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Abstract
Indoor Tracking Systems (ITS) are becoming increasingly popular due to their affordability and the
services they provide, such as indoor navigation and asset tracking. Most of the ITS presented in the
literature or deployed in the real world rely on dedicated infrastructures that are costly and difficult to
deploy and maintain. An alternative lies in infrastructure-free ITS based on inertial sensors embedded in
each mobile device, but such ITS suffer from an accumulation of errors degrading their accuracy. To
mitigate this accuracy degradation, an approach consists in fostering collaboration between moving
devices. However, a major limitation of this approach lies in the complexity of devising such collaborative
inertial-based algorithms. In this paper, we address this limitation by proposing MobiXIM, a framework
that unifies the processes of devising, evaluating, and fine-tuning collaborative inertial-based algorithms.
In addition, we propose a midpoint algorithm devised using our proposed framework. Through this
experiment, we highlight each of the components of MobiXIM that operate separately and communicate
with each other, thus allowing researchers to focus solely on developing specific parts of their solutions.
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1. Introduction

Over the past years, the demand for location-based services has grown tremendously. These
services, such as store locators, proximity marketing, or mobile games, mostly rely on Global
Navigation Satellite Systems (GNSS), such as the GPS or Galileo, which operate in outdoor
environments. There is also a need for such services in indoor environments as we observe a
growing demand for location-based marketing, mobile navigation, assets tracking, etc. [1].

Indoor location-based services rely on Indoor Tracking Systems (ITS) that are not yet ubiq-
uitous because there is no standard ITS, and most of them require the deployment of costly
infrastructure that is difficult to deploy and maintain. To overcome the need for infrastruc-
ture, some solutions rely on embedded sensors available in most mobile devices, such as the
accelerometer, the gyroscope, and the magnetometer. These sensors are defined as inertial as
they measure quantities based on physical laws of motion (i.e., by indirectly measuring specific
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forces) [2]. In doing so, the accelerometer measures the acceleration on 3-axis, the gyroscope
measures the angular velocity, and the magnetometer measures the Earth’s magnetic field.
Coupled with mobile devices possessing some computing capabilities, inertial-based ITS can
operate without infrastructures. The drawback of inertial-based ITS is the negative impact of
accumulated errors on their accuracy. In the literature, some authors propose collaboration
between devices to improve the accuracy of these systems [3, 4, 5, 6, 7].

Practically, this collaboration consists in leveraging interactions with nearby devices to
correct the accumulated errors of positioning caused by noisy sensors. More precisely, mobile
devices exchange their respective estimated locations and apply some aggregation methods to
compute their new and hopefully more accurate location estimate. In fact, most mobile devices
can interact with nearby devices by exchanging data or signalling their presence.

Yet, devising, evaluating, and fine-tuning collaborative ITS is a time-consuming process due
to various reasons. First, most of the collaborative algorithms presented in the literature are
evaluated in simulated environments and with virtual data [8, 9, 10, 11, 12]. Such environments
fail to capture the complexity of real-world scenarios. Secondly, it is difficult to conduct
experiments due to the significant number of synchronous interactions between participants that
need to be considered. Finally, collaborative algorithms are built on top of existing algorithms
used by traditional ITS, such as filtering algorithms for signal processing and positioning
algorithms to estimate a device’s location. Such structure makes it difficult for researchers to
focus only on devising collaborative algorithms.

The problem we address in this paper is how to facilitate the process of devising, evaluating,
and fine-tuning collaborative algorithms. In doing so, we propose MobiXIM, a novel framework
that offers a mechanism for aggregating real-life data from multiple sources with the aim of
running collaborative algorithms in a controlled environment. By using a plugin architecture,
we lay the foundation for code reuse, and we aim to accelerate the time for developing new
collaborative algorithms. Our contribution is intended as a step forward in setting standards
for building ITS and allowing for the easy reproducibility of algorithm evaluations. The code
source of MobiXIM is available on GitHub1.

