, IRLS Block number 1 0.379 0.410 0.540 1.024
𝐸𝑑𝑖𝑠𝑡, IRLS Block number 1 0.336 0.341 0.484 0.997
𝐸𝑑𝑖𝑠𝑡, IRLS Block number 2 0.285 0.261 0.374 0.898
𝐸𝑑𝑖𝑠𝑡, IRLS Block number 3 0.251 0.215 0.295 0.738
𝐸𝑑𝑖𝑠𝑡, IRLS Block number 4 0.245 0.190 0.286 0.826
𝐸𝑑𝑖𝑠𝑡, IRLS Block number 5 0.230 0.180 0.262 0.748
𝐸𝑑𝑖𝑠𝑡, IRLS Block number 10 0.234 0.179 0.253 0.781

𝐸𝑑𝑖𝑠𝑡, parameter x10, IRLS Block number 1 0.291 0.258 0.375 0.890
𝐸𝑜𝑏𝑠, No 𝐸𝑒𝑛𝑣, IRLS Block number 5 0.550 0.453 0.745 2.348
𝐸𝑜𝑏𝑠, No 𝐸𝑒𝑛𝑣, IRLS Block number 10 0.679 0.472 1.123 3.231
No 𝐸𝑜𝑏𝑠, 𝐸𝑒𝑛𝑣, IRLS Block number 5 0.280 0.244 0.336 0.826
No 𝐸𝑜𝑏𝑠, 𝐸𝑒𝑛𝑣, IRLS Block number 10 0.257 0.232 0.320 0.747

method detailed in Section 3. In the simulation, eight anchor coordinates were determined
randomly, and a tag was placed randomly within an area encompassed by the eight anchors.
The number of the generated data for training is 200000. The distance between each anchor
and tag is calculated at that time, and Formula 5 is given the pseudo-distance error shown in
Formula 3 and used as training data. Each parameter of Formulas 1 and 2 are set as follows in
this experiment. 𝑝𝑜𝑏𝑠 = 0.5, 𝑎𝑜𝑏𝑠 = −0.06𝑚, 𝑏𝑜𝑏𝑠 = 0.11𝑚, 𝑝𝑒𝑛𝑣 = 0.1, 𝑎𝑒𝑛𝑣 = −2.15𝑚, 𝑏𝑒𝑛𝑣 = 2.15𝑚.
The pseudo-distance error 𝐸𝑑𝑖𝑠𝑡 undergoes dynamic regeneration according to Formula 5 with
each training iteration, and training data is updated. IRLS Net was trained under multiple
conditions such as difference in the number of the IRLS blocks based on the above settings. The
training was conducted in 10 epochs under each of the conditions above, and the epoch that
yielded the higher accuracy was used as the assessment result.

4.3. Evaluation

Evaluation results are shown in Table 1. The MAE (Mean Absolute Error) and CDF (Cumulative
Distribution Function) were applied as assessment indicators due to the distance errors between
the estimated coordinates and correct coordinates. Error is shown at 68%, 80% and 95% with CDF.
This research used weighted least squares (WLS) as the baseline for IRLS Net assessment. The
impact of each anchor on tag position estimates is treated as a weight with WLS. The weights
are recalculated using the huber function based on the residuals related to the observations
for each iteration and tag position estimates are updated using the weights. The impact of
the non-selected tag position estimates is expected to decline with each iteration, and more
robust estimates are possible through comparison with least squares (LS) as shown in Table 1.
Furthermore, the CDF for WLS and IRLS Net is shown in Figure 4. The plotted IRLS Net results
have a resulting five IRLS Blocks.



Figure 4: CDF for comparison of IRLS Net and WLS

Comparisons were performed on applying and not applying pseudo-distance error 𝐸𝑑𝑖𝑠𝑡 during
training. In Table 1, results without applying a pseudo-distance error 𝐸𝑑𝑖𝑠𝑡 are shown as No 𝐸𝑑𝑖𝑠𝑡.
Under these conditions, MAE and CDF were significantly worse both when one IRLS block and
five IRLS blocks were used, showing that the distribution of training data and real data used for
assessment differs greatly. When the system learns without any pseudo-distance errors 𝐸𝑑𝑖𝑠𝑡,
This showed that it was completely incapable of handling real data.

The following is an examination of the effect of the attention layer. Excluding the attention
layer from IRLS blocks in Figure 3 reveals a simple fully connected network from TDOA Block
onward. In Table 1, the result excluding the attention layer is shown as No attention. Table
1 shows the attention layer working to reduce the impact of incorrect values, with CDF68%
worsening by 0.07 m when comparing no attention versus attention (𝐸𝑑𝑖𝑠𝑡, IRLS Block number
1), as simple fully connected layers are not able to exclude the impact of incorrect values such
as NLOS to a sufficient degree.

