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Abstract
Indoor location and micro-location systems are complicated by the lack of available GPS signals. This gap
is being filled by Bluetooth and WiFi, but these systems have difficulty maintaining accuracy when the
user is moving. This paper presents the results of an exploration of new features of Bluetooth 5.2, namely,
Angle of Arrival and Angle of Departure using a Texas Instrument development board and Antenna
Array. The research results are: 1) a novel prediction system for indoor positioning and navigation that
performs at an accuracy of 0.23m (static), and 0.30m (moving); 2) a comparison and performance analysis
of micro-location algorithms; and 3) an architectural model by which other researchers can extend our
work on indoor positioning and navigation.
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1. Introduction

Global Positioning Systems (GPS) are an integral part of our day to day lives. GPS signals assist
us with road transportation, aviation, shipping, rail transportation, science, security, mapping
and several other applications [1]. In ideal conditions (i.e., in the outdoors in a wide-open
field), common mobile phone GPS receivers can provide an accuracy of 4.9 m (16 ft.) radius
[2] which, in most cases, is sufficiently accurate. However, there are several factors that can
cause radio interference and impact the accuracy of GPS such as buildings, bridges, trees and
other obstructions [2]. This can cause significant issues in metropolitan areas and especially
indoor environments where GPS signals can fluctuate significantly due to signal absorption,
interference, reflection and/or diffraction [3]. Although GPS technologies have enabled estimates
of a person’s location, they do not provide the accuracy required for context-aware applications
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for indoor environments. An approach that addresses the limitations of GPS’s inaccuracy is
micro-location which uses technologies such as WiFi or Bluetooth to derive highly accurate
location data [3]. Bluetooth beacons are one of the avenues being explored to enhance the
accuracy of indoor micro-location [4]. These beacons have found some production level use
cases in real world applications [4, 5]. Beacons have also been deployed in academic and research
applications such as Robotic Path finding [6]. These devices have also found their way into
commercial applications such as Macy’s, to offer shoppers discounts and the Major League
Baseball who has used beacons to navigate patrons to their seats [7]. Despite the widespread
adoption of beacons, there are still unsolved issues with using them for highly accurate micro-
location [5]. A significant problem lies in distance measurements using the Received Signal
Strength Indicator (RSSI) [8]. The signal coming from a beacon is unstable especially in indoor
environments with multiple obstacles, people and reflective surfaces [3]. As such, RSSI based
location services require algorithms to improve the accuracy and reliability of the signal. Some
studies have used smoothing algorithms (e.g., Particle Filter, Kalman Filter, etc.) to increase the
accuracy of the RSSI which, in turn, has increased the accuracy of prediction of the location of
a person or asset [3]. At this time, the reported accuracy of some typical indoor micro-location
applications using beacons is 3.1m [4], 2.85m [9], 2.5m [3] and 2.21m [10]. However, in all
of these studies, the user and assets are stationary. The outstanding challenge in this area
is to design a micro-location system that can provide good accuracy in indoor environments
while the user is in motion. Bluetooth 5.1 introduces a direction-finding feature in the core
specification by using an antenna array system [11]. By calculating the Angle of Arrival (AoA)
and Angle of Departure (AoD), it offers the potential for high-degree accuracy for proximity and
positioning systems [11]. In this research we used Texas Instrument’s LAUNCHXL-CC26X2R1
development board and BOOSTXL-AOA Antenna Array for application in the indoor location
and asset tracking spaces. We created an indoor navigation system that improves the beacon’s
RSSI signals and uses various algorithms to provide high accuracy location predictions in indoor
environments. The main contributions of this work are:

1. A prediction system for indoor positioning and navigation that uses AoA and AoD and
performs at an accuracy of 0.23m (when the asset is static) and 0.30m (when the asset is
in motion),

2. A generalized indoor micro-location system that can be easily and rapidly deployed to
new environments (within hours),

3. A comparison and performance analysis of micro-location algorithms, and
4. An architectural model by which other researcher can extend our work on indoor posi-

tioning and navigation.

This paper is structured as follows: section 2 provides a literature review of related work in
this field, section 3 presents our methodology on the design, development and evaluation of
our micro-location system, section 4 presents the findings, section 5 provides a discussion, and
section 6 provides a conclusion and suggestions for future work.