The rest of the paper is decomposed as follows. In Section 2, we discuss the system model
and the problem statement by highlighting the challenges encountered by researchers and the
problems addressed in this paper. Section 3 presents the framework. In Section 4, we devise a
collaborative algorithm using the framework and evaluate its performance. Section 5 discusses
its architecture. In Section 6, we list works related to ours. In Section 7, we discuss our findings
and present what we intend to do in the future. We conclude the paper in Section 8.

2. System Model & Problem Statement

This paper considers mobile devices as aware of their environment, capable of signaling their
presence and exchanging data with nearby devices. Each of these devices has a physical location
that may change over time. A location is a tuple representing coordinates in the form of (𝜙, 𝜆)
where 𝜙 represents a latitude and 𝜆 a longitude in a geographic representation system. A set of

1https://github.com/doplab?q=mobixim



locations is defined as a trajectory. As opposed to an inertial trajectory, approximated using
inertial measurements, a groundtruth represents a pedestrian’s actual trajectory or true path.

We define an ITS as a system that tracks people or assets in indoor environments where
GNSS-based solutions fail to operate. We distinguish two types of ITS described hereafter.

• Infrastructure-based ITS. They rely on fixed equipment such as Bluetooth Low Energy
(BLE) beacons or WiFi routers. These pieces of equipment are used as reference points or
for communication purposes. In some cases, such as fingerprinting, infrastructure-based
ITS offer decent accuracy. However, they are costly regarding equipment, deployment,
and maintenance time.

• Infrastructure-free ITS. Such systems mostly use Inertial Measurement Units (IMU)
embedded in most mobile devices to estimate their location. By removing the need for
infrastructure, these systems are more affordable. However, inertial-based ITS are less
accurate as they accumulate errors over time.

In an infrastructure-free ITS, mobile devices can collaborate with nearby devices to keep low
costs and improve accuracy. In such systems, defined as collaborative ITS, devices are capable of
signalling their presence to nearby devices using communication interfaces like BLE or WiFi.

To compute their position estimates, devices run two different types of algorithms.

• Local algorithms. They estimate a device’s location using data collected by its embedded
sensors. They comprise filtering (Low pass filter, High pass filter, etc.) and positioning
(Pedestrian Dead Reckoning, fingerprinting, etc.) algorithms.

• Collaborative algorithms. These algorithms use the estimated location computed by
the local algorithms and the distance between two devices to improve their accuracy.

Problem statement

Devising collaborative algorithms is a complex task requiring data frommany devices interacting
in a controlled environment. The literature addresses this challenge by relying on synthetic
data generated during a simulation [13, 14, 12? ]. However, synthetic data can be biased or
unrealistic, thus failing to capture the real movements of people in an indoor environment.
Other authors use real-life data to evaluate their algorithms. This approach is challenging as
collaborative algorithms require synchronisation between multiple devices. For instance, studies
show that collaborative algorithms perform better with a large number of participants [15, 13].
Achieving this can induce a high cost for running experiments.

In addition to this cost, another factor to consider is the complexity of the algorithms. Indeed,
collaborative algorithms work on top of local algorithms. Each algorithm has some parameters.
Therefore, fine-tuning each parameter has an impact on the accuracy of the system.

Coupled with a large number of participants each running their own local algorithms with
predefined parameters, testing each scenario quickly ends up being a very complex task.

3. The MobiXIM Framework

The MobiXIM framework addresses the complexity of devising, evaluating, and fine-tuning
collaborative inertial-based algorithms, by proposing a unified process supported by a software



platform. MobiXIM is an open-source framework to capture real-life data from individuals, repro-
duce their movements and combine multiple real executions with their respective groundtruths
in a controlled environment.

3.1. Components

MobiXIM comprises two main parts described as follows.

Web platform. Developed in Python and Javascript, the web platform is accessible via a
browser. It is used to set up experiments and fine-tune the algorithms.

