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Abstract
Detecting intruding devices using Wi-Fi based indoor positioning systems running on commodity Access
Points (APs) makes demands on both compatibility with available hardware as well as not depending
on the intruding device to cooperate with the system. In this paper, we examine the feasibility of
detecting non-cooperative Wi-Fi devices with a single AP reliably and whether available hardware in
affected homes is sufficient in carrying out the task. Commonly, indoor positioning systems require
non-trivial setups with specifically tailored hard- and software, as the aspiration is to maximize precision
for which the devices to be located will actively assist, which we cannot rely upon. First, criteria are
derived that help identify indoor positioning systems suitable in our use case, specifically Channel
State Information (CSI)-based approaches. These systems are then evaluated on both compatibility
with commodity hardware and accuracy by conducting experiments on available devices. We show
that despite promising premises the commodity hardware landscape is insufficiently supporting such
a system for widespread use and that the one compatible router we found can not detect an intruding
Wi-Fi device accurately enough even in favourable conditions.
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1. Introduction

Nowadays criminals use modern equipment like smartphones in order to commit or support
crimes. This may be by calling their victims and pressurizing them to hand out valuable objects.
Other criminals use those equipment to plan crimes accurately and communicate with their
accomplices, which in turn suggests that Wi-Fi devices are sometimes being used during the
committal of a crime. Wi-Fi devices such as smartphones constantly probe their surrounding
environment for available networks, and thus, may be detected. We think there is yet untapped
potential in persecution of crime particularly for cases, where Wi-Fi devices are brought to
crime scenes.

While thefts by burglary of a dwelling suffer from constantly low crime clearance rates until
today, the idea of the german federally founded project WACHMANN is to use their modern
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equipment against culprits: A home Wi-Fi router scans its environment for Wi-Fi packets.
Intruders not bringing a Wi-Fi device cannot be detected using this approach, which seems to
be an easy workaround from a burglar’s point of view. However, police intelligence shows that
organized groups of criminals are technologically well equipped to plan and conduct their action
meticulously, which in turn would need to change their modus operandi. A less technologically
equipped criminal is a less powerful one after all. If any home that has a router installed could
therefor house a security system, burglars might be less inclined to commit to their crime in
general. Also, culprits by opportunity may not be aware of either the deployed system or their
own device they bring. [1]

Based on the Wi-Fi device’s packets’ information and a preconfigured perimeter, this approach
as depicted in Fig. 1 decides whether the smartphone (and thus, the person using it) is either
outside the perimeter (green), inside the perimeter (red) or somewhere in between (orange) which
means more monitoring is necessary. For privacy reasons, only publicly readable information
like headers are evaluated and in case of localizing a device outside the perimeter, all its
respecting information is dropped.

Figure 1: Use case: Detecting and differentiating an intruding device inside the protected perime-
ter (red) from devices outside the perimeter (green) using a single AP. Devices located
within the error margin of the positioning system (yellow) may require further moni-
toring for a reliable assessment.

In case of detecting an unauthorized device inside the perimeter, the home owner is alarmed.
Furthermore, Device Identifying Data (DID) like MAC-addresses or IMSI numbers are collected.
Collection processes and further DID are described by Vogel and Krämer [2]. Subsequently,
using the collected DID, a sensor-net-based device tracking as described by Swierzy et al. [3]
can be enforced. In order to track a fleeing culprit as long as possible and support police pursuit,
DID could be multicast to selected neighbour routers which try to recognize the culprits device.
For completeness, authorized devices may be saved by their DID and will not be considered
in the detection process any more. Though identifying and pursuing identified devices is of
research interest, it is out of scope for this paper.

As for the collection of DID and device-tracking approaches exist, the scope of this paper
comprises the initial problem of detecting unauthorized persons in a perimeter by detecting
their Wi-Fi devices. As there exist many different approaches for Wi-Fi positioning in the



literature, in this paper, there is a focus on systems using only a single Wi-Fi router as this
limitation is given in many homes. The overall research question is:

• Are state-of-the art Single-AP-CSI-Localization approaches suited for scanning a perimeter
for unauthorized intruders?

As this is an rather extensive research question, it will be answered by two more fine-grained
sub-questions:

• Can CSI be extracted out of commodity Wi-Fi devices to use for intruder detection?
• Is a localization fulfilling our accuracy constraints feasible, using the extracted informa-

tion?