2. Background

Indoor positioning systems have gained considerable attention in recent times. The application
of indoor positioning can be adapted to indoor navigation and tracking of movement with
sufficient amount of well placed Bluetooth Low Energy (BLE) beacons. A suitable dynamic
positioning system to meet the desired goal of sub-2m accuracy in indoor environments would
need to be able identify location of static BLE beacons and the dynamic location of the user
(or asset) with respect to the beacons. There are numerous applications where this degree of
accuracy is needed. For example, hospitals need to track the location of wheelchairs, patients
and many pieces of medical equipment; warehouses need to track the movement of products
and supplies; large educational institutes can benefit from students/teachers finding classes
easily; geo-fencing around construction sites so workers do not go to certain areas without
proper protection [12, 7, 13, 14]. There is a need across these sectors for a solution that provides
a level of accuracy that is much higher than current solutions provide [4, 5]. Various studies
have been conducted using technologies such as Wireless Local Area Network (WLAN) [12],
BLE [15, 16], Radio Frequency Identification (RFID) [17], Ultrasonic waves, and ZigBee [18].
However, WLAN [19] and BLE [20] are the most popular due to the ease of deployment, cost,
availability of technology on various devices. This section presents a comparison and analysis
of the state-of-the-art in micro-location using the following techniques: Wi-Fi Based Indoor
location, RFID Based Indoor location, and BLE beacons.

2.1. Wi-Fi based indoor location

Wi-Fi solutions use existing wireless networks and infrastructure within a facility to determine
the location of an asset or person. Since most businesses already have this type of infrastructure,
it is the easiest and most cost effective approach to deploy [21]. However, there are several issues
with using Wi-Fi based systems such as the distance between existing wireless access points
may be too large, the inability to move access points easily to improve location accuracy and
the cost of enterprise level wireless access points [4, 8]. A recent study [22] showed an accuracy
of 1.42m in a 8𝑚 x 8𝑚 x 3𝑚 room with 4 Access Points and 9 testing locations. However, the
amount of data collection required was around 10,000 data points [22]. Unless the Wi-Fi access
points are already deployed: the start up cost of Wi-Fi access points as location tracking system
is considerably more than Bluetooth beacons (3-4 times more). For instance, the Gimbal beacons
are $15-$20 USD [13].

2.2. RFID based indoor location

RFID solutions have two separate strategies for solving the problem of micro-location: active
RFID and passive RFID [12]. Active RFID is an electronic device that either broadcasts or reads
RFID signals, for example RFID reader/broadcast chips in modern smartphones [9, 23]. Passive
RFIDs are commonly inert chips that use the build-up of electrical signal from an active RFID
reader. Once an acceptable charge is established, the passive RFID emits a short broadcast. RFID
stickers and swipe cards are a common example of this type of RFID technology [17]. Due to its
restricted broadcast distance [24, 17], RFID is a poor choice of technology for micro-location
research.



2.3. Bluetooth Low Energy beacons

BLE became part of the Bluetooth standard in 2010 with Bluetooth Core Specification 5.0 active
since 2016 [25]. BLE enables a device to use Bluetooth networking at lower energy levels in an
effort to reduce battery consumption [11]. A BLE beacon is a small device that emits a Bluetooth
Low Energy signal. This differs from traditional Bluetooth in that the signal and device are
essentially read only. There is no connection to these beacons as their purpose is exclusively to
broadcast information [25]. The beacon sends out a packet, which is unique to each manufacturer.
It contains specific information for the receiving device as shown in Fig. 1. Beacons can be

Figure 1: iBeacons advertisement frame (31 bytes)

incorporated into 1micro-location systems using the beacon’s configuration information and
the RSSI. The RSSI is useful in approximating the distance from the transmitting device. For
example, in the iBeacon protocol, this framework provides some interpretive measurements
of distance using RSSI, and using three zones (i.e., Immediate, Near, and Far) [23]. Intended to
provide an approximate guide for proximity, this approach is far from an accurate measurement
and thus unsuitable for micro-location [23, 26]. The concept of indoor navigation presents
some unique concepts and challenges. As the user is on the move and location is dynamically
changing, it is difficult to accurately calculate the user’s position. An approach to overcoming
these challenges is to use algorithms that can quickly identify nearby beacons and use various
formulas to determine the location. A recent study [27] explored various approaches to indoor
navigation using Wi-FI and BLE using triliteration and a path-loss model in an office setting.
The accuracy reported for BLE was around 6m [27].

