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Abstract
The future of location-aided applications is shaped by the ubiquity of Internet-of-Things devices. As an
increasing amount of commercial off-the-shelf radio devices support channel response collection, it is
possible to achieve fine-grained position estimation at a relatively low cost. In this paper, we focus on
the channel response-based positioning and tracking for various applications. We first give an overview
of the state of the art (SOTA) of channel response-enabled localization, which is further classified into
two categories, i.e., device-based and contact-free schemes. A taxonomy for these complementary
approaches is provided concerning the involved techniques. Then, we present a micro-benchmark of
channel response-based direct positioning and tracking for both device-based and contact-free schemes.
Finally, some practical issues for real-world applications and future research opportunities are pointed
out.
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1. Introduction

Location acquisition has obtained and continues to attract extensive attention due to the rapid
proliferation of location-based services and the ubiquitous radio devices. Location awareness can
help to automate and optimize the flows of many vertical applications [1, 2], such as automatic
inventory management, smart logistics, human-machine interaction, intelligent factory, etc.,
as shown in Fig. 1. But for Global Navigation Satellite System-denied or indoor environments,
accurate location acquisition is still challenging despite a range of radio frequency technologies
and techniques that have been proposed and deployed during the past decades [3, 4].

Conventional localization solutions generally exploit the distance, angle, or Doppler informa-
tion to estimate the location and trajectory. The localization accuracy highly depends on the
corresponding ranging, angular, and velocity resolution. When relying on time-of-flight (ToF),
the range resolution is directly related to the signal bandwidth as more bandwidth ensures
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Figure 1: Pervasive radio devices enabling various location-aided applications (RFID: radio frequency
identification. LPWAN: low-power wide-area network. UWB: ultra-wideband. VLP: visible light posi-
tioning. BLE: Bluetooth low energy. LTE: long-term evolution. 5G: fifth-generation. 6G: sixth-generation.
mm-wave: millimeter wave. THz: Terahertz.)

finer-grained ToF and hence ranging. Angular resolution is increased when relying on a large
antenna array with more antenna elements. However, it is not practical for bandwidth-limited
systems, e.g., sub-6 GHz, due to the relatively large wavelength and thus large antenna sizes
and inter-antenna spaces [5, 6]. One potential solution to this problem is to construct the virtual
antenna array of a moving antenna, namely built upon the idea of synthetic aperture[7]. Finer
velocity resolution is also achieved with a higher frequency as Doppler is inversely proportional
to the carrier wavelength.

Channel response has a finer granularity than the conventional signal strength-based metrics,
because it can capture small-scale spatial motions via the complex signal (amplitude and phase)
changes in the temporal, frequency, and antenna domains. For example, in the case of one-
way propagation, half-wavelength distance changes will cause 𝜋-rad phase shifts. There is
an increasing community, implementing localization systems based on channel response that
is available in advanced communication systems [8, 5, 9, 10, 7]. With the advances in radio
hardware circuits and signal processing, many commodity radio devices support channel-
sounding measurements, relying on channel state information (CSI) [8, 5], channel impulse
response (CIR) [9, 10], or signal phase [7]. These physical-layer measurements enable accurate
characterization of signal propagation. Compared with the received signal strength indicator
(RSSI), channel response provides a much finer-grained metric to describe the smaller scale
spatial variations. It makes the human-environment and machine-environment interactions
more feasible, enabling various emerging applications.

This paper is dedicated to positioning and tracking for the pervasive location-based services.
According to the authors’ best knowledge, there is limited work that overviews the state of the
art (SOTA) from the perspective of the channel response. We classify the SOTA approaches into
learning-based and model-based methods regarding device-based and contact-free positioning
and tracking. A further taxonomy is presented based on how these leading-edge algorithms
perform with the channel response. We conclude this paper by discussing some practical



concerns and future research opportunities.

2. Channel Response-based Indoor Positioning and Tracking

From the perspective of the radio device, indoor positioning and tracking can in general be
classified into two categories, namely device-based and contact-free (a.k.a. passive, device-free)
schemes, as shown in Fig.2. Device-based positioning and tracking is a cooperative scheme
with radio sensors attached to the users or agents that should be tracked. With the help of
channel-sounding data, device-based solutions have boosted the positioning accuracy from
meter-level to decimetre-level despite limited bandwidth and the limited number of antennas.
By contrast, contact-free positioning and tracking aim for the localization of non-cooperative
users, which relies on radar-like sensors integrated in the environment to facilitate passive
sensing. Again, due to the available channel-sounding data from the commodity devices, it is
feasible to achieve positioning and tracking similarly as done for the phased array radar. For
instance, we can do range-Doppler-angle processing on the channel response.

Under assumption of a far-field MIMO channel, the channel transfer function at time 𝑡 and
frequency 𝑓 (in equivalent base-band) can be given by

H(𝑡, 𝑓)=
𝐿∑︁
𝑙=0

𝛼𝑙𝑐Rx(ΩRx,𝑙)𝑐
⊤
Tx(ΩTx,𝑙)𝑒

−𝒥 2𝜋(
𝑑𝑙
𝜆
+𝜈𝑙𝑡), (1)

where 𝛼𝑙, 𝑑𝑙, 𝜈𝑙 denote the amplitude, distance, and Doppler shift of the 𝑙-th multi-path, respec-
tively. 𝜆 is the wavelength and 𝐿 the number of multi-path components. 𝑐𝑖(Ω𝑖,𝑙), (𝑖 = Tx,Rx)
is the steering vector at transceiver and Ω𝑖,𝑙 the directional vector. 𝑙 = 0 represents the line-
of-sight (LoS) component. For device-based localization, if we can separate LoS from (1), the
location of the users can be inferred because ΩRx,0, ΩTx,0, 𝜏0, and 𝜈0 are the non-liner function
of user’s coordinates.

In the case of contact-free localization, the LoS component and the reflections or scatterings
from the surroundings should be mitigated because the components associating with the target(s)
are desired. Given several moving targets, the channel response of (1) can be rewritten as

H(𝑡, 𝑓)=H̄(f)+
∑︁
j∈𝒟

𝛼jcRx(ΩRx,j)c
⊤
Tx(ΩTx,j)e

−𝒥 2𝜋
(︁

dj
𝜆
+𝜈jt

)︁
, (2)

where H̄(f) is the sum of all static signals to be mitigated. 𝒟 denotes the set of dynamic targets.
To obtain the locations of the multiple targets, the ΩRx,𝑗 , ΩTx,𝑗 , 𝜏𝑗 , and 𝜈𝑗 should be associated
with the corresponding moving target and used for contact-free positioning and tracking.

There are two popular technical routines for channel response-based localization. One is to
estimate the distance, angle, or velocity-related metrics first, and then develop conventional
positioning and tracking algorithms based on the estimated geometrical metrics. These distance-
or angle-related metrics can be estimated from the CSI or CIR via super-resolution parameter
estimation algorithms [11, 6], such as multiple signal classification (MUSIC), space alternating
generalized expectation-maximization (SAGE), a maximum likelihood parameter estimation
framework (RiMAX), etc. The second is to exploit the channel response measurements directly
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Figure 2: Device-based and contact-free indoor positioning and tracking.

for positioning and tracking purposes [12, 13], which evades the complex estimation of the
intermediate metrics. The details of the taxonomy will be given in Section 3.

3. Taxonomy of State-of-the-Art

In this section, we will present the leading-edge channel response-based solutions regarding the
device-based and contact-free schemes. The corresponding taxonomy of the channel response-
enabling methods is shown in Fig. 3 and will be further elaborated below.

3.1. Device-based Positioning and Tracking

For indoor applications, the device-based schemes rely on sensors or tags attached to the targets,
like robots, (manned or unmanned) vehicles, packages, etc. As shown in Fig. 2 (top), the users
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Figure 3: Taxonomy of the channel response-based positioning and tracking.

infer their locations relative to the anchors from the received signal which includes the LoS and
multi-path components (MPCs) from the surroundings.

3.1.1. Learning-based Approaches

The learning-based (a.k.a., data-driven) scheme in Fig. 3 generally establishes a non-linear
mapping between the measurements and the targeted locations, which is intuitively easy to
implement. Note that herein the fingerprinting localization approaches are also included within
the learning-based framework because the off-line and on-line phases of fingerprinting are
similar to the training and testing procedures, respectively.

Raw measurements: An intuitive positioning approach is to feed the raw channel measure-
ments into a machine learning model directly to infer the coordinates of the users. Due to the
pervasive access to Wi-Fi radios, there has been tremendous research focusing on CSI-based
Wi-Fi localization in recent years. However, the measured channel response like CSI is a com-
plex signal, and the widely used machine learning tools like neural networks generally are not
capable of processing the complex values. Xiao et al. [8] pioneered CSI-based fingerprinting
localization system (FIFS) using merely the amplitude. Comparatively, Wang et al. [14] proposed
a phase-based fingerprinting system, PhaseFi. A deep neural network with three hidden layers
was adopted to train the phase data. Another possible solution is to feed the amplitude and phase
(or the real and imaginary components) separately to the different channels of the convolutional
neural network (CNN). Moreover, the measured CSI from the commodity devices is distorted
due to the imperfect synchronization and other system errors, which requires complicated
pre-processing. In [5], De Bast et al. showed the CSI can also be calibrated via deep learning
based on an encoder-decoder architecture.
Intermediate geometrical metrics: There are also many works on estimating the inter-

mediate geometrical metrics, namely, angle, distance, or velocity, based on machine learning



tools. In this case, machine learning acts as a super-resolution channel parameters estimation
algorithm. After this, the estimated angle or distance metrics are exploited for positioning or
tracking purpose. In [15], Dai et al. proposed to use deep learning to derive angle-of-arrival
(AoA) from a single snapshot of CSI, in which both classification- and regression-based models
were investigated. Moreover, rather than estimating ToF from CIR directly, most of the learning-
based research for ultra wide-band (UWB) localization focuses on the ToF or range correction
[16].
Elaborated features: Even though learning from raw channel measurements is straight-

forward to implement, it is not easy to learn the location-related features unless a deep neural
network is adopted. It might be not feasible for lightweight mobile edge computing. In [17], Wu
et al. designed an angle-delay domain channel power matrix (ADCPM) for 3D massive MIMO
localization. The ADCPM includes the multi-path power spectrum of delay, elevation, and
azimuth in 4-D tensor, which achieved higher accuracy with reduced computational complexity
and storage overhead. Another main drawback of learning-based approaches is the general-
ization ability for varied environments. To this end, another potential learning-based research
direction is to elaborate the cross-domain features rather than using raw channel response.

3.1.2. Model-based Approaches

Learning-based solutions can achieve very high accuracy at the cost of labour-intensive data
collection and labelling. Comparatively, the model-based approaches establish the explicit
mathematical model from the channel response to the location, which are more physically
interpretable. Furthermore, the model-based algorithms do not have the generalization problem
as in the learning-based approaches, which are attractive from the perspective of real-world
implementation.
Intermediate geometrical metrics: Within this framework, the distance-, angle-, and

velocity-related metrics are estimated from the channel response via the super-resolution
parameters estimation algorithms, e.g., MUSIC, SAGE, RiMAX, etc. Then these intermediate
geometrical metrics are used for positioning and tracking. Specifically, SpotFi was proposed
based on commodity Wi-Fi devices [11]. The AoA of the multi-path propagation was estimated
from the CSI first, then the AoA of a direct link was obtained using a filtering method. Due to
the high-ranging resolution of UWB, multi-path assisted localization has attracted attention
by exploiting the ToF estimates of both LoS and the specular multi-path reflections. Generally,
given the prior knowledge of the floor plan or within the simultaneous localization and mapping
framework [18], the fixed but unknown virtual anchors’ locations can be obtained. Such this,
positioning accuracy can be enhanced via the increasing spatial diversity of more (virtual)
anchors.

Direct localization: Another promising solution is based on the channel response directly,
as it depicts the rich propagation information and is also tightly location-related. This idea
is especially suitable for bandwidth-limited systems, like ultra-high frequency RFID systems,
sub-6 GHz Wi-Fi, BLE, etc. A promising accuracy can be achieved by exploiting the idea of
synthetic aperture, namely the distributed antenna array or moving antenna. For example,
in [7], Miesen et al. proposed to localize the RFID tag via a moving antenna on a robot arm.
The moving antenna constructed a virtual antenna array, and the RFID tag was localized via a



matched filter.

3.2. Contact-Free Positioning and Tracking

Besides the device-based localization mentioned above, contact-free localization also plays an
important role in our daily life. Contact-free localization exploits the signal reflected or scattered
by the targets to estimate the locations, such as worker safety monitoring and accident alerts in
the assembly area in the industry, as shown in Fig. 2 (bottom). This is more feasible as it does
not require attaching any radio devices or sensors to the workers. Meanwhile, it also preserves
personal privacy without the device-based individual identity.

While conventional contact-free methods primarily process the signal strength variations
for coarse positioning, the channel response in commodity devices enables small-scale motion
sensing like the prohibitively large phased array radar with a relatively low cost. Besides
wide-band radio systems like mm-wave devices, narrow-band radio systems are also able to
achieve accurate spatial sensing when deploying multiple antennas, or a motorized platform
based on the idea of synthetic aperture radar. As shown in Fig. 3, there also are learning-based
and model-based approaches generally.

3.2.1. Learning-based Approaches

Contact-free positioning is generally more complicated than the device-based scheme as it
utilizes the reflection or scattering from the targets. The target-of-interest signal is hidden in the
complex multi-path signal and has lower power than the LoS components and even the MPCs
from the surroundings. Learning-based approaches can mitigate or relieve the interference via
a data-driven model.
Raw measurements: Similar to the device-based scheme, learning from raw channel mea-

surements for contact-free localization is relatively intuitive. The difference is the learning-based
contract-free methods should mitigate the undesired background signals including the LoS
propagation and the scattering from the surroundings. There are also mainly two categories of
learning-based approaches: classification and regression. Classification-based methods are to
compare the instantaneous measurements with the fingerprinting database or radio maps to
infer the target’s location. Regression-based methods are to infer the map from the raw channel
measurements to the target’s coordinates.

Intermediate geometricalmetrics: Machine or deep learning tools are exploited to estimate
the distance, angle, or velocity metrics based on the channel measurements in the cases of absent
and present targets. In [9], Li et al. proposed a residual CNN-based reflected ToF estimation
method via learning the differences between static and dynamic CIR or corresponding variance
sequences. Then a particle filter was implemented for passive human tracking based on the ToF
estimates. Moreover, it concluded that the variance-based metric is less domain-dependent than
using the CIR directly.
Elaborated features: To advance cross-domain sensing and achieve (near) zero-effort

sensing for new environments and system settings, a domain-independent feature, namely,
the so-called body-coordinate velocity profile, was designed for the gesture classification [19].
However, according to the authors’ best knowledge, there is no available literature on contact-



free positioning and tracking exploiting the elaborated domain-independent features. But it can
be a promising direction concerning the scalability of the learning-based solutions.

3.2.2. Model-based Approaches

The taxonomy of model-based contact-free positioning and tracking is given as follows.
Intermediate geometrical metrics: One of the most popular approaches is to estimate

the reflected angle, distance, or Doppler velocity from the target(s) using the super-resolution
parameters estimation algorithms. In [20], Widar 2.0 exploited the conjugate multiplication
between the adjacent antennas to mitigate the CSI measurement errors and static interference,
and applied the SAGE algorithm to estimate the targeted MPCs. A binary optimization, together
with a Hungarian algorithm, was used to associate the targeted MPCs along the trajectory.
Instead of using CSI multiplication, Wu et al. [21] proposed a CSI-quotient model to estimate
the targeted Doppler shift. The CSI-quotient model assumed the adjacent antennas possess the
same static interference, which can obtain a higher targeted signal-to-noise ratio.

Direct localization: By using the intermediate geometrical metrics or the MPCs estimates for
contact-free tracking, we not only obtain the targeted MPCs but also the cluttered components.
It is necessary to associate the targeted MPCs along the time, namely evolving association. If
there are multiple targets, associating the MPCs with the specific target, the so-called target
association, is also required. Furthermore, if the radar-like sensors are distributed in the
environment, we estimate the MPCs for each sensor. In this case, we also need to associate the
MPCs of a specific target with all distributed sensors, that is sensor or link association. When
taking this three-dimension association problem into account, the contact-free positioning
and tracking will be computing complex and difficult to resolve [13]. Recently, there is work
focusing on direct channel response-based contact-free localization without the consideration
of MPCs association. Sakhnini et al. [22] established a radar-like tracking prototype based
on a massive MIMO communication test bed. However, a single metallic cylinder target was
considered and localized.

4. Micro-Benchmark: Channel Response-based Direct
Positioning and Tracking

Channel response-based positioning and tracking definitely is a promising