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Abstract
Indoor positioning systems commonly rely on map models to enhance localization accuracy. These
models can be represented in either vector or raster formats. In this study, we propose a method that
utilizes floor plan images, commonly provided in IPIN competitions, to process the map and create both
vector and raster models. Manual annotation is used to identify walls, doors, and zones, while automatic
methods based on convex polygons are employed to generate the map model. Additionally, we introduce
a computer vision technique for automatic map annotation. This method significantly reduces the map
processing time, reducing it from 40 minutes required for manual annotation to just 5 minutes with the
automatic approach, followed by manual editing. Although the solution is not entirely conclusive, the
map model can be reliably obtained with minor user adjustments.
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1. Introduction

Indoor positioning is diverse in terms of use-cases, devices, and solutions. Various positioning
methods have appeared in recent years [1]. The IPIN competition is a reflection of these trends,
offering different tracks that address specific aspects of indoor positioning. Notably, tracks
focused on smartphone-based solutions provide images of building floor plans to be used for
the positioning.

Lessons learned from competitions [2] and observation of solutions introduced by competitors
clearly suggest the importance of fusion of multiple sources of information. The presence of
the map model bounds the overall position estimation within the area of accessible locations.
Moreover, the structure of the building with walls, corridors, and junctions may improve the
positioning accuracy for various solution types. The map model is essential for many systems,
especially for those using pedestrian dead reckoning approach calculating user’s position relative
to previous estimations.

The main objective of this paper is to propose a method for generating map models using
floor plan images. It is possible to derive a data-driven approach using neural networks to
perform this task. However, a labeled dataset of the required quantity may be challenging
to obtain. Instead of building a robust solution for map model extraction from images, the
automatic method with user adjustments or semi-automatic approach may be considered. In
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this work, the automatic method for vector and raster model production is presented based on
annotated map. The annotation of walls forming convex polygons is manual or automatic with
manual user corrections. The solution combines established computational geometry methods
with a computer vision approach, aiming for a fully automatic method that currently requires
some user adjustments.

The paper provides a brief summary of related work regarding integration of map into
solutions based on Bayesian filtering, and approaches using neural network or computer vision
for floor plan image to vector conversion. The proposed system is introduced in Section 3
with definitions of inputs and outputs for selected methods. Section 4 summarizes the map
annotation, including the computer vision method for automatic annotation. The annotated
model with convex zones is transformed to the vector model and then to the two-dimensional
grid in Section 5. Section 6 is focused on the computer vision method evaluation and the overall
examination of the proposed method.

2. Related Work

In many solutions, Bayesian filtering handles inaccuracies introduced by noisy sensors. The
process consists of two phases: the prediction of the system state and the correction [3]. In
general, the uncertainty of the state estimation is increased in the first phase and the correction
phase reduces the variability using obtained measurements. Typical implementations of filtering
include Kalman and particle filters. The map is utilized in such systems, e.g., Fetzer et al. [4] limit
the movement in the first phase. The transition is performed according to the mesh obtained
from the map model. In [5], the map model is utilized in the correction phase to suppress
unaccessible positions (walls, locations outside the building).

In the first aforementioned example, floor plans are processed manually in a custom 3D
editor, and the navigation mesh is automatically created. The second example utilizes the
two-dimensional grid, which was obtained using the method proposed in this paper. In general,
simple floor plans are replaced by extended map representations including 3D map models.
Chen and Clarke [6] present various examples of map formats with comments on supported
geometry, semantic support, and spacial referencing. Li et al. [7] provide a survey on map
formats and standards in context of indoor positioning.

The map model extraction involves the utilization of three primary types of approaches:
manual, analytical, and data-driven. Manual annotation of maps is often performed in geo-
graphic information systems (GIS). Multiple sofware applications are available and provide
an opportunity to visualize geographic data, e.g., ground truth and estimated positions from
IPIN competitions are given in KML format, which could be loaded and displayed over the
map background. These data, including points, lines, and polygons, may be created, edited and
further processed. Nevertheless, it is not unusual to use a custom-built application for the map
annotation.

Jaworski et al. [8] introduce an analytical approach that requires the user to setup the venue,
followed by automatic walls and doors detection. The proposed algorithm consists of image
preprocessing, circle Hough transform, and least squares method. The solution includes a tool for
manual polygon drawing to label door masks. The evaluation also includes a building with not



Figure 1: Left image is a floor plan of a library building in Spain provided by IPIN 2020 organizers. Mid-
dle image represents the vector model and is composed by manual annotation of connections forming
convex polygons. Right image is a raster representation of accessible areas generated by the proposed
method.

only straight and perpendicular walls. Pan et al. [9] propose a solution which extracts bearing
walls and performs other steps for elements recognition. Tombre and Tabbone [10] suggest that
contour-matching methods achieve better results than skeletonization-based approaches.