2.4. BLE Beacon manufacturers: Assessment and evaluation

At the onset of this research, we recognized that there are only a few hardware companies that
build iBeacon compliant beacons. Our aim was to select the most appropriate product for our
purposes. Using the following criteria: 1) accuracy, 2) availability, 3) price, 4) well-designed and
supported Software Development Kit (SDK) 5) secure use and communication, 6) ease of use
and configuration, 7) data analytics, and 8) AoA and AoD. We reviewed the following beacon

1Micro-location is the process of pinpointing a person’s placement to within a few inches or feet using various
technologies. While GPS can only determine geo-location while outdoors, micro-location technology can determine
location more precisely, both indoors and out.



products: Onyx Beacons [28], Bleu Station Beacon Series 100 [29], Estimote [30], Verve [31],
Gimbal [13], Kontakt.io [32], and Texas Instrument’s LAUNCHXL-CC26X2R1 development
board. The results are presented in Table 1. Regarding micro-location and the accuracy of

Table 1
Evaluation of various beacon products

Criteria Onyx Bleu Estimote Verve Gimbal Kontakt.io TI Dev Board
Accuracy ✓ ✓ ✓✓ ✓ ✓✓✓ ✓✓✓ ✓✓✓✓
Availability ✓ ✓ ✓ ✓ ✓ ✓ ✓
Price ✓ ✓ ✓✓ ✓ ✓✓ ✓ ✓✓
Well designed /
supported SDK

✗ ✗ ✓✓✓ ✓ ✓✓ ✓✓ ✓

Secure use /
communication

✓ ✓ ✓✓ ✓ ✓✓✓ ✓ ✓

Ease of use /
configurable

✓✓ ✓ ✓✓ ✓✓ ✓ ✓ ✓

Data Analytics ✓ ✗ ✗ ✓ ✓✓✓ ✓✓ ✓✓
AoA and AoD ✗ ✗ ✗ ✗ ✗ ✗ ✓✓✓✓

✓: acceptable,✓✓: good,✓✓✓: very good,✓✓✓✓: excellent, ✗: poor

beacons, equation 1 shows the relationship between RSSI and distance [33]. We used this
equation to evaluate the accuracy of different beacon products when compared to ground truth
(exact distance measurement from smartphone to beacon), where 𝑛 represents a path-loss
exponent that varies in value depending on the environment, 𝑑 is the distance between the user
and the beacon, 𝑑0 is the reference distance which is 1 meter in our case, and 𝐶 is the average
RSSI value at 𝑑0.

𝑅𝑆𝑆𝐼 = −10𝑛 log10

(︁ 𝑑

𝑑0

)︁
+ 𝐶 (1)

Bluetooth 5.1 introduced two new features called Angle of Arrival (AoA) and Angle of Departure
(AoD) that allow for highly accurate positioning of Bluetooth devices [25]. AoA and AoD angles
can be calculated from signal transmissions that land onto the receiving arrays (AoA), and for
AoD, the departure angle emanating from the transmitter device. Bluetooth specification 5.2
and 5.3 provide no additional improvement with respect to AoA and AoD [25]. AoA allows a
receiving device to determine the direction from which a signal is coming, while AoD allows
a transmitting device to determine the direction to which a signal should be sent. This is
achieved by using antenna arrays and measuring the phase difference between signals received
by different antennas. By using AoA and AoD, Bluetooth devices can determine their precise
location in three-dimensional space, enabling a wide range of applications such as indoor
navigation, asset tracking, and proximity-based services [25]. The accuracy of this technology
depends on the number of antennas used and the signal processing algorithms employed, but it
has the potential to be substantially more accurate than other positioning technologies [25].

