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Abstract 

In this study, we present a novel approach for combining Building Information Modeling (BIM) and 
panoramic photogrammetry-based Structure-from-Motion (SfM) to achieve accurate camera pose 
estimation in architectural scenes. The fusion of BIM and SfM information addresses the limitations of 
individual methods: the former offers global positioning, but it suffers from suboptimal accuracy; while 
the latter provides accurate relative positioning, it lacks scaling and global positioning. Our method 
consists of four key steps: (1) computationally efficient global positioning of panorama images in the 
BIM model using indoor semantic skymasks to generate probability distributions, (2) relative 
positioning estimation from the panoramic SfM process, (3) rough alignment of the SfM reconstruction 
with the BIM positioning using generalized Procrustes analysis (GPA), (4) refinement of the camera pose 
using non-linear least-squares optimization. We evaluate the performance of our proposed method 
using the real-world dataset of panoramic images capturing architectural scenes and compare the 
refined camera poses with ground truth. The results demonstrate camera positioning accuracy of fewer 
than 0.6 meters when compared to using BIM or panoramic SfM individually. This research highlights 
the potential benefits of fusing SfM and BIM modalities, paving the way for more accurate and efficient 
camera pose estimation pipelines in the architecture, engineering, and construction (AEC) domain. 
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1. Introduction 

The burgeoning interest in construction automation, virtual reality-enabled scene navigation, 
sophisticated facility management, and as-built documentation has catalyzed the development of 
a myriad of techniques in computer vision, photogrammetry, and Building Information Modeling 
(BIM) [1-3]. Visual documentation is critical in construction projects for monitoring site conditions 
and progress. While images alone may not suffice, BIM can provide a detailed digital 
representation of the building or structure, allowing construction teams to identify discrepancies 
between planned designs and actual construction [4]. Integrating images and BIM models enables 
effective communication and collaboration between stakeholders, improving decision-making and 
problem-solving. Recent research has shown that such integration can enhance the accuracy and 
completeness of construction documentation [5]. Precise camera pose estimation constitutes a 
pivotal aspect of these applications, as it substantially influences the integration quality between 
captured images and BIM models [6]. However, current approaches do not adequately address the 
challenges in automating camera pose estimation for panoramic images, leaving a research gap in 
achieving successful BIM model integration. 

Panoramic imaging has witnessed a surge in popularity in recent years, attributed to its capacity 
to encapsulate an extensive field of view within a single image, rendering it particularly apt for 
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architectural scenarios. Nonetheless, automating camera pose estimation for panoramic images 
engenders distinct challenges that must be addressed to ensure successful BIM model integration. 
Structure-from-Motion (SfM) represents a widely employed photogrammetric technique for 
deducing camera poses and reconstructing 3D scenes from an unordered set of panorama images. 
Despite progress in panoramic SfM, issues pertaining to scale ambiguity and restrictions on 
relative positioning may impede the applicability of this method. 

Several studies have explored the integration of BIM and photogrammetric techniques for 3D 
reconstruction and as-built documentation. For example, [7] proposed a framework for 
integrating BIM and laser scanning data to generate accurate and detailed as-built models. 
Similarly, [8] developed a method that combines BIM and photogrammetry to create a 3D model 
of a building interior for virtual reality applications. However, these studies do not specifically 
address the challenges of automating camera pose estimation for panoramic images in the context 
of BIM integration. 

Concurrently, BIM has emerged as an indispensable tool within the architecture, engineering, and 
construction (AEC) fields, providing an exhaustive digital representation of a building's physical 
and functional characteristics [9]. BIM models offer a global coordinate system, along with 
invaluable geometric and semantic information to direct and constrain the camera pose estimation 
procedure. However, the limited level of detail in BIM models renders attaining high-precision 
positioning both arduous and computationally demanding. Previous studies on BIM-based visual 
positioning systems (VPS) have exclusively explored virtual environments, which do not 
accurately represent real-world conditions, as they lack scene changes due to dynamic objects 
[10]. 