Even though data-driven methods are not applied in this paper, the trend in computer vision
problems to be solved by machine learning methods is present also in floor plans processing.
Dodge et al. [11] propose an approach for parsing floor plan images based on fully convolutional
neural networks. Kim et al. [12] perform the raster to vector conversion using deep network
and style transform.

Given the problem addressed in this study, the input consists of a raster floor plan image,
while the output varies depending on the specific use case, often also taking the form of a
raster image. Nevertheless, the majority of solutions typically undergo a conversion process
to transform the input into vector representation before generating the output raster image,
if required. Liu et al. [13] adopt learning-based approach where neural network transforms a
rasterized image to a set of junctions. The proccess continues with the junctions aggregation
into simple primitives using integer programming to produce a vector floor plan. It allows 3D
model popup for indoor scene visualization. In [14], the deep segmentation and neural networks
for detection are utilized to outputs a corresponding vectorized 3D reconstruction model.

In [15], room detection is a final step in processing the image floor plan. Basic building blocks
(walls, doors) are detected using statistical patch-based segmentation followed by structural
pattern recognition methods on the generated graph. In such graphs, the walls are vertices and
edges denote the connection between two walls.



3. System Overview

The proposed solution consists of multiple steps to obtain a two-dimensional grid from a floor
plan image through creating a vector map (Figure 1). This process is semi-automatic.

Input is considered to be a single image of the floor plan with additional information involving
the map scale (ratio between a map pixel and a meter in real world), map rotation, and a
georeferenced position (WGS-84) of the initial point in the image. The leftmost top corner is
mostly convenient to be considered as the initial point and could be calculated if other position
is given.

Final output is a two-dimensional regular square-shaped grid, where every grid cell denotes
whether the respective area is accessible or inaccessible in the real building. Inaccessible
positions are physically impossible to access (walls) or chosen to be off the limits (places outside
the building). The map is tessellated into the grid automatically and the grid cell width is a
parameter.

Moreover, this process produces an intermediate output, which is a vector map model
consisting of points, lines and polygons. From structural point of view, the map model is
formed by points and connections (lines) with assigned properties. These data are stored to
fully represent the map and are used in following operations in order to obtain the full vector
or the raster output.

Map of a single floor is composed of so-called zones. A zone is a basic unit in a form of a
convex polygon. The convexity requirement of polygons is essential for the following automatic
extraction of a vector model. In case of semantical requirements, rooms could be created as
a combination of multiple zones, e.g., each zone is assigned to a room. During the process,
zones are annotated with a single point anywhere inside the polygon which is later acquired
automatically. Three types of connections are present in this solution - solid lines (walls),
transitional lines (doors), and transparent lines (artificial borders for separating zones). These
lines are segments connecting two distinct points in the map.

4. Map annotation

The input image is processed to obtain the vector and/or raster map. Walls and doors are anno-
tated on the floor plan manually or automatically, using proposed computer vision approach.

4.1. Walls and Doors

In the image, walls and doors are annotated. Both are processed identically with a distinction in
the property assigned to these annotated connections. This task may be performed manually
using GIS software or a custom application. A list of connections is the final product of the
annotation process. To simplify the task, it is recommended to have the original floor plan
image as a background layer and to draw lines at the top of it. The output is formed by a list of
points with their 2D positions in the image (in pixels) and a list of connections where every
connection (of two endpoints) is a pair of two indices in the points list.

Even though the annotation is reliable, it is the most tedious part of the solution, especially
in more advanced floor plans with hundreds of connections. The process may be replaced by a



Figure 2: Red lines are denoted by line segment detection. There are walls with multiple detected lines
which is later reduced using mean shift clustering of endpoints. The image is a floor plan of a faculty
building in Slovakia.

computer vision approach. The output is corrected manually afterwards, i.e., the connections
are verified manually and removed, added, or edited if necessary. The method is executed as
follows:

1. The image is preprocessed with a focus on removing text to improve the accuracy of walls
detection. The text is removed from the image using OCR (Optical Character Recognition)
method, e.g. [16]. Moreover, rotating or mirroring the image may help to achieve better
output.

2. Line segment algorithm (LSD) [17] is applied to obtain a list of lines in the image. Walls
are often thick in the image, i.e., they are not represented by a line but a solid narrow
rectangle. Figure 2 shows that the automatic detection may produce duplicated lines for
these walls.