3. Methodology

The primary goal of this project was to create an indoor navigation system that predicts the
user’s location as accurately as possible if the user is standing or while the user is in motion.



Figure 2: LAUNCHXL-CC26X2R1: Development board (slave device - Transmitter)

The secondary goal was to create a rapid deployment strategy that could be used in a variety
of environments and scenarios without the need to have training data (i.e., as is the case of
fingerprinting solutions). Our aim was to create a system that uses BLE beacons that consistently
and accurately pinpoints the user’s location in the sub 2m range while the user is moving. To
our knowledge, there are no such systems that use BLE beacons that report this degree of
accuracy. This section presents the methodology by which we created and evaluated our indoor
navigation system: 3.1.Experiment setup: equipment and environment configuration; 3.2. Data
collection strategy; 3.3. Static test; and 3.4. Moving test.

3.1. Experiment setup: Equipment & Environment configuration

We used hardware development kits designed by Texas Instruments to test AoA and AoD, and
develop our system. Regarding the microcontroller, we used the LAUNCHXL-CC26X2R1 board.
This microcontroller features an ARM Cortex-M4F processor, which runs at a speed of 48MHz,
along with a wide range of peripherals such as a 128x128 LCD display, two user buttons, and an
RGB LED. It also includes an integrated 2.4GHz radio, which supports Bluetooth Low Energy,
Zigbee, and Thread protocols. Fig. 2 presents the LAUNCHXL-CC26X2R1 development board.
For the antenna, we used BOOSTXL-AOA (Fig. 3). It is a direction finding antenna array board
that allows users to determine the AoA of RF signals in the 2.4GHz band. The board features four
antennas spaced at a known distance, which are used to determine the direction of incoming
signals. In our experiments, we designated the BLE transmitter as a slave device and the antenna
array as a passive device. For both slave and passive device, the TI LAUNCHXL development
board was used with the exception of passive devices having the BOOSTXL board attached.
The setup is presented in Fig. 4.

3.1.1. Angle Testing

Initially, we collected data on angle testing to figure out the best way to utilize the BOOSTXL-
AOA antenna array. The board has two antenna arrays and when using it in single antenna
array it provides a -45°to +45°angle. When using two antenna arrays at the same time the angle
of arrival calculation goes from 0°to 100°on one side and 0°to -100°on the other side. This can be



Figure 3: Antenna array setup on the BOOSTXL-AOA board Passive device - Receiver

Figure 4: BLE passive and slave devices

seen on the Fig. 3
The slave device was set at 0°and 45°angles for various distances and error in angle was

measured. For each experiment data was collected for 10 minutes and then averaged out. The
experiment was done in an office room with Wi-Fi signals and other electronic components
like computers, monitors and reflective surfaces to simulate real world scenarios. The test was
performed in where the Bluetooth slave and passives devices will always be in a Line of Sight
(LOS) scenario. Through the experiment we concluded that using 1 antenna set up yields the
best result. The results can be seen from Table 2 where 𝜎 is the standard deviation of the error in
angle received. Since the 2 antenna array results in worse results, for all the other experiments



Table 2
Error calculation for antenna array BOOSXL-AOA board

Using 1 Antenna (Measured at 0°) Using 2 Antennas (Measured at +45°)

Distance (m) Received
Angle(°) 𝜎 Error(°) Received

Angle(°) 𝜎 Error(°)

0.50 -1.01 1.21 1.01 41.35 2.56 3.65
1.00 3.81 1.55 3.81 44.49 2.64 0.51
1.50 2.48 1.96 2.48 11.93 19.85 33.07
2.00 4.19 3.10 4.19 52.39 5.84 7.39
2.50 1.38 5.60 1.38 -5.65 27.23 50.65
3.00 -4.69 3.46 4.69 29.54 17.17 15.46

moving forward: the second array was disabled using the firmware options.

3.1.2. RSSI Calculation

From the TI passive device, we can get the value of RSSI. A Kalman filter was used to enhance
the robustness, accuracy, and reliability of BLE signals which are often noisy. The RSSI value
can be used to determine the distance from the transmitter. There are a few techniques to
calculate RSSI with respect to calculating the distance. One of the ways to calculate distance is
the outdoor propagation model using free space path loss (FSPL) formula in equation 2.