In this paper, we propose a method that leverages static objects exclusively for BIM-based 
positioning, incorporating the layout and static semantic objects such as doors and windows. 
Additionally, we introduce a novel approach for positioning panoramic images by employing geo-
tagged indoor semantic skymasks, building upon our previous research on skymask matching-
aided positioning in urban canyons [11]. These indoor semantic skymasks offer a detailed 
representation of a 3D location's spatial layout within an indoor environment, encompassing both 
geometric and static semantic information. This approach enhances the computational efficiency 
of candidate-based matching as opposed to traditional image-based comparisons [10, 11]. 
Following this, we utilize panoramic photogrammetry based SfM to achieve accurate relative 
positioning. Our method aims to overcome the limitations inherent in each individual technique 
by harnessing the complementary information provided by both BIM and SfM. We contend that 
the integration of panoramic BIM and SfM will lead to more precise and reliable camera pose 
estimation, benefiting a wide array of applications within the AEC domain, including but not 
limited to: 

• Construction automation: Accurate camera pose estimation facilitates streamlined 
construction processes by enabling precise alignment of the physical building with its digital 
representation. 
• Virtual reality-enabled navigation: Realistic virtual tours of architectural spaces can be 
generated by integrating accurate camera pose estimation with immersive virtual reality 
experiences. 
• Facility management: Maintaining and updating building documentation becomes more 
efficient and accurate through precise camera pose estimation, allowing facility managers to 
better track building conditions and plan renovations. 
• As-built documentation: By combining accurate camera pose estimation with BIM 
models, architects and engineers can create more reliable as-built documentation for future 
reference and regulatory compliance. 
 

The integration of BIM and panoramic SfM for accurate camera pose estimation, as proposed in 
this research, offers a multitude of advantages over conventional methods that solely employ 
either panoramic BIM or SfM. These benefits can be encapsulated within the following points: 



• Enhanced Accuracy: By amalgamating information derived from BIM global positioning 
and panoramic SfM relative positioning, our methodology transcends the limitations 
inherent to each individual technique, culminating in superior camera pose estimation 
precision. 

• Scale Recovery: By integrating the BIM model, replete with accurate scale information, our 
approach effectively recovers the appropriate scale of the SfM reconstruction. 

• Improved Computational Speed: Our method extracts geometric and semantic 
information to generate pre-computed indoor semantic skymasks for positioning, 
significantly reducing computation time compared to visual positioning systems (VPS) that 
depend on whole-image comparisons. 

However, it is important to note that this approach has some potential weaknesses: 

• Dependence on static objects: The proposed method leverages static objects such as 
doors and windows for camera pose estimation, which may not be sufficient in all scenarios.  

• Limited level of detail: The level of detail in BIM models may not always be sufficient for 
high-precision positioning, which could limit the effectiveness of the proposed method. 

 

2. The proposed integration of BIM and SfM for accurate camera pose 
estimation 

 
Figure 1: Flowchart of the proposed integration of BIM and panoramic SfM for accurate 

camera pose estimation 



 
The proposed algorithm can be divided into two main stages in Fig. 1: an offline process and an 
online process. During the offline stage, the Building Information Modeling (BIM) model is 
processed to extract two-dimensional (2D) semantics pertaining to its environmental 
surroundings within the panorama frame at each position, as detailed in Sub-Section 3.1. The 
extracted 2D semantics is subsequently used to create an indoor semantic skymask, which stores 
the elevation profile of the upper and lower boundaries of walls at each azimuth, alongside binary 
indicators denoting the presence or absence of doors and windows at each azimuth (Sub-Section 
3.3). These indoor semantic skymasks are stored in a database for utilization during the online 
stage. 

In the online stage, panoramic images are processed using deep learning models to extract layout 
and semantics (Sub-Section 3.2), which are then employed to generate query indoor semantic 
skymasks (Sub-Section 3.3). The proposed method comprises two main components: 1) Indoor 
semantic skymask matching, wherein each query indoor semantic skymask is matched with 
candidate indoor semantic skymasks to produce a probability distribution and its corresponding 
expected global position (Sub-Section 3.4); and 2) SfM is applied to generate unscaled relative 
positioning estimates (Sub-Section 3.5). The estimated unscaled relative 2D positions serve as 
input for the Generalized Procrustes Analysis (GPA), which approximately aligns them with the 
expected global positions of the query images (Section 3.6). Finally, the positions are refined 
through non-linear least squares optimization, using their respective probability distributions 
(Sub-Section 3.7). 