3. Endpoints of detected lines are clustered using mean shift algorithm to minimize re-
dundant walls. The benefit of the mean shift is that it does not require the number of
clusters to be defined and is based solely on the distance between samples. After the
point clusterization, a new list of lines is derived from the LSD output in a way that every
endpoint is replaced by its cluster position. Duplicates of lines are removed.

4. Points are aligned using mean shift algorithm applied separately on each dimension. The
lines are restored similarly as for the two-dimensional clustering. This method suppresses
the misalignment introduced by the LSD algorithm and preceding clustering. Mostly in
buildings, multiple line segments (walls, doors) lies on the same line which is rarely the
case if detection is inaccurate. Note that the input includes the map rotation information
which may be utilized if walls are not mostly in west-east and north-south directions in
the image.



Figure 3: First image denotes a zone which is not convex. The convexity could be ensured by dividing
the polygon with a single line (red color) to two separate convex zones.

4.2. Convex Zones

A polygon is convex if any line segment between two arbitrary points inside polygon is inside
this polygon as well. Moreover, internal angles do not exceed 180∘. A zone is a convex
polygon with connections as its sides. The requirement of convex zones enables the method to
automatically create the vector map model. A zone is annotated in the floor plan with a single
point which should be placed anywhere inside the polygon (ideally not too close to the border).

Alongside the vector model extraction, a few automatic operations are performed to ensure
that the annotation is correct, i.e., internal angles are not reflex angles, there are no missing
connections, and every polygon contains at least one connection which is transparent or
transitional.

If a zone is not convex and cannot be easily transformed to the convex polygon by adjusting
positions of points, the zone should be divided into at least two zones using transparent
connections (Figure 3). This method does not influence the semantical representation of the
map but ensures the property of convex polygons.

Zones are disjoint and every position may belong to at most one zone.

5. Vector Model and Grid

The annotated map is processed automatically to obtain a vector model or the raster map as a
grid of accessible or inaccessible positions.

5.1. From Convex Zones to Vector Model

Annotated model consists of connections and points either as connection endpoints or zone
denoting points. The output vector model is a list of zones. Every zone is a sequence of 𝑛 points
(𝐶0, 𝐶1, . . . , 𝐶𝑛−1), 𝑛 > 2. There is a connection between all succeeding points (connection
𝐶𝑖𝐶𝑖+1, 𝑖 ∈ (0, . . . , 𝑛− 2) and between the last and the first point 𝐶𝑛−1𝐶0).

A zone is constructed from a list of all connections in the annotated map and the zone point
𝑍[𝑥𝑧, 𝑦𝑧] in a following way:

1. First connection 𝐶0𝐶1 is selected from a list of all connections such that there is an
intersection between line 𝐶0𝐶1 and the vertical line 𝑍𝑍0, where 𝑍0[𝑥𝑧, 0], 𝑍 is zone
point, and the distance between the intersection and 𝑍 is minimal.



2. Next point 𝐶𝑖+1 for given 𝐶𝑖 is selected from the list of connections, where 𝐶𝑖 is one
endpoint of the connection, excluding the connection 𝐶𝑖−1𝐶𝑖. Connection 𝐶𝑖𝐶𝑋 with
minimal angle 𝐶𝑖−1𝐶𝑖𝐶𝑋 is selected as the connection 𝐶𝑖𝐶𝑖+1.

3. The process is repeated until the connection 𝐶𝑛−1𝐶0 is found, i.e., 𝐶𝑖+1 = 𝐶0.

To eliminate the impact of the connection direction, the vector product 𝐶𝑖−1𝐶𝑖 × 𝐶𝑖𝐶𝑥 is
calculated and according to the direction, the conjugate angle is considered if the corresponding
angle is greater than 180∘. Therefore, the first point of a zone sequence 𝐶0 may be selected
from either endpoint of the first connection.

5.2. From Vector Model to Grid

The list of zones in form of sequences of points is transformed to the two-dimensional grid.
The grid cell size is defined in advance. The output may be visualized as an image of size
(𝑊/𝑆,𝐻/𝑆) where 𝑊,𝐻 are width and height of the original floor plan image in pixels and
𝑆 is the single grid cell side. However, output in more convenient way for further processing
may be required, e.g., the list of zeros and ones denoting accessible and inaccessible positions
alongside with the overall size of the grid.

The grid is derived from the vector model as follows:

1. Set grid scale based on the given parameter and create a two-dimensional array of numbers
with a predefined value 1 for inaccessible grid cells.

2. Iterate over all connections forming zones. Calculate array indices (grid cells positions)
for respective connection endpoints. Apply line drawing algorithm between these grid
cells. The value 2 is assigned to all cells alongside the line segment which is a wall and
the value 3 is used for doors and transparent connections.