First, in order to use CSI, it must be extractable from off-the-shelf hardware. Second, there
exist accuracy constraints as mislocalization inside the perimeter causes costs for unnecessary
police operations, ties police forces and causes accusation and privacy loss for mislocalized
devices. Thus, apart from demanding high accuracy from localization systems, depending on the
expected localization error, the owner will only be alarmed if a localization inside the perimeter
is without a doubt.

The rest of this paper is organized as follows: Section 2 covers related work from the field
of Wi-Fi localization. Section 4 gives an overview on existing different approaches on Wi-Fi
localization. Furthermore, based on our criteria, some are selected for testing them with our
use-case. The results for our use-case are presented in section 5. A conclusion and needs on
further research are given in section 6.

2. Related Work

We selected some Wi-Fi-based positioning systems to show that current research is interested
in their effectiveness in solving problems or assisting in tasks where a physical access may be
restricted in some way or features of Wi-Fi are uniquely helpful.

In 2019 Mutiawani et al. proposed a WLAN based Indoor Localization System for Assisting
Victim’s Evacuation Process. Their idea is to utilize indoor positioning to locate devices in
damaged building. Knowing the location of these devices can assist rescuers in planning the
rescue of victims having their smartphone with them. A coordinate and Received Signal Strength
(RSS) fingerprinting approach lets an app display the estimated locations of victims. Wi-Fi is
selected as the WLAN technology for their proposed RSS-based system, which uses a computer,
smartphone and three APs as hardware. [4] From their paper we cannot derive any practical
evaluation of the system, as the system was claimed to be in development. [? ]

In 2020 Dmitrienko et al. proposed a Wi-Fi colocation approach that has a Wi-Fi device scan
and store nearby AP information and perform proximity inference. For sparse rural scenarios
without many APs nearby, the device can run in a hotspot mode, if it is an android device. They
propose a deterministic classifier using the Pearson correlation of RSS from overlapping APs
between two devices, Jaccard similarity between the lists of APs and a proximity feature called
Das proximity. This classifier is evaluated and reaches an F-score of 0.65 at a 10ft distance



threshold, which given the recommended social distancing guidelines was a range for which
they aimed for a high accuracy. [5]

For scenarios with a larger scale in both size and observed devices, Wi-Fi is a promising
technology due to its flexibility and affordable infrastructure. To assist indoor localization, Li et
al. proposed a Wi-Fi-based fast indoor localization system for exhibition venues. They show
that their RSS to distance model can yield localization errors of less than 3m for 80% CDF
even in large scale, multi-AP scenarios for many observed devices. [6]

3. Criteria & selection of positioning systems for our use case

From our use case we deduce the following criteria that a deployed system needs to fulfill:

• the system must be able to act on signals and packets sent by the intruder’s Wi-Fi device,
which in most cases should act as a non-cooperative device as described below

• the system must be able to run on a single AP
• the system must be compatible with commodity Wi-Fi routers, where

– the router must be able to collect required input data for the positioning approaches
– the router must be able to make the required input data available to the positioning

approaches
– the router must possess sufficient processing power and memory

• the system must have sufficient localization precision

For our given use case we expect the brought Wi-Fi device to be set up in a way that it is not
readily communicating or connecting to any Wi-Fi network present in the victims home. That
said, Wi-Fi devices are following the protocols as defined by the Wi-Fi standard. In this work,
we define a Wi-Fi device as non-cooperative, if it behaves like a regular Wi-Fi device without:
a) connecting to the home Wi-Fi network of the victim and b) actively assisting the deployed
positioning system i.e. through specific client-side installed software. The device should still
act Wi-Fi standard compliant with regards to protocol definitions and thus respond to certain
packets, which is important for data collection as explained below.

A specifically modified AP may trick a non-cooperative device to try to connect to a Wi-Fi
network that it advertises i.e. using association attacks [7]. In case of a successful attack, the
system may have access to additional data and/or more measurements when compared to
the collectable data from a non-associated device. For this work we omit any discussion that
would stem i.e. from successful association attacks and their impact on our selected positioning
approaches as we did not test them. Still, there is a potential for collecting additional data from
non-cooperative devices, when employing attacks on its Wi-Fi communication.