The paper is organized as follows: Section 3 introduces the methodology for integrating BIM and 
SfM for accurate camera pose estimation. Section 4 presents the experiment setup and results. 
Section 5 presents the conclusion and section 6 details future works, respectively. 

 

3. Methodology 

3.1. Distribute Candidate Positions and Generate 2D Semantics 

The initial step in our method entails obtaining the BIM model of the indoor environment. In this 
study, we made use of the BIM model of an office, which was provided in the Industry Foundation 
Classes (IFC) open-source format. A BIM model encompasses all information related to the 
building, including its physical attributes. For instance, a door within a BIM model would already 
be labeled "door" in the IFC format, which can then be utilized to generate semantics. This study 
employs the ADE20k classes to categorize objects in the BIM model [8]. Owing to the Level of 
Detail 2 (LOD2) nature of our BIM model, we focused on the semantics of "ceiling," "wall," "floor," 
"door," and "window" while excluding all other dynamic objects. This exclusion is crucial, as 
dynamic objects can be relocated in the real environment, and their presence may lead to 
erroneous camera pose estimation. 

 
Figure 2: Candidates with 1m separation in the BIM model 

Firstly, candidate positions 𝐜 are spread across the BIM model with 1-meter separation and 1.8m in height 

as shown in Fig. 2. We assume that the height of the query images is 1.8m. The following are 
defined: 



𝐜 = [𝑥, 𝑦] 
𝐂 = {𝐜0 ⋯ 𝐜𝑠} 

𝐼𝑚𝑔𝐜
𝑠𝑒𝑔

= 𝑆𝐸𝐺(𝐮, 𝐯) 
(1)  

Where 𝐜 is a two-dimensional position, and the subscript 𝑠 is the index of 𝐂, which are all the 
candidate positions inside the BIM model. Position 𝐜 is extracted from database 𝐂, where 𝐜 ∈  𝐂. 
𝑆𝐸𝐺 is the function that assigns each pixel (𝐮, 𝐯) an indexed number to represent a class. A 

segmented image for a candidate position is denoted as 𝐼𝑚𝑔𝐜
𝑠𝑒𝑔

 as shown in Fig. 3. 

 

Figure 3: Semantic extraction from candidate position 

3.2. Layout and semantic estimation 

Given a query panorama image, we perform layout estimation and semantic segmentation. This 
can be achieved using LGT-net [12] and Segformer [13], respectively. 

First, we employ the LGT-net model to estimate the layout of the given panoramic image. LGT-net 
is a state-of-the-art deep learning model specifically designed for the task of layout estimation. The 
output of the LGT-net model is a set of elevation angles that describe the estimated upper and 
lower layout. 

𝐥𝑘
𝑢𝑝𝑝𝑒𝑟[𝛼], 𝐥𝑘

𝑙𝑜𝑤𝑒𝑟[𝛼] = 𝐿𝐺𝑇(𝐼𝑚𝑔𝑘) (2)  
Where the subscript 𝑘 represents the index of the query images. α represents the azimuth angle 
(0 to 359 degrees). 𝐥𝑘

𝑢𝑝𝑝𝑒𝑟[𝛼] and 𝐥𝑘
𝑙𝑜𝑤𝑒𝑟[𝛼] represents the elevation angle (0 to 180 degrees) for 

each azimuth angle (0 to 359 degrees), respectively for the upper and lower layout as shown in 
Fig. 4. 

 

Figure 4: Layout elevation extraction from query image 

Next, we apply the Segformer model to perform semantic segmentation on the panoramic image. 
Segformer is a semantic segmentation model that can efficiently and accurately segment the input 
image into various semantic classes, such as walls, floors, ceilings, furniture, and other objects 
based on the ADE20k datasest [13]. The output of the Segformer model is a pixel-wise label map 
that provides a semantic understanding of the scene, and can be formulated as: 

𝐼𝑚𝑔𝑘
𝑠𝑒𝑔

= 𝑆𝐸𝐺𝐹𝑂𝑅𝑀𝐸𝑅(𝐼𝑚𝑔𝑘) (3)  

Where 𝑆𝐸𝐺𝐹𝑂𝑅𝑀𝐸𝑅 is the semantic segmentation, and 𝐼𝑚𝑔𝑘
𝑠𝑒𝑔

 is the segmented query image of 
index 𝑘 as shown in Fig. 5. 

 



Figure 5: Segmented image extraction from query image 

3.3. Indoor Semantic Skymask Generation 

The indoor semantic skymask is a 360x4 matrix that serves as a detailed representation of an 
indoor environment 3D location's spatial layout. It encodes the elevation angle (0 to 180 degrees) 
for each azimuth angle (0 to 359 degrees). The matrix contains: 
1. 𝐥𝐚𝐲𝐨𝐮𝐭𝑢𝑝𝑝𝑒𝑟[𝛼] - Elevation angles of the upper layout at each azimuth (column 1) 
2. 𝐥𝐚𝐲𝐨𝐮𝐭𝑙𝑜𝑤𝑒𝑟[𝛼] - Elevation angles of the lower layout at each azimuth (column 2) 
3. 𝐝[𝛼] - Binary indicators for the presence or absence of doors at each azimuth (column 3) 
4. 𝐰[𝛼] - Binary indicators for the presence or absence of windows at each azimuth (column 4) 

 
A segmented candidate image 𝐼𝑚𝑔𝐜

𝑠𝑒𝑔
 can be converted to the elevation angles of the upper layout 

𝐥𝐜
𝑢𝑝𝑝𝑒𝑟[𝛼] and lower layout 𝐥𝐜

𝑙𝑜𝑤𝑒𝑟[𝛼] by masking the ceiling and floor labels and extracting the 
boundaries at each azimuth angle as shown in Fig. 6. 

 
The binary indicators for the “door” 𝐝[𝛼] and “windows”  𝐰[𝛼] can be extracted by observing if 
the respective labels are present at the azimuth angle. 

 
Figure 6: Binary indicator extraction from query segmented image 

The layouts and binary indicator are extracted and visualized on an indoor semantic skymask as 
shown in Fig. 7. 

 
Figure 7: Query and candidate indoor semantic skymask visualization 

3.4. Indoor Semantic Skymask Matching 

To find the similarity between two indoor semantic skymasks, we perform the following steps: 

3.4.1. Calculate the normalized circular cross-correlation of the layouts 

For a pair of layouts, such as the upper layout of a query and candidate image, we calculate their 
normalized circular cross-correlation 𝐫𝑐,𝑘[𝑚] as follows: 

𝐫𝑐,𝑘
𝑢𝑝𝑝𝑒𝑟[𝑚] =

1

𝑁
∑

𝐥𝐜
𝑢𝑝𝑝𝑒𝑟[𝛼] ⋅ 𝐥𝑘

𝑢𝑝𝑝𝑒𝑟[(𝛼 + 𝑚)mod𝑁]

√(∑ 𝐥𝐜
𝑢𝑝𝑝𝑒𝑟2

[𝛼]𝑁−1
𝑛=0 ) ⋅ (∑ 𝐥𝑘

𝑢𝑝𝑝𝑒𝑟2
[𝛼]𝑁−1

𝑛=0 )

𝑁

𝛼=0

 (4)  



𝐫𝑐,𝑘
𝑙𝑜𝑤𝑒𝑟[𝑚] =

1

𝑁
∑

𝐥𝐜
𝑙𝑜𝑤𝑒𝑟[𝛼] ⋅ 𝐥𝑘

𝑙𝑜𝑤𝑒𝑟[(𝛼 + 𝑚)  mod 𝑁 ]

√(∑ 𝐥𝐜
𝑙𝑜𝑤𝑒𝑟2

[𝛼]𝑁−1
𝑛=0 ) ⋅ (∑ 𝐥𝑘

𝑙𝑜𝑤𝑒𝑟2
[𝛼]𝑁−1

𝑛=0 )

𝑁

𝛼=0

 

Here, 𝐫𝐜,𝑘
𝑢𝑝𝑝𝑒𝑟[𝑚] is the 𝑚 -point circularly shifted version of the upper layout boundary 𝐥𝑘

𝑢𝑝𝑝𝑒𝑟[𝛼] 

with respect to 𝐥𝐜
𝑢𝑝𝑝𝑒𝑟[𝛼]. Where 𝑁 is 360. The cross-correlation measures the similarity between 

the elevation profiles as a function of the circular shift 𝑚 in the azimuth domain. 

3.4.2. Calculate the weighted average normalized cross-correlation 

We compute the weighted average normalized cross-correlation 𝐫𝐜,𝑘[𝑚] using the results from 
the upper and lower layouts: 

𝐫𝐜,𝑘[𝑚] = 0.5 ⋅ 𝐫𝐜,𝑘
𝑢𝑝𝑝𝑒𝑟[𝑚] + 0.5 ⋅ 𝐫𝐜,𝑘

𝑙𝑜𝑤𝑒𝑟[𝑚] (5)  

The maximum value of 𝐫𝐜,𝑘[𝑚] signifies the highest similarity between the two boundaries, and 
the corresponding shift 𝑚𝐜,𝑘 provides the optimal alignment for query 𝑘 with respect to candidate 
𝐜. 

3.4.3. Compare the door and window semantics 

For each query 𝑘 with the corresponding shift 𝑚𝐜,𝑘, we compare the door and window semantics 

using binary comparison. We align the candidate semantics with the query semantics using the 
shift 𝑚𝐜,𝑘: 

𝐝𝑘

𝑚𝐜,𝑘[𝛼] = 𝐝𝑘[(𝛼 + 𝑚𝐜,𝑘) mod 𝑁] 

𝐰𝑘

𝑚𝐜,𝑘[𝛼] = 𝐰𝑘[(𝛼 + 𝑚𝐜,𝑘) mod 𝑁] 
(5)  

Next, we perform binary comparison: 
𝐬_𝐝𝐜,𝑘[𝛼] = 𝐝𝐜[𝛼] ⋅ 𝐝𝑘

𝑚𝐜,𝑘[𝛼],  for 𝛼 in [0, 𝑁] 

𝐬_𝐰𝐜,𝑘[𝛼] = 𝐰𝐜[𝛼] ⋅ 𝐰𝑘

𝑚𝐜,𝑘[𝛼],  for 𝛼 in [0, 𝑁] 
(6)  

These values equal 1 when both semantics are present at the same azimuth angle and 0 
otherwise. 𝐬_𝐝𝐜,𝑘[𝛼] and 𝐬_𝐰𝐜,𝑘[𝛼] represent the score of the door and window semantics 
respectively. 

 

3.4.4. Calculate the semantics similarity score 

We determine the overall similarity score by summing the door and window similarity values 
and normalizing by the total number of azimuth angles 𝑁: 

𝑠𝑒𝑔_𝑠𝑖𝑚𝐜,𝑘 =
∑ (𝐬𝐝𝐜,𝑘

[𝛼]) + ∑(𝐬𝐰𝐜,𝑘
[𝛼])

(2 ⋅ 𝑁)
,   

for 𝛼 in [0, 𝑁] 

(7)  

The overall semantic similarity score 𝑠𝑒𝑔_𝑠𝑖𝑚𝐜,𝑘 ranges from 0 to 1, with 1 representing the 
highest similarity between the query and candidate indoor semantic skymasks. 

 

3.4.5. Combine the layout boundary and semantic similarity scores for candidate 
selection 

In order to determine the most likely candidate location for each query image k and candidate 
vector c, we combine the maximum layout similarity, denoted as 𝑚𝑎𝑥(𝐫𝐜,𝑘[𝑚]), and the overall 
semantic similarity score, represented by 𝑠𝑒𝑔_𝑠𝑖𝑚. The combination is achieved by assigning 
weights to each component, as shown in the following equation: 



𝑠𝑖𝑚𝐜,𝑘 = (0.3 ⋅ max(𝐫𝐜,𝑘[𝑚])) + (0.7 ⋅ 𝑠𝑒𝑔_𝑠𝑖𝑚𝐜,𝑘) (8)  

The weighting for combining both layout and semantic similarity scores is estimated by comparing 
the combined similarity that yields the best performance on a set of 10 images, with respect to 
their ground truth locations. The combined similarity score 𝑠𝑖𝑚𝐜,𝑘 for each candidate c and the 
corresponding shift 𝑚𝐜,𝑘 is used to distribute a likelihood heatmap 𝐇𝑘, as illustrated in Figure 8. 

 

Figure 8: Likelihood heatmap of a query image (left), alignment of query indoor semantic 
skymask to candidate semantic skymask (top), probability distribution of a query image (right) 

The heatmap 𝐇𝑘 represents the likelihood that a query image k is located at the candidate c 
location. 

3.4.6. Probability distribution 

To calculate the probability distribution, we first compute the sum of likelihood values for each 
query image k across all candidate positions: 

𝑠𝑢𝑚𝑘 = ∑ 𝐇𝐜𝑠,𝑘

𝑁

𝑠=1

 (9)  

Where s is the index of the candidates and N is the total number of candidates. Next, we derive the 
probability at each candidate position c in the probability distribution 𝐏𝑘: 

𝐏𝐜,𝑘 =
𝐇𝐜,𝑘

𝑠𝑢𝑚𝑘
 (10)  

The resulting 2D array 𝐏𝑘 represents the probability distribution corresponding to the likelihood 
heatmap 𝐇𝑘. Each value 𝐏𝐜,𝑘 indicates the probability of query k occurring at position c. 

The maximum probability 𝑚𝑎𝑥(𝐏𝑘) corresponds to the expected global position c of query image 
k. We denote this as 𝐩_𝐢𝑘. 

3.5. Panorama SfM 

In this study, we employed OpenMVG (Open Multiple View Geometry) software for panorama 
Structure from Motion (SfM) to estimate the relative camera pose of each image [14]. OpenMVG 



estimates the position of each camera used to capture the input images relative to a local 
coordinate system with ambiguous scaling. 

 
Figure 9: Relative positioning of cameras in OpenMVG 

𝐩_𝐬 = [𝑥, 𝑦] 
𝐏_𝐒 = {𝐩_𝐬𝟎 ⋯ 𝐩_𝐬𝑘} 

(11)  

Where 𝐩_𝐬 is a two-dimensional SfM estimated position, and the subscript k is the query index of 
𝐏_𝐒. Position 𝐩_𝐬 is extracted from database 𝐏_𝐒, where 𝐩_𝐬 ∈  𝐏_𝐒. 

3.6. Generalized Procrustes Analysis 

The key part of the GPA algorithm is the computation of the optimal similarity transformation. 
Let 𝐏_𝐈 denote the set of positions and 𝐏_𝐒 denote the set of positions to be aligned. The optimal 
rotation matrix 𝐑, scaling factor 𝑠, and translation vector 𝐭 are computed. 

𝐏_𝐆 = 𝑠 ∙ 𝐑 ∙ 𝐏_𝐒 + 𝐭 
𝐏_𝐆 = {𝐩_𝐠𝟎 ⋯ 𝐩_𝐠𝑘} 

𝐩_𝐠 = [𝑥, 𝑦] 

(12)  

The GPA algorithm iteratively aligns 𝐏_𝐒 to the global reference frame by computing the optimal 
similarity transformations and updating the reference shape until convergence. The transformed 
positions are denoted as 𝐏_𝐆. 

 

3.7. Non-linear least squares optimization 

Let's denote the set of query image positions from GPA algorithm as 𝐩_𝐠𝑘, where 𝑘 =  1, 2, … , 𝑛, 
and each query image position 𝐩_𝐠𝑘 has an associated spatial probability distribution 𝐏𝑘. 
Additionally, we know the relative positions between the landmarks from SfM as 𝐬𝑘𝑙, where 𝐬𝑘𝑙 =
𝐩_𝐠𝑘 − 𝐩_𝐠𝑙. 

 
Let the transformation be represented by a rotation matrix 𝑅, a scaling factor 𝑠, and a translation 
vector 𝑡. The transformed query image positions can be written as 𝑞𝑘, where 𝑞𝑘 = 𝑠 ∙ 𝑅 ∙ 𝐩_𝐠𝑘 +
𝑡. The non-linear least squares optimization problem can be formulated as: 

min
𝑹,𝑠,𝒕

∑ ∑ 𝑫𝑘𝑙(𝒒𝑘, 𝒒𝑙 , 𝐬𝑘𝑙)

𝑛

𝑙=1,𝑙≠𝑘

𝑛

𝑘=1

 (13)  

Where 𝑫𝑘𝑙(𝒒𝑘, 𝒒𝑙 , 𝐬𝑘𝑙) is a function that computes the squared difference between the 
transformed positions 𝒒𝑘 and 𝒒𝑙 and their expected relative positions 𝐬𝑘𝑙, weighted by the spatial 
probability distribution: 

𝑫𝑘𝑙(𝒒𝑘, 𝒒𝑙 , 𝐬𝑘𝑙) = 𝐏𝑘(𝒒𝑘) ⋅ 𝐏𝑙(𝒒𝑙) ⋅ ||𝒒𝑘 − 𝒒𝑙 − 𝐬𝑘𝑙||
2

 (14)  

The optimization problem is solved using the Levenberg-Marquardt algorithm, and the final 
positions are denoted as 𝐐 = {𝒒𝟎 ⋯ 𝒒𝑘}. 

4. Experiment setup and results 
4.1. Dataset and Preprocessing 



In this section, we describe the dataset used to evaluate our proposed method for indoor camera 
pose estimation. The dataset consisted of 14 panoramic images and the corresponding BIM model 
of an office. The images were captured using an Insta360 ONE X2 camera mounted on a tripod 
and covered a spatial extent of approximately 120𝑚2. The ground truth location of the images 
was established by aligning them with the BIM model via visual overlap. The BIM models were 
generated from architectural plans and as-built drawings, providing Level of Detail 2 (LOD2) 
geometric and semantic information about the built environment. 
 
To evaluate the performance of our proposed method, we compared it against two other 
methods: ground truth (aligned via visual overlap) and indoor semantic skymask matching. The 
ground truth method served as a reference for assessing the accuracy of the other methods, while 
the indoor semantic skymask matching method represented a state-of-the-art approach for 
indoor camera pose estimation. Our proposed method combined indoor semantic skymask 
matching with panoramic photogrammetry-based Structure-from-Motion (SfM) techniques to 
achieve more accurate and reliable camera pose estimation in architectural scenes. By comparing 
the performance of these methods, we aimed to demonstrate the effectiveness of our proposed 
approach and its potential for various applications, such as virtual reality simulations, robotics, 
and 3D modeling. 

4.2. Results and Analysis 

The performance metrics presented in Table I and the accompanying statements provide 
important information about the accuracy of camera pose estimation using different methods in 
architectural scenes. The exact position and orientation are critical for various applications, such 
as virtual reality simulations, robotics, 3D modeling, and building inspection. In addition, for 
building inspection and review applications, it is important to ensure that the captured images 
cover the entire building area with sufficient overlap for accurate reconstruction. The precision 
requirements may vary depending on the specific application, but in general, the camera pose 
estimation must be accurate enough to enable reliable localization and navigation in the 
environment. 
 
In our study, we evaluated the performance of two methods for camera pose estimation: indoor 
semantic skymask matching and BIM and SfM integration. The results showed that the indoor 
semantic skymask matching method had an average positioning error of 1.28 meters to the 
ground truth, which indicates relatively poor accuracy and might not be sufficient for some 
applications. In contrast, the BIM and SfM integration method achieved a mean distance error of 
0.59 meters with 5.32° heading accuracy, which represents a significant improvement over the 
indoor semantic skymask matching method. The standard deviation of the errors was also lower 
for the BIM and SfM integration method, indicating more consistent performance across different 
scenes. 

Table I. Accuracy of the proposed BIM and SfM Integration 

Method 
2D Position Heading 
Mean (m) SD (m) Mean (°) SD (°) 

Indoor semantic skymask matching 1.28 1.05 15.43 18.84 
Proposed BIM and SfM Integration 
 

0.59 0.31 5.32 5.09 

 



 
Figure 10: Positioning results of the proposed integration of BIM and panoramic SfM method 

Overall, these results demonstrate that fusing BIM and SfM information can lead to more accurate 
and reliable camera pose estimation in architectural scenes. The precision requirements may 
vary depending on the specific application, but our approach has shown promising results and 
could be further optimized for specific use cases. 

5. Conclusion 

In this paper, we propose a novel approach for accurate camera pose estimation in architectural 
scenes by leveraging the complementary strengths of Building Information Modeling (BIM) and 
panoramic photogrammetry-based Structure-from-Motion (SfM). Our method fuses BIM's global 
positioning capabilities with SfM's precise relative positioning to overcome the limitations 
associated with each technique when used in isolation. Specifically, our proposed approach 
utilizes global positioning information from the BIM model to guide the camera pose estimation 
process, providing a global coordinate system and geometric information to constrain the relative 
positioning of panoramic images. This information is critical for achieving accurate and precise 
camera pose estimation and improving the integration quality between captured images and BIM 
models. By combining the benefits of both BIM and panoramic SfM, we aim to overcome the 
limitations inherent in each individual technique and achieve superior performance in camera 
pose estimation for architectural scenes. 
 



The proposed pipeline consists of four key steps, including global positioning using indoor 
semantic skymask matching, relative positioning estimation from panoramic SfM, rough 
alignment using generalized Procrustes analysis, and refinement through non-linear least-
squares optimization. The measured heading and point positioning are within 0.6m positioning 
accuracy according to the results performed in an office. The contributions of the proposed 
method are: 
• The formulation of positioning as an indoor semantic skymask problem enables us to apply 

an existing wide variety of advanced matching metrics to this problem. 
• Detection and exclusion of dynamic objects to prevent false measurements. 
•  By integrating the BIM model, replete with accurate scale information, our approach effectively 

recovers the appropriate scale of the SfM reconstruction. 

Considering the preliminary results presented in this paper, we believe the proposed method can 
provide accurate positioning and heading estimation to support various indoor applications. 
Furthermore, this research has significant implications for the AEC domain, as the enhanced 
accuracy and efficiency offered by our method can lead to considerable advancements in various 
applications, such as augmented reality, facility management, and construction monitoring. 
 

6. Future Works 

Several potential future developments on the proposed method are suggested. 
• Simultaneous differential rendering and Factor Graph Optimization: The proposed 

method uses SfM to estimate the relative position of the images and semantic skymask 
matching to estimate the global position. Factor graph optimization can then applied to 
optimize the pose of the images simultaneously to maximize the overall indoor semantic 
matching score for all the images. Future work will explore the use of more advanced 
optimization techniques, such as bundle adjustment, to further improve accuracy. 

• Fault detection: A simulation platform will be created to allow the injection of faults, such as 
occlusions, lighting changes, and object movement, and to evaluate the relationship between 
fault semantic indoor matching estimation and the accuracy of positioning. The proposed 
method will be evaluated under different fault scenarios to assess its robustness and 
effectiveness in real-world construction projects. 

• Dynamic update: Dynamic updates will be introduced to automatically update the BIM 
model when changes are detected in the images, improving its real-time performance. Future 
work will explore the use of machine learning techniques, such as deep learning, to enable 
more accurate and efficient dynamic updates, especially when dealing with complex and 
dynamic scenes. 
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