Companion App. Also defined as a data collection app, it is built in Java and intended for
deployment on Android devices. The companion app is used by participants to collect inertial
data along a path designed using the Web platform.

3.2. Process flow

MobiXIM reproduces the typical iterative process followed by researchers. This process consists
of three main stages: devise by using a plugin architecture to facilitate code reuse, evaluate by
proposing a mobile app that collects real-life data and respective groundtruths, fine-tune by
offering a web platform and an API to combine the data collected by participants and running
algorithms. More precisely, MobiXIM requires researchers to follow a predefined process flow
of iterative steps described hereafter.

1. Planning a scenario. It consists of defining a floorplan, drawing the groundtruths by
adding landmarks on a map and assigning each groundtruth to a participant.

2. Collecting data. Once the groundtruths are planned, participants start walking along the
landmarks. They can do it simultaneously or independently if preferred. During this
process, inertial data is collected at a fixed time interval.

3. Exporting data. Data collected by each device is then exported to the web platform.
4. Merging data. The web platform aggregates the data collected by multiple participants in

a single place.
5. Parameterizing the algorithms. Collected data are linked to local algorithms responsible for

computing inertial-based estimate trajectories. In this step, researchers fine-tune the local
algorithms for each trajectory and select a collaborative algorithm for the experiment.
MobiXIM offers the flexibility to use existing algorithms or to integrate new ones as
plugins.

6. Reproducing the collected data. On the web platform, researchers reproduce the trajectories
followed by participants and those generated by the algorithms.

7. Evaluating the algorithms. The final step is to observe how the algorithms perform by
using a benchmark.

8. Repeating the process. Researchers can repeat Steps 5 to 7 to fine-tune their algorithm
until they obtain satisfactory results.



4. Experiment & Evaluation

In this section, we explain howwe use the framework to build an inertial-based collaborative ITS,
and then we introduce and evaluate a collaborative algorithm. For this experiment, 5 participants
collected 14 groundtruth trajectories, plus their corresponding inertial measurements on a single
floor of a university building covering an area of up to 8400𝑚2. First, we store all the inertial data
collected from the different real mobile devices on the web platform; then, the local algorithm
computes the approximate inertial trajectories before running the collaborative algorithm.

4.1. Experiment

The experiment consists of tracking participants using Android tablets embedding inertial and
wireless sensors capable of exchanging data with a remote server. For the experiment, we use a
single floorplan composed of multiple rooms interconnected by corridors.

Constructing the floorplan. The first step before running the experiment is to design the
floorplan. This step is optional if the researchers do not plan on using the characteristics of a
floorplan (walls and objects detection, convoluted boundaries, etc.). We propose GeoJSON to
design floorplans. It is a standard format easy to manipulate with many Geographic Information
Sytems (GIS) tools such as QGIS2, GeoJSON.io3 or Mapbox studio4. An advantage of using
such a format is the flexibility for adding properties to its features. Features are polygons that
compose a deployment environment. The properties associated with these features can be
names, types (for example, interior wall, door, furniture, etc.), floor numbers, or elevation. The
properties can also indicate, for example, the possibility for a device to cross a feature or not
(open or closed door, restricted areas, etc.).

Planning a scenario. Prior to the data collection, groundtruths must be defined and assigned
to scenarios. As described in Section 3, a groundtruth consists of multiple landmarks placed on
a map.

Data collection. After designing the groundtruths, participants scan a generated QR code to
obtain the scenario they should execute. Using the companion app, they walk through each
point of the groundtruth while holding their devices at chest level. After executing their paths,
participants send the collected data to the web platform for processing.

Setting up the simulation. Before running the simulation, we can filter the raw inertial
data and fine-tune some parameters, such as the participants’ step length, initial heading, and
detection range. After setting up these parameters, we should select a positioning algorithm to
generate each inertial trajectory.

2https://qgis.org
3https://geojson.io
4https://www.mapbox.com/mapbox-studio
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Figure 1: Components of MobiXIM

Running the simulation. The simulation consists of selecting inertial trajectories generated
by the participants and reproducing their walking paths in a controlled environment. Before
proceeding, we can select a threshold for collaboration. The threshold is expressed in terms of
elapsed time either since the last accurate location estimate (typically when entering a building)
or since the last collaborative exchange of location with a nearby device. This approach is based
on the idea that the accuracy of inertial-based tracking degrades with time. We distinguish two
types of thresholds:

• Lower threshold. It is a value representing accumulated errors above which a device’s
estimated location can be updated during an encounter.

• Upper threshold. It is a value representing accumulated errors above which a device stops
collaborating because its accumulated error is too high and can negatively impact other
devices.

For this experiment, we propose a Midpoint algorithm (MP) to correct the positioning error
when devices’ detection ranges overlap. The MP algorithm uses a low-complexity geographic
computation technique consisting of drawing a straight line between two devices when their de-
tection ranges overlap and positioning them in the middle of the line. Each device is represented
as a point with its estimated location computed by a local algorithm. Figure 2 illustrates two
overlapping circles representing the detection ranges of two devices. In this Figure, the lines
represent the trajectories of each device illustrated by two distinct colors. The straight lines
are the groundtruths, and the dashed lines are the inertial trajectories obtained after running
a Pedestrian Dead Reckoning (PDR) algorithm. We can observe how the inertial trajectories
diverge over time from the groundtruths due to accumulated errors.

After correcting the errors in positioning, the MP algorithm resets the accumulated errors
of the devices. The MP algorithm is described in Algorithm 1 where the 𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡() function
returns a point in the middle of two locations.

After selecting a collaborative algorithm, researchers can decide on the starting time interval
and the simulation speed before running the simulation.

The starting time interval indicates the time of departure of each device. A fixed time interval
indicates that each device starts moving at a predefined time interval after the previous one. On
the other hand, each device could be assigned a predefined timestamp for departure without
considering other devices.



Figure 2: Drift generated by the errors accumulated by the PDR algorithm

Algorithm 1 Midpoint algorithm (MP)

1: Input: devices: 𝐴 and 𝐵, lower-threshold 𝑡
2: Output: 𝐴
3: 𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡 ← 𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡(𝐴.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝐵.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛)
4: if 𝑡 < 𝐴.𝑒𝑟𝑟𝑜𝑟𝑠 then
5: 𝐴.𝑒𝑟𝑟𝑜𝑟𝑠 ← 0
6: 𝐴.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ← 𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡
7: end if
8: return 𝐴

The simulation speed defines the time rate for reproducing the execution of participants’
paths. MobiXIM offers the advantage of controlling the speed of execution of the trajectories.

4.2. Evaluation

After running the simulation, MobiXIM outputs a dataset containing three trajectories for each
device. These trajectories are as follows.

• Groundtruth, designed before the data collection process,
• Inertial trajectory, obtained after running the local algorithms,
• Corrected trajectory, improved inertial trajectory obtained after running a collaborative
algorithm.

For the evaluation, we consider two metrics: the third quartile of point distance error and
the Discrete Fréchet Distance (DFD). The third quartile is computed using the ground distance
between the measurement and estimated points. Potorti et al. demonstrate that the third quartile
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Figure 3: Cumulative Distribution Function of localization errors for a single device

measures more precisely the perceived results of an experiment in comparison with the mean
error commonly used in the literature [16]. This metric is extracted from the Cumulative
Distribution Function (CDF) of the localization errors. CDF plots illustrated in Figure 3 show a
more visual representation of the localization errors of each algorithm for a single device.

On the other hand, the DFD is a common metric for computing the similarities between two
trajectories. It measures the minimum separation between points in two trajectories. Therefore,
the more the value tends towards 0, the more the trajectories are similar.

The DFD, described in Equation 1 was proposed by Eiter et Heikki [17].

𝑑𝑓 𝑑(𝑖, 𝑗) =

⎧
⎪⎪

⎨
⎪⎪
⎩

𝑑(𝑃𝑖, 𝑄𝑗) if 𝑖 = 𝑗 = 1

𝑚𝑎𝑥
⎧
⎪

⎨
⎪
⎩

𝑑(𝑃𝑖, 𝑄𝑗)

𝑚𝑖𝑛
⎧

⎨
⎩

𝑑𝑓 𝑑(𝑖 − 1, 𝑗)
𝑑𝑓 𝑑(𝑖, 𝑗 − 1)
𝑑𝑓 𝑑(𝑖 − 1, 𝑗 − 1)

otherwise
(1)

In this Equation, 𝑃 and 𝑄 represent trajectories such as 𝑃 = ⟨𝑝1, ..., 𝑝𝑚⟩ and 𝑄 = ⟨𝑞1, ..., 𝑞𝑛⟩,



Device ID DFD PDR DFD MP 3rd quartile PDR (m) 3rd quartile MP (m)
1 0.06 0.06 7.22 7.23
2 0.11 0.11 7.70 7.56
3 0.13 0.15 7.43 11.20
4 0.12 0.08 9.30 8.23
5 0.06 0.06 7.03 7.03
6 0.15 0.11 12.30 6.81
7 0.12 0.08 9.95 8.91
8 0.49 0.41 26.85 20.51
9 0.19 0.11 10.86 8.20
10 0.17 0.32 8.88 26.30
11 0.15 0.15 10.14 10.14
12 0.44 0.39 24.96 18.29
13 0.36 0.42 18.31 13.30
14 0.24 0.19 21.58 18.13

Table 1
Performance of the PDR and the MP algorithms

with 𝑝𝑖 and 𝑞𝑖 representing points on each of the trajectories. 𝑑(𝑃𝑖, 𝑄𝑗) is the ground distance
between points pertaining to their respective trajectories 𝑃 and 𝑄. The ground distance 𝑑
between two points 𝑝𝑙 = (𝜙𝑙, 𝜆𝑙) and 𝑝𝑘 = (𝜙𝑘, 𝜆𝑘) is computed with the haversine formula
defined in Equation 2.

𝑑 = 2𝑅 arcsin
√
sin2 (

𝜑𝑙 − 𝜑𝑘
2

) + cos(𝜑𝑘) cos(𝜑𝑙) sin2 (
𝜆𝑙 − 𝜆𝑘

2
) (2)

𝑅 is a constant representing the radius of Earth.
Figure 3 highlights the localization errors of a single device with different lower thresholds. In

this figure, the x-axes represent the localization errors in meters; the y-axes are the empirical
cumulative distribution functions for each algorithm. The points on the plots are the value
obtained for each estimated trajectory with the local PDR algorithm (red lines) and the MP
algorithm (green lines). The dots on each plot represent the third quartiles of each algorithm
in meters. The thresholds represent lower-thresholds as our proposed MP algorithm does not
consider an upper-threshold.

We observe in this Figure that a very high threshold decreases the accuracy of the MP
algorithm. For example, the third quartile of the MP algorithm with a lower threshold set at 0
and no upper threshold is 10.12 m. Whereas with the same percentile, the results go beyond 23
m with a threshold of 70.

However, in the worst cases, the localization errors match the local PDR algorithm as devices
struggle to reach a high accumulated error without encountering other devices.

Table 1 shows the performance of the MP algorithm compared to the PDR algorithm. The
result shows how the algorithm performs with a lower threshold of 60, meaning that each
participant runs the MP algorithm if they encounter another participant and their error is above
60. The MP algorithm improves the accuracy of 9 trajectories and the similarity of 7 trajectories
regarding their groundtruths.



5. Architecture of MobiXIM

We design MobiXIM as a generic framework that is easy to deploy and extensible for different
usages. To achieve these objectives, we built the framework by creating components associated
with a generic collaborative ITS.

As we observe in Figure 1, we have main components that are interconnected. These
components are described hereafter.

Figure 4: Companion App and Design Interface used for data collection and scenario planning

Design interface. As part of the Web platform hosted on a server, the design interface is an
entry point to facilitate the interaction with the other components. It consists of a User Interface
(UI) for creating data collection scenarios and running the experiments. The scenarios are made
of groundtruths assigned to participants. Figure 4 shows a predefined groundtruth drawn on
the design interface. The role of the QR-Code on the right panel of the design interface is to
share the groundtruths with participants. Besides its role in designing groundtruths, the design
interface is also used to edit some parameters of the proposed algorithms. These parameters
can be fine-tuned by researchers to evaluate better how they affect the performance of their
algorithms.

The design interface interacts with the other components by using a RESTful API. With the
aim to make MobiXIM extensible, such architectural design facilitates the usage of MobiXIM in
other applications.

Companion App. As illustrated in Figure 4, the link between the design interface and the
companion app is made through a QR-Code that contains a link to the scenario details, the
groundtruth, the floorplan, and the server address.

Core Engine. The set of algorithms for estimating a device’s location is grouped into a core
engine. This engine contains three types of algorithms: filtering, positioning, and collaborative
algorithms. We design the core engine with a plugin architecture to make it extensible. Using
this architecture, we conceive algorithms as independent entities to facilitate the collaboration



between researchers. The proposed algorithms, defined as plugins, must follow a predefined
structure given as follows:

• Name. A plugin is identified by its name.
• Slug. It is used as a unique identifier for each plugin.
• Category. Plugins are grouped into three categories: Filtering algorithm, Positioning
algorithm and Collaborative algorithm.

• Display_name. It is used in the design platform to identify plugins with a human-readable
format.

The plugins should implement all the methods of predefined interfaces. For example, plugins
for filtering algorithms should have at least a method called get_filtered_data that takes raw
acceleration data as input and returns the filtered data.

Persistence Unit (PU). Also defined as a storage unit, it stores raw inertial data, groundtruth
trajectories, and parameters obtained from the design interface. To facilitate the export of the
results, the PU stores the links to the inertial and corrected trajectories generated by the local
and collaborative algorithms.

6. Related work

In the literature, many attempts have been made to standardize the process of devising ITS. The
heterogeneity of tracking technologies mainly justifies this. Poulose et al. take advantage of this
heterogeneity to propose a sensor-fusion framework using smartphone sensors. Their proposed
framework combines fingerprinting and trilateration using WiFi and PDR [18]. They present a
flow chart of sequences for data collection and steps for building positioning algorithms. Their
framework highly emphasizes fingerprinting, which is a cumbersome process that requires
some equipment and generates a significant cost for collecting data.

Potorti et al. propose the EvAAL framework to evaluate ITS [16]. It is a well-proven frame-
work that has been used for the past editions of the IPIN competitions. It offers tools for
evaluating numerous algorithms on various use cases (pedestrian versus robotic navigation,
real-time positioning, etc.). The EvAAL framework establishes several rules for evaluating
positioning algorithms in a standardized way, such as the movement of participants, the space
and time to execute scenarios, and the error metric.

In comparison with the EvAAL framework, MobiXIM offers a range of tools that goes beyond
the evaluation of ITS. MobiXIM is a ready-to-use framework that allows researchers to devise,
evaluate and fine-tune their algorithms. This is done by setting guidelines and providing
with tools allowing researchers to control their experiments. By adding support for mapping
using a GeoJSON format, we enable researchers to test their algorithms by considering the
characteristics of their deployment environment. This way, researchers can devise algorithms
integrating positioning techniques such as map matching, particle filtering, etc.

Recently, Van de Wynckel and Signer proposed the OpenHPS Framework for devising hybrid
positioning systems composed of wireless and inertial-based technologies [19].



This framework addresses the lack of control in the devising process of ITS. It decomposes
each step in modular layers of abstractions, such as symbolic spaces or high-level API endpoints.
In their paper, they demonstrate the usage of their framework by developing an ITS with
fingerprinting as a positioning algorithm. With the symbolic space abstraction, they represent
rooms, corridors, lobbies and toilets as GeoJSON polygonal features.

Compared to the above-cited frameworks, the novelty of MobiXIM is the focus on the
collaborative aspect of indoor tracking. By proposing this framework, we aim to stimulate
researchers’ interest in collaborative ITS and, facilitate the development of new collaborative
algorithms.

7. Discussion & Future work

Proposing a framework that considers the most important aspects of an ITS is a difficult task,
given all the different techniques used for Indoor Tracking. This paper proposes a framework
that addresses the essential points needed to design an ITS. We extend the state of the art by
adding a collaborative aspect that is missing in frameworks proposed in the literature.

One of the reasons for integrating a collaborative aspect to our proposed framework comes
from the growing interest in solutions that use Device-to-Device (D2D) communications to
improve positioning estimates. These solutions use an extensive range of technologies and
tracking algorithms such as BLE with signals lateration [20], WiFi fingerprinting [21], PDR
with particle filtering [12] or positioning with Visible Light [22].

Beyond the differences in technologies and tracking algorithms, these solutions use a similar
approach to what we describe in this paper. Indeed, they integrate a local algorithm for
computing local estimates, estimate the distance between users and use this data to improve
the accuracy of a baseline algorithm. For example, Qi et al. proposed a collaborative ITS using
WiFi RSS fingerprints [23]. Their paper mostly focuses on accurately estimating the physical
distance between users using nearest-neighbour, random forest and a multilayer perceptron on
the WiFi RSS fingerprints collected in advance. For devising such solutions, MobiXIM offers a
high level of abstraction by allowing users to integrate existing trajectories generated by any
positioning technique. In addition, our proposed framework allows users to define their own
method for estimating inter-user distances and sending these data to a collaborative algorithm.

To facilitate the large adoption of our proposed framework in the future, it would be relevant to
integrate some aspects commonly found in the literature. One of these aspects is the integration
of a Cartesian spatial representation system. In this paper, we only consider a geometric spatial
representation system. This design choice aims at facilitating the interconnection with existing
outdoor positioning systems. As most location-based services rely on GNSS, we believe the
research community and the industry will easily transition between both systems if they share
the same spatial representation system.

Another major point that is debatable is the data collection procedure presented in this paper.
We are aware that placing landmarks on a map could introduce errors, but we believe that it
remains an easy way of enabling researchers to test their algorithm quickly. For those concerned
about centimetre-level accuracy, MobiXIM offers an API that allows researchers to use their
own datasets without going through the web platform.



Potential improvements

The MP algorithm presented in this paper serves as a mockup algorithm to illustrate how a
collaborative algorithmworks. This algorithm can be improved by considering other parameters,
such as the upper threshold. The MP algorithm presented in this paper considers that errors
accumulate over time and use an error counter that increments at a fixed time interval. In
the literature, another way of doing it is through a Kalman gain which offers the tools for
representing the reliability of a system estimates [18]. As this paper aims to present a generic
framework for collaborative ITS, we are working on proposing more robust collaborative
algorithms developed using our proposed framework.

8. Conclusion

This paper explores the stages of devising, evaluating, and fine-tuning collaborative ITS. After
highlighting the laborious process of executing these stages, we propose a framework to collect
real-life data, to combine them, and reproduce them in a controlled environment. Using a
plugin architecture, we enable researchers to take advantage of the code reuse principle that
boosted the development of complex pieces of software. Our goal is to ensure the extensibility
of the framework and to facilitate its adoption by the research community. In future work, we
will extend the framework to consider wireless-based ITS. We will also propose more complex
collaborative algorithms built with MobiXIM.
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