𝐹𝑆𝑃𝐿(𝑑𝐵) = 20 log10 (𝑑𝑘𝑚) + 20 log10 (𝑓𝐺𝐻𝑧) + 92.45 (2)

However, for indoor transmission, it is difficult to use a specific model as the propagation
varies drastically based on various factors. These include type of indoor environment, position
of the transmitters within this environment, distance from walls, height of the transmitter
compared to the ground and location of obstacles such as furniture [1]. From literature it can
be found that [2-4] there are no accurate modelling for indoor propagation model. After testing
some empirical models, we chose a statistical modelling of regression analysis to calculate the
distance from RSSI values using the formula in equation 3.

𝑦 = 𝐴𝑥𝐵 + 𝐶 (3)

The model uses a power regression analysis to calculate the constant values of 𝐴, 𝐵 and 𝐶 .
With a base RSSI calculated at 1m distance, a ratio 𝑟 is calculated for RSSI values at various
distances. Using the RSSI, Ratio, and Actual Distance we can calculate the Predicted Distance.
From our testing we were able to create the following model for 1 passive BLE device (equation 4).

0.59 *
(︂
𝑅𝑆𝑆𝐼

−48

)︂6.7

− 0.14 (4)

This formula provided the most accurate distance based on RSSI for our office indoor environ-
ment.



Figure 5: Web app results at 0.5m (1 passive and 1 slave)

3.2. Data collection strategy

In order to collect accurate angle of arrival data, we created a testing grid of 9 points across a
2m x 2m and 4m x 4m area. Fig. 4. illustrates a testing scenario where a 2m x 2m grid is used to
collect AoA data using one antenna (passive device) and one Bluetooth receiver (slave device).

An optimum height of 1m from floor was used for all data collection processes. Data was
collected for 5 minutes on each testing location. The results were then averaged over all 9 testing
points for better reflection of accuracy. The data that was received form the Bluetooth Receiver
(slave) is in the form of AoA and RSSI. The RSSI value gives us a radius of possible locations
and the AoA value solidifies the position on that radius. The error in distance is calculated from
finding the difference in positioning of actual testing point and measured location. We created
a Web application that takes these measurements from the Bluetooth Receiver and plots them
on a graph to show the real time location of the Bluetooth receiver. Fig. 5 shows the output
when a receiver was placed 0.5m away at an angle of 0°.

3.3. Static Test

For the static test, the slave device was placed at various locations of our testing grid. The
device was not moved for the duration of data collection. The initial testing was done with one
slave device and one passive device. This gave us a baseline accuracy for AoA tests. Using the
libraries available for the TI board we created a web application that shows the RSSI values
in real time. We superimposed the figures of passive devices and created a grid with accurate
distances in order to visualize location and signal directions that were received on the passive
devices. Fig. 5 shows a screenshot from our web app for a static test at 0.5m distance.

To calculate the distance between the slave and Two, Three, or Four passives, the setup relies
on using two passives’ Points of Intersection. If there is no direct point of intersection, then the



Figure 6: Web app results at 0.25m (4 passives and 1 slave)

application forces it to intersect. If 2 lines do not intersect, since 1 line may be shorter than
the other, then it will force the shorter line to intersect with the other line. Fig 6 illustrates the
process. In each of the testing grids, we used a different number of passive devices to calculate
optimum number of Bluetooth sensors and their location.

3.4. Moving Test

The moving test involved the same setup, with the exception of the slave device being moved at
a constant pace for the entire test. This can be visualized from the following Video on YouTube.
We created a mini-robot using Lego Mindstorms EV3 to move at a constant speed through
our testing locations. Data was collected for two scenarios: a) the robot stopped at the testing
locations for two seconds and b) the robot moved from endpoint to endpoint without stopping.
Data was collected every 0.25s and averaged out for better accuracy.

4. Finding and Discussion

Table 3 presents the results of our static and moving test results. The results are presented in
terms of accuracy in metres for 2x2m and 4x4m grid environments with percentages representing
the amount of change by adding more passives. The moving test results naturally are worse
than static tests as signals experience Doppler effect, multi-path interference, reflections and
scatterings [34]. The most obvious observation is that as we increase the number of passive
devices, there is a diminishing return. Three passive devices produced the best results in our

https://www.youtube.com/@centreformobileinnovation5341


Table 3
Static and Moving Test Results

Static Test (metres) Moving Test (metres)
With stop Without stop

2x2 grid 4x4 grid 2x2 grid 4x4 grid 2x2 grid 4x4 grid
1 passive 0.77 1.46 0.84 1.76 0.75 1.72
2 passives 0.27 65% 0.77 47% 0.75 11% 0.73 59% 0.30 60% 0.69 60%
3 passives 0.23 15% 0.55 29% 0.52 31% 0.47 36% 0.41 -37% 0.58 16%
4 passives 0.31 -35% 0.70 -27% 0.66 -27% 0.59 -26% 0.41 0% 0.61 -5%

environment. The accuracy increased when increasing passive devices from 1 to 2 by 65%,
whereas moving from 2 passive to 3 passive produced an increase of only 6.75% for the 2x2m grid.
Similar results may be seen for the moving tests, however, the gain is not as large as the static
tests. When the slave device was stopping at the testing locations, the greatest improvement in
accuracy was the 3 passives scenario (i.e., an improvement of 32%). For moving tests, when the
slave device did not stop and continued at a constant speed, the improvement was the most
at 2 passives (60% at 2x2m grid). The results also show a similar pattern for the 4x4m grid
configuration. The only exception was for the 2x2m grid and moving test, where there was no
improvement for moving accuracy when adding an additional passive. Furthermore, there was
no change for adding a 4𝑡ℎ passive device.

The main aim of this research was to create an indoor localization and navigation system
that could be easily deployed with commonly available beacons and smartphones/tablets, while
achieving a 2m level of accuracy while the user is in motion. Our system enables efficient
real-time tracking of users or assets in indoor environments with a level of accuracy that is an
improvement on previous work in this area.

4.1. Deployment considerations for real-world environments

The benefits of AoA/AoD have been well documented. There are improved navigation and
augmented reality benefits [35], along with enhanced security [36], improved network efficiency
and better user experience . However, all these studies, including ours, do not use a mobile
device that can use AoA/AoD. At the time of this publication, the authors could not find any
mobile devices that has the AoA/AoD antenna built in. Most current day smartphone have
access to BLE 5.2 technology, but not the antenna array required to calculate AoA/AoD signals.
Our research shows the benefit of utilizing the BLE antenna arrays for indoor navigation along
with other aforementioned benefits.

4.2. Future Research

the research conducted demonstrates a framework for indoor localization using AoA and AoD.
This can be scaled up for larger areas where the grid is limited to 4m x 4m area. Our test area was
a normal office indoor environment. Future work could include different indoor environments
like malls, warehouses and areas with obstacles and reflective surfaces. The idea would be
to create a mathematical model that can be easily scaled to cater for various environments.



This can help in calculating how many passive devices would be necessary along with their
positions.

5. Conclusion

In this work, we used a Texas Instrument development board and Antenna Array to conduct a
thorough set of experiments exploiting AoA and AoD in BLE beacons. We created an indoor
navigation system that improves the beacon’s RSSI signals and uses various algorithms to
provide high accuracy location predictions in indoor environments. Our work can be used in a
variety of applications in indoor location and asset tracking. The main contributions of this
work are:

1. An indoor positioning system that performs at an accuracy of 0.23m (when the asset is
static) and 0.30m (when the asset is in motion),

2. A generalized indoor micro-location system that can be easily and rapidly deployed to
new environments (within hours),

3. A comparison and performance analysis of BLE passive devices and how many passive is
required depending on the scenario of different area and requirement of static or moving
objects.

4. An architectural model by which other researcher can extend our work on indoor posi-
tioning and navigation.

In conclusion, we created a real-time context aware solution using BLE beacons with AoA and
AoD for indoor environments that can track the user or asset while in motion.

In the spirit of furthering science, the source code for the apps, architectural designs, al-
gorithms and datasets will be openly available on the publisher’s website. We hope this will
encourage others to extend our work.
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