Next, the study confirmed the effects of multiple sequential IRLS blocks. Table 1 shows results



for sequences of 1, 2, 3, 4, 5 and 10 IRLS blocks. The results show increasing accuracy with
multiple blocks in a sequence. Furthermore, experimental data showed that performance peaked
with sequences of five blocks, with no major performance differences being seen between 10
IRLS Blocks and 5 IRLS Blocks. When comparing five IRLS Blocks and WLS, MAE improved
by 0.152 m, CDF68% by 0.011 m, CDF80% by 0.059 m, and CDF95% by 1.456 m, with IRLS Net
outperforming WLS for all indexes in Figure 4.
Table 1 shows the results for use of IRLS block layer parameters multiplied by 10 with a

single block in order to verify whether the simple increase in number of network parameters
contributes toward performance improvements with IRLS block sequences. Although the
number of parameters is equal for a single IRLS block with 10 times the parameters and a
sequence of 10 blocks, the sequence of 10 has higher performance, showing that this method is
working effectively to reduce residual errors over multiple iterations.

5. Discussion

In Section 5, we will discuss the approach to pseudo-distance error 𝐸𝑑𝑖𝑠𝑡 taken in the proposed
simulation. Table 1 shows assessment results when the assigned error is changed. Here, 𝐸𝑜𝑏𝑠 is
the observation error from Formula 3 while 𝐸𝑒𝑛𝑣 is the multipath and NLOS error components.
IRLS blocks were stacked 5 and 10 times.

Although the accuracy of the results of when only the 𝐸𝑜𝑏𝑠 error is added (𝐸𝑜𝑏𝑠, No 𝐸𝑒𝑛𝑣, IRLS
Block number 5) improved over the result of no error is added (No 𝐸𝑑𝑖𝑠𝑡, IRLS Block number
5), when compared with WLS, this underperformed by 0.168 m by MAE, 17.7% by CDF within
15 cm, 11.5% with CDF within 30 cm and 7.5% with CDF within 45 cm. Furthermore, accuracy
worsened in proportion with added IRLS blocks connected under these conditions, because the
accuracy of the result of 5 IRLS Blocks is more accurate than 10 IRLS Blocks when learned with
only the 𝐸𝑜𝑏𝑠 error. This result shows that the stacking of IRLS blocks was linked with reduced
accuracy if training was not performed with simulation data containing adequate noise.

Results for training with only 𝐸𝑒𝑛𝑣 added and for 10 IRLS blocks showed accuracy equivalent to
WLS at CDF80%. This implies that learning errors equivalent to multipath and NLOS positioning
produces resilience against samples containing incorrect values. In contrast, when comparing
results for training with only 𝐸𝑒𝑛𝑣 applied against results for 𝐸𝑑𝑖𝑠𝑡 including 𝐸𝑜𝑏𝑠, it was clear
that training with only 𝐸𝑒𝑛𝑣 applied was worse by 0.041 m for CDF68% with 10 IRLS blocks.
This indicates that the addition of 𝐸𝑜𝑏𝑠 contributes toward accuracy improvements for samples
included in CDF68%. The impact of observation errors could not be learned adequately with
just the error from 𝐸𝑒𝑛𝑣. We believe that the dominant cause of errors in the sample, which were
measurement errors with low impact from multipath and NLOS, could not be fully excluded.
When 𝐸𝑜𝑏𝑠 was added to impart observation errors to the training data, performance improved
for these cases.
Based on these discussions, the inclusion of both the observation error 𝐸𝑜𝑏𝑠 and the envi-

ronmental error 𝐸𝑒𝑛𝑣 due to multipath and NLOS effects in the training data showed that our
method was applicable to actual environment data with high accuracy. These pseudo-distance
errors can be generated extremely easily without an actual environment or 3D map, allowing for
creation of training data with pseudo-distance errors in great quantities. When deep network



structure like IRLS Net is used, it is easy to overfit with limited data. computational costs for
this ray tracing-free simulation method are lower than those for ray tracing, and it is possible
to generate training data in real time. Training with massive quantities of generated data
confirmed that this could be generalized to actual environment data not included in training
data while avoiding over-fitting.

6. Conclusion

This paper proposed IRLS Net as a new DNN structure and training the model using ray tracing-
free simulation to resolve measurement precision loss issues encountered due to multipath
and NLOS. An experimental environment was constructed using speakers and a microphone
for sonic wave positioning, and actual environmental data was collected for evaluation of the
proposed method. This ray tracing-free simulation method works by assigning multipath, NLOS
error for pseudo-distances, and does not require precise simulation of factors like indoor signal
reverberation or indoor 3D map creation. The method can easily generate large amounts of
simulation data, and the IRLS Net trained with it have shown high accuracy even with actual
data collected in a variety of environments. The IRLS Net has a model structure inspired by
IRLS, and achieves high-precision positioning with reduced impact from observed values from
multiple IRLS blocks with incorrect values. As a result, the proposed method demonstrated
superior results as compared with the baseline TDOA positioning method, WLS. The proposed
method can be adopted for general positioning technologies such as UWB.
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