3. Iterate over all zones. Starting from the zone point, apply flood-fill algorithm to fill zone
area bounded by values 2 or 3. The algorithm puts value 0 to grid cells to denote accessible
areas. Flood-fill is implemented using breadth-first search with four neighbours for every
grid cell.

4. Finally, mark all grid cells representing transitional or transparent connections (with
value 3) as accessible (value 0).

5. If the separate distinction of walls is not necessary, replace walls (value 2) with inaccessible
information (value 1). Moreover, true and false values may be used instead 0 and 1.

Line drawing is performed using naive algorithm where the 𝑦 position is calculated for all
given 𝑥 (𝑥1 ≤ 𝑥 ≤ 𝑥2):

𝑦 = 𝑦1 + 𝑑𝑦 × (𝑥− 𝑥1)/𝑑𝑥

where (𝑥1, 𝑦1) and (𝑥2, 𝑦2) are endpoints of the line segment and difference values are calculated
𝑑𝑥 = 𝑥2 − 𝑥1 and 𝑑𝑦 = 𝑦2 − 𝑦1.

To ensure that no gaps arise that would cause the flood fill algorithm to fill places outside the
zone, not only the position (𝑥, 𝑦) is denoted as line point but also (𝑥+ 1, 𝑦). The line is thicker
and more robust for further processing. If 𝑑𝑦 > 𝑑𝑥, it is recommended to exchange 𝑥 and 𝑦, i.e.,
𝑦 is iterated from 𝑦1 to 𝑦2 and the respective 𝑥 is calculated.



Figure 4: Walls and zones annotation with an original floor plan as the background. Black lines rep-
resent walls. Red lines denote doors or transparent connections added to achieve the convexness of
polygons. Green dots inside polygons identify zones.

6. Evaluation

Four different multifloor buildings were processed using proposed approach with manual
annotation of walls. Three buildings were from IPIN competition: Atlantis shopping mall
in Nantes, France (IPIN 2018), CNR research institute in Pisa, Italy (IPIN 2019), and library
in Castellón, Spain (IPIN 2020). Map models for these buildings were created with no prior
knowledge of specific buildings. Author of this paper visited first two venues afterwards (at the
onsite competition). Some map elements were challenging to process offsite, e.g., balconies and
outdoor staircases on IPIN 2019 maps. Moreover, a faculty building in Slovakia was prepared
for indoor positioning evaluation.

6.1. Application used for Floor Plans Annotation

The annotation of walls and zones was performed in a custom Java application. Main principles
are the same as for GIS software. An automatic calculation of zones and check of polygon
convexness were incorporated into the application. Moreover, the two-dimensional grid is
exported from the vector representation. Although common geographic formats exist, the
application stores the vector map model in a custom text-based format. Distances and positions
are presented in centimeters, simplifying the process and aiding users in verifying the correctness
of the map model.

Annotation of walls (including doors) is the most tedious part of the solution. The application
provides features to streamline the construction of convex polygons, such as aligning points
on a line or creating a point on a line. The most challenging aspect of manual annotation is
ensuring the convexness of multiple small rooms that share the same endpoint. The zones
annotation is a quick task when walls are present. Figure 4 shows an example of annotated map
over a floor plan image.

The process of manual annotation in the application can be summarized as follows. The



Figure 5: Incorrect wall annotation. Three walls are detected at doors and furniture is labeled as well.
Image is from ROBIN dataset.

original image is loaded with the appropriate resolution as the background. All walls and doors
are annotated by creating points and connections between them. L-shaped corridors are split
using transparent connections. Zone points label all corridors and rooms. Automatic counting
and validation of zones are performed. Non-convex zones are rectified by adjusting points or
adding transparent connections to divide the zone into two zones if needed. The process is
repeated until all desired zones are accurate. Finally, the grid is exported and visualized in the
output image.

6.2. Line Detection Evaluation

The evaluation of computer vision method proposed in this paper was accomplished on 20
selected floor plans from ROBIN (Repository of Building plaNs) [18], CubiCasa5k [19], and
CVC-FP [20] datasets. The main aim was to observe recurring tendencies and problems instead
of a statisical evaluation. These 20 images consist of various number of walls (from 14 to 50),
doors (between 3 and 15), and rooms (from 3 to 13).

In general, text separation using Keras OCR [16] improved the final output. However, the
method was unsuccessful on two images and incomplete on two images out of 5 from CubiCasa5k
dataset and incomplete in 5 of 9 images from CVC-FP. Images from ROBIN dataset do not contain
any text. More problems occurred in large, complex buildings with numerous junction points,
where multiple connections share the same endpoint or with zone polygons consisting of a large
number of connections. Nevertheless, the importance of text separation depends on specific
floor plan and was not examined further in these experiments.