For such a system to be easy to deploy and thus likely achieve a high acceptance within the
population, we investigate only systems that can run on a single AP. While upgrading available
hardware by attaching dedicated hardware should be possible most of the time and thus would
likely assist in achieving better localization results, this process would increase cost and setup
complexity. Instead, we aim for systems that should be deployable through simple AP firmware
upgrades. We assume homes to commonly only have a single AP deployed for their Wi-Fi needs,



particularly in dense urban environments, where homes are spacially limited and a single AP is
sufficient.

To evaluate the capabilities of these home-deployed APs, we checked commodity routers
used and sold by common service providers in Germany, such as Asus, Cisco, TP-Link and more.
For characteristics of routers that are most important for the compatibility with positioning
systems we looked at the amount and position of antennas, the Network Interface Card (NIC)
as well as their processors and memory.

AP
outside perimeter

max distance

safely inside

safely outside

inside perimeter

localization
error

Figure 2: The localization error paints a region around the edge of the perimeter, where a
localization of the device within that region does not safely determine whether the
device is inside the perimeter or not.

Fig. 2 shows the perimeter that is being monitored by the AP. Given the expected maximum
localization error of the chosen positioning system and assuming that this error is constant
regardless of where the device is located, we can define three regions: The green region is the
collection of all locations that if the device is located there lets the system safely deduce that
the device is within the perimeter, as even the worst possible localization error is not sufficient
to mislocalize an outdoor device as inside. The gray region is the collection of all locations of
outside devices that will never be falsely mislocalized inside the perimeter. The region around
the edge of the perimeter is where mislocalizations may happen with regards to the systems
precision. The size of this error region should be minimized. A mislocalization may lead to
legal consequences if false accusations are being made based on a faulty conclusion leading to a
critical importance for the applicability of the detection approach.

In our use case we are mainly interested in whether a device is inside the perimeter or not
and thus we can formulate a classification problem. Though this does omit the necessity of
deriving precise location coordinates for practical use, we are still interested in quantifying the
localization precision, which may assist in system calibration.



4. Wi-Fi Positioning Systems

We identified two main families of positioning approaches that appear promising when working
with non-cooperative devices: RSS-based and CSI-based approaches. We consider approaches
as RSS-based, if they use RSS and do not rely on CSI for their positioning. These RSS-based
approaches commonly share the quality of requiring multiple APs or additional sensors i.e.
in form of Wi-Fi enabled ESPs as shown by Abedi et al. [8]. CSI-based approaches rely on
collecting CSI and deriving metrics like the Angle of Arrival (AoA) from them to aid in their
positioning [9]. Oftentimes these approaches also measure RSS to improve their precision in
some form. These CSI based approaches commonly share the quality of requiring multiple
antennas in a certain configuration, which for some approaches a single AP can support.

There are a number of Wi-Fi-based device-free positioning systems, that may be able to detect
intruders who do not bring a Wi-Fi device and thus could act as a Wi-Fi based burglar alarm.
These systems would not be able to collect any DID from intruding devices however, which is
the main premise of assisting in the pursuit of the burglar. Therefore we focused on approaches
that utilize packets sent by intruding devices.

Given our requirement of having the system run on only a single AP and thus minimizing
necessary hardware upgrades, we chose to focus on CSI-based positioning approaches, as they
seem more likely to fit our requirements than RSS-based approaches.

How to collect CSI? CSI can be measured from packets sent in Orthogonal Frequency
Domain Multiplexing (OFDM). Wi-Fi defines different rates and modulation schemes that can
be used and some, that must be supported by all devices. Since we are restricted to packets sent
by non-cooperative devices, we are limited in the amount and variety of packets we can expect
to receive from these devices. As we cannot directly control the data rate that a brought device
is sending its packets with, we investigated ways to enforce the usage of OFDM packets by the
targeted device.

Generally, sending and modulating signals follows packet rates that are defined per packet as
by the Wi-Fi standard. For control response frames, specifically Clear-To-Send (CTS) and ACK
frames, the data rate and thus their modulation scheme is depending on the packet it is sent
in response to. We found that we can force a non-cooperative device to send OFDM frames,
when initiating communication with an OFDM stimulus packet which is to be responded to
with an OFDM frame by the stimulated device. No established connection is required to force
responses, as it is possible to just forge stimulus packets as shown by Abedi et al. [10] They
suspect that the required response time as defined by the Wi-Fi standard is not sufficient to
check the validity of said packets.

Even though CTS and ACK frames do not carry enough DID for a robust device identification,
their underlying OFDM signals still provide CSI for positioning purposes. Once correctly
detected inside the perimeter, DID can be gathered from other packets sent by the intruding
device. These methods of gathering more CSI can be implemented on any router with a simple
firmware upgrade.



4.1. Selected Positioning Systems

We will now briefly describe the CSI-based positioning approaches that we selected for im-
plementation and why we chose these. We surveyed scientific papers for Wi-Fi compatible
positioning systems, which we first filtered for single AP compatible systems first. The result-
ing roughly 80 papers were further checked for general compatibility with non-cooperative
devices and hardware requirements, which resulted in only nine papers, of which we chose six
for implementation. The positioning systems in these papers were the most promising when
considering implementation details given and proposed performance in indoor environments.

Multiple Signal Classification (MUSIC) [11] is a signal processing algorithm presented
first in 1986 by R. Schmidt and is used a foundation for many indoor positioning approaches
using antenna arrays and still holds considerable importance today. While not a positioning
approach as is, estimating AoA at multiple positions allows multi-angulation to be used as a
positioning approach. A requirement are measurements from an equidistant antenna array
with the distance 𝑑 being no more than half the wavelength of the signal, meaning 𝑑 ≤ 6 cm in
the 2.4GHz band. For these signals the AoA can be derived from a pseudo spectrum indicating
incoming energy. Additionally MUSIC allows to derive further useful signal properties like the
power delay profile, which is used by some other approaches like Cupid [12]. While MUSIC
itself can be utilized for indoor positioning purposes using multi-angulation approaches, many
researchers found ways to improve on it over the years to make it more robust and/or applicable
in more scenarios.

An Indoor AoA Estimation Algorithm (AIAEA) [13] has been presented by Wen et al.
that acknowledges problems with MUSIC as it assumes that multi-path signals are uncorrelated
and/or when limited in bandwidth. Their approach improves the quality of the pseudospectrum
generated by MUSIC, resulting in more prominent peaks and as well as less divergence to the
true AoA. Though the authors used seven equidistant antennas, we expect that their approach
will yield improvements over native MUSIC even when used with the typical three antennas
for Wi-Fi routers.

FUSIC [14] as presented by Jiokeng et al. combines Fine Timing Measurement (FTM) with
MUSIC to measure accurate distances between two Wi-Fi devices. FTM is a method, where two
Wi-Fi devices measure Round Trip Times of exchanged packets to derive the Time of Flight
(ToF), which in turn is used to calculate the distance between the devices [15]. MUSIC also
allows ToF estimation by using CSI measurements of multiple subcarriers in Wi-Fi and their
predictable phase differences for specific positions of the sending device. FTM allows only for
a meter level distance estimation in direct LoS scenarios but struggles in non-LoS scenarios.
FUSIC leverages the ToF estimations that MUSIC provides for multi-path components to correct
positioning inaccuracies in these non-LoS scenarios. FUSIC achieves a median error of 1.27𝑚
in all scenarios and an error of less than 3.41𝑚 in 90% of measurements. FTM requires support
by both the AP and the target device, we consider FUSIC only as a viable candidate once FTM
support is wide spread for both device classes.

LaSa [16] is a location-based access control scheme presented by Lu et al., leveraging crowd
sourced data combining RSS with coarse AoA information to train a One-Class Support Vector
Machine (OSVM) model. While LaSa aims to restrict the Wi-Fi access of devices to those
which are located within a protected perimeter, we expect the fundamental principle to be



conceptually compatible with our use case. For data preprocessing RSS, CSI and AoA data
are collected using an Atheros AR9580 NIC and the Atheros CSI tool [17]. The "visual angle"
approach acknowledges the fact, that precise AoA estimation is a difficult task on commodity
hardware using algorithms like ArrayTrack [18] or SpotFi [19]. Instead of relying on a precise
angular estimation, coarse AoA estimation suffices as a "visual angle" to identify a region as a
candidate. Using an OSVM model, LaSa can make an accurate decision, realizing a In-Region
Verification, with 97% accuracy identifying devices inside or outside the perimeter.The system
allows calibration via a "Cold Start" to skip a lengthy crowd sourcing process (and therefore
step 2: Enter and Exit Pattern Discovery and Recognition) and deply the system quickly in a new
environment, which is a convenient feature for installing this system in homes to protect. Also
only data measured from inside the perimeter is required to train the model, which allows its
application in dense urban environments and thus makes it particularly well suited for our use
case.

CUPID [12] was presented by Sen et al. and describes a method to distinguish the direct
signal from any reflected signal in a multi-path environment. It leverages AoA and the distance
between sender and receiver for positioning, both available from CSI. For determining the
distance the power delay profile is used, which can be derived using MUSIC. Combined with
the RSS it allows to minimize the impact of secondary, reflected signals. CUPID extends MUSIC
by an additional method to enhance its reliability in multi-path scenarios, where the movement
of the targeted device is leveraged to correct AoA estimation. Even with a low received packet
rate CUPID achieves a precision of around 7𝑚 for 80% of the measurements according to the
authors. Since CUPID is designed to work with non-cooperative devices and tested for low
packet rates, we consider it.

ACAI [20] is a system based on creating and comparing location specific fingerprints and was
presented by Chen et al. As a fingerprint based approach, it uses two phases. During the training-
phase fingerprints are created for known locations, which comprise of RSS and CSI data of all
individual antenna connections to enhance the available bandwidth. During the localization
phase so called Time-Reversal Resonating Strength values are leveraged to find the correct
position within the fingerprint database. If that value breaks a threshold, the measurement is
considered to not lie within the known locations. The approach is being evaluated with an AP
and a target device with 3 antennas each. They show a promising robustness against noise or
changing channel conditions as with people or furniture being moved. ACAI finds the correct
fingerprint location for 99.91% of the measurements the system considers within its threshold.
Since for our use case a fingerprinting database for the perimeter can be created, we consider
ACAI to be a viable candidate.

A CSI-based Fingerprinting Approach (ACbFA) [21] by Zhang et al. leverages CSI data
of an AP equipped with three antennas to create a fingerprinting database on an even grid
of cells and uses two phases, similar to ACAI. The system focuses on detecting multi-paths
from reflections on walls, furniture and other objects within the perimeter. The collected CSI
data is being adjusted to separate signals from different paths and improve the positioning
precision using machine learning. Different machine learning approaches are then used in
various configurations and their precision is being evaluated. According to the authors, the
system achieves a mean error of around 1.2m on only one AP, though only one wall is blocking
the direct path between the AP and the target device. As ACbFA was evaluated on a single AP



for indoor environments, we consider it as similarly viable as the other fingerprinting approach
ACAI for our use case.

When examining the approaches it appears that certain of these could be used alongside each
other to unlock synergies or increase confidence in the resulting classification, as most use the
same data as input. For example, AIAEA could be used for the coarse AoA estimation in LaSa.
A system combining multiple of these approaches could be considered for future work.

How to deploy these positioning systems? The deployment of any of these selected
systems on commodity routers could be done through so much as firmware upgrades, as long
as the router is compatible with with the approach as discussed in the next section. Calibration
and training for some of the approaches would be necessary to be done prior to productive
operation but can be enhanced through some methods of crowd sourcing as described by the
authors. The simplicity of deployment stems directly from the selection criteria established in
section 3 and is the main appeal on why we chose to avoid complicated setups and additional
special hardware.

5. Feasibility of selected localization systems on commodity
devices

When evaluating the compatibility of the chosen positioning approaches with commodity
hardware, we identified three aspects to be critical, as introduced in section 3: data collection,
processing power and memory. Taking a look at the required input data for the indoor posi-
tioning approaches, which must be collectable and provided by the hardware, we identify a
major problem. To our knowledge there is no commodity router available that allows collecting
and providing CSI when in its factory delivery condition. For some Wi-Fi chip sets there are
alternative firmware available which add that functionality. These chips comprise the Linux
802.11n CSI tool [9], the Atheros CSI tool [17] and Nexmon CSI [22].

The Linux 802.11n CSI tool [9] only works on the IWL5300-network chips, published in
2012, which are based only on mini-PCI-express cards. Secondly its operation mode as an AP is
running very unstable and when in monitor mode, only those packets are used, which use a
specific source and destination MAC-address. In our use case the target device will never send
such packets. Finally, since the source code of this firmware is based on internal documents
maintained by Intel and is not publicly available, these problems cannot be resolved.

The Atheros CSI tool [17] functions on various chips of the Atheros family, though chips
newer than 2018 are no longer supported. Using this firmware allows to force sounding PPDUs,
which allow the measurement of CSI at the receivers side. As the CSI measurement is only
done at the receiver’s side, the sender must send these sounding PPDUs, which implies that
the sender - in our case the intruder’s device - must also use this firmware or send sounding
PPDUs triggered through any other mechanism. Since we consider the intruder’s device to act
non-cooperative, using the Atheros method is not applicable in our use case.

Nexmon [23] is a firmware patching framework for Broadcom Wi-Fi chips. Building upon
it is Nexmon CSI [22], which allows measuring CSI on various current Broadcom chips. In
practice, these chips are only rarely used in routers, which is why Asus RT-AC68U is the only
officially compatible router we found. Since this router does not include a modem we expect



it to not be widely distributed in many german homes. Therefore it is unlikely to result in a
widespread coverage by upgrading these to fit our use case.

When considering processing power and memory, commodity routers should suffice. While
neural nets require considerable processing power for their training process, the training
process might be obsolete during operation. The training process may only be required once
for calibration during the initial setup. We expect that setup to be realistically feasible on
commodity hardware. The same is true for the OSVM used in LaSa, which also only requires
low processing power. Additionally, we expect memory to be uncritical for all components. It
must be stressed, that these are estimations based on our implementations on more capable
hardware.

5.1. Practical results

We used a measurement setup to collect CSI in two different scenarios. The first scenario
(S1) comprises measurements in two adjacent office rooms, where we labeled one room as the
perimeter and the other room as well as the connecting corridor as outside the perimeter. The
second scenario (S2) was a lab room on the ground floor, where we could get measurements
from outside the building as well as inside. We implemented the CSI collector on an Asus
RT-AC86U, with Asuswrt-Merlin as an alternative operating system and Nexmon-CSI. This
Asus router was one of the only commodity Wi-Fi routers that was compatible and we were
able to acquire. The Nexmon firmware was extended to also provide RSS measurements via a
small patch. The actual data processing for the positioning systems was implemented on other
computers to retain flexibility with software development.

Figure 3: Measurement scenarios S1 (left) and S2 (right) in rooms at different floors of the
University of Bonn. A 1m× 1m grid was used as far as furnishing allowed. Scenario
S1 features regions r1-r4 which were used as verification regions for LaSa. Green
circles denote measurement points inside the perimeter, red crosses outside.

We implemented a simple app that allowed the smartphone, a Samsung Galaxy A51, to send



Wi-Fi packets to the measurement router on demand for consistency and planning purposes.
For our measurement, we decided to use a high packet sending rate to evaluate the positioning
precision of the system in luxurious conditions. If the system showed promising results, the
next step would be to use unaltered smartphones and test the system a real environment.

Across both measurement scenarios CSI measurements were collected by positioning the
smartphone along a grid. In scenario S1 the grid comprised 82 measurement points over 11m by
9m for measurement points in both rooms and the corridor. In scenario S2 the grid comprised
85 measurement points over 13m by 10m for measurement points both inside the building and
outside. For each measurement point roughly 80 CSI measurements were collected, amounting
to 13612 CSI measurements total. The chosen grid layout allows the CSI data to be used as input
data for the fingerprinting approaches as well as input data for LaSa in scenario S1.

We implemented MUSIC, AIAEA, LaSa, CUPID, ACAI and ACbFA. Since we did not have
access to FTM compatible devices, we did not implement FUSIC.
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Figure 4: Mean error of estimated AoA for AIAEA in scenario S2.

The approaches that derive AoA (MUSIC, AIAEA, CUPID) did yield poor results compared
to the results presented in their respective papers. For AIAEA we used Leave-one-out cross
validation for varying configurations of the parameters for angular range (180∘, 360∘), learning
rate (between 0.0001 and 0.001) and topology nodes for the different layers of the neural network.
Figure 4 depicts the mean errors for estimated AoA for different learning rates and angular
ranges for measurements for scenario S2. The best performing configuration we found reaches
a mean error of around 43∘ with a learning rate of 0.0004 at an angular range of 360∘ in S2, and



around 26∘ with a learning rate of 0.0004 at an angular range of 180∘ in S1.
When using CSI collected with our Asus router with three antennas for both scenarios S1 and

S2, the estimated AoA show a mean error of 20 degrees to 40 degrees in the 180 degree spectrum
for all implementations we tested. Given these results we concluded that any multi-angulation
approach would not yield a sufficient precision for our use case.
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Figure 5: Accuracy and specificity results for LaSa OSVM on CSI collected with the Asus router
for different settings for gamma, shrinking and nu.

As LaSa uses coarse AoA estimation, mean errors of this magnitude may proof problematic
for the "visual angle" approach used by LaSa. Since the authors of LaSa did not specify, how
exactly to split the perimeter in regions for the in-region-verification to work, we split the
adjacent rooms into four regions as seen in Fig. 3: region 1: [0− 40), region 2: [40− 90), region
3: [90− 140), region 4: [140− 180] degrees. Regions r2 and r3 were differentiated by a wall
next to the AP, where we didn’t capture any measurements. Fig. 5 shows the classification
accuracy and specificity of the LaSa OSVM when trained on the captured CSI data and assisted
by in-region-verification. Though different OSVM settings for gamma, shrinking and nu allow
for slight tuning whether to optimize for correct classification inside or outside, the overall
𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) and 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁 rate are below
what we consider acceptable for our use case, with the highest accuracy not exceeding 0.73.
While we evaluated LaSa on trained data only, it is reasonable to assume that on untrained data
it would perform worse, not better.

The results for the fingerprinting approach ACAI are shown in Table 1. We split the measured



Table 1: Accuracy and mean error for ACAI for different thresholds. Only results for values
within the threshold are shown.

threshold S1 accuracy S1 mean error S2 accuracy S2 mean error
- 0.61 4.18m 0.68 4.19m

0.7 0.61 3.90m 0.74 3.03m
0.8 0.61 2.73m 0.65 2.67m
0.9 0.86 0.37m 0.78 1.42m

data for each scenario and landmark. For each landmark we randomized the measurements
and selected 80% as training data and the remainder as testing data. For both scenarios the
accuracy and the mean localization error are heavily dependent on the threshold and only for
very strict settings the results look promising. However, for thresholds of 0.9 and above the
algorithm considers many measurements to not lie within known locations for which it then
does not report a classification. For scenario S1 only 35 out of 370 testing samples reported a
classification, for scenario S2 only 169 out of 378 testing samples reported a classification. Due
to this, the resulting accuracy might be inflated.

The results for ACbFA are not finished yet as of writing.
In summary, all approaches that we implemented and were able to examine show an insuf-

ficient precision when using CSI collected by the commodity router Asus RT-AC68U. Since
we were unable to find and thus test other commodity routers due to a lacking widespread
compatibility with CSI collection, our practical results can only hold for this one device.

6. Conclusion

In this paper we analyze the feasibility of detecting non-cooperative Wi-Fi devices via a single
Wi-Fi AP. For utilizing commodity routers installed in homes for detecting and enabling pursuit
of burglars by their brought Wi-Fi devices, we defined requirements for indoor positioning
systems to be able to assist in reaching that goal. Indoor positioning systems able to run on a
single AP were investigated on whether they work with non-cooperative devices and on their
hardware requirements. Five selected CSI-based positioning systems were implemented and
both their compatibility with commodity hardware as well as their performance evaluated.
Some of the evaluation is still in need to be finished and as we only were able to evaluate on a
single compatible router, the validity of our findings can be increased using other devices.

We found current commodity routers to be ill-equipped for running these systems for the
required CSI input data cannot be provided by the routers without having very specific chip sets
installed. When evaluating our implementations of the selected systems, we measured mean
errors between 20-40 degrees for AoA and accuracy values generally not exceeding 0.75. These
results show that proposed indoor positioning systems cannot run on widespread commodity
routers yet to a positioning precision required to fulfill our use case.

We conclude that current research on indoor positioning is not transferred easily for usage
in realistic on-use-case scenarios. Hardware advances on commodity routers are expected



to alleviate that transfer as both FTM compatibility and more sensitive hardware is likely to
help. We advocate for more research transfer to realistic on-use-case scenarios and hardware to
facilitate widespread usage and encourage targeted commodity hardware development.
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