Different methods were compared for the line detection. The automatic process becomes more
complex when different maps require various parameter configurations using Hough transform.
Therefore, line segment detection was applied. The resolution of images was downgraded to
650x650 pixels to obtain better results. Thick walls were often labeled by two lines which is
resolved using mean shift algorithm. The bandwidth parameter for this method was set to 19.
The alignment of points was performed by mean shift algorithm with bandwidth 10 individually
for x and y axes.

The worst results were obtained on images from CubiCasa5k dataset. Only one image met the
declared requirements. Door detection was successful on 50% images. Wall detection achieved



unsatisfactory results especially in images with furniture which draws lines in incorrect places
(Figure 5).

ROBIN dataset results provides the most representative outputs due to the simplicity of floor
plans. Door detection was problematic on the CVC-FP dataset, as doors are visualized with thin
lines that are difficult to detect. These observations helped to improve the proposed method to
achieve the best possible result for this approach.

Apart from text separation and resolution changes, the input images were not preprocessed.
In the IPIN competitions, the focus was on corridors rather than rooms, so furniture was not a
primary concern in such scenarios. Therefore, no method for detecting or separating objects in
floor plans was included.

6.3. Overall Evaluation

The automatic evaluation did not find all required lines with 100% accuracy. However, the pro-
posed method expects the complete labeled model with walls, doors, and convex polygons. The
output may be manually repaired by editing, adding, and removing lines in the aforementioned
application. The detailed experiment was performed on IPIN 2019 map consisting of more than
800 lines. Manual annotation required 40 minutes for experienced user. Automatic method
produced 892 distinct points and 870 lines. Manual adjustments took 5 minutes to achieve
the desired model accuracy. The majority of the time was spent identifying lines that needed
editing. In order to streamline this process, a tool that can identify problematic lines, such as
those not aligned in preferred directions, highlight points with only one connection, and assess
zone completeness, would be highly beneficial.

Exact comparisons in terms of points and lines count can be challenging to perform as the
annotation process may vary in execution. While the key structure is provided, specific lines
may be split into multiple smaller connections. Achieving zone convexity can be accomplished
by adjusting points on the same larger line or by dividing polygons into smaller units, and this
process can be carried out in different ways. As a result, the improvement is substantial in terms
of the time spent by a trained person.

The zone reconstruction and grid creation performed as expected for all tested maps. However,
an issue arose with low-resolution floor plan images, resulting in inaccessible grid cells appearing
unexpectedly. This problem mainly occurred near short connections and can be easily resolved
through adjustments to the annotated model, applying automatic post-processing techniques,
or altering the resolution of the input image.

The proposed method’s key advantage is its high level of automation. With enhanced
line annotation, the solution progresses towards becoming fully automatic. However, its
weakness lies in its lack of robustness, as the process relies on the specific building image style,
necessitating customization for each image type. Even the manual annotation process demands
minor adjustments in the application to tackle new challenges presented by different buildings.
Moreover, the requirement for zone convexity introduces an additional layer of intricacy to the
map annotation process. While in other types of solutions, this step may not be necessary, here
it becomes essential to ensure that points on the same line are aligned or transparent lines are
introduced to fulfill the convexity property.



Conclusion

This paper addresses the challenge of extracting map information from raster images. The
proposed method focuses on automatically extracting a vector model from annotated maps and
converting it into a two-dimensional grid. The annotation process is typically done manually
using a custom Java application, which can be time-consuming.

To improve efficiency, the paper introduces the automatic annotation method based on
computer vision techniques such as line detection and mean shift clustering. While the automatic
method may not provide a complete output, it significantly reduces the time required for manual
adjustments compared to traditional annotation. In the specific scenario using the IPIN 2019
competition map, the method only required 5 minutes of correction instead of the usual 40
minutes of manual annotation by experienced user.

Although the proposed computer vision approach automates a significant portion of the
annotation process, certain parts still require manual execution. Achieving a fully automatic
method remains a significant challenge. However, alternative semi-automatic methods could
further reduce the overall time needed for the map extraction. For example, users could click
on specific elements like doors, and the system could automatically label them using pattern
recognition or template matching. Contour finding in the image is another potential approach.

In the future, it would be beneficial to conduct a broader evaluation to test the robustness
of the proposed method on larger and more complex maps, as well as to identify any limita-
tions. Nevertheless, the proposed method simplifies the manual process of annotating maps,
contributing to the enhancement of indoor positioning systems and improving the accuracy of
user or device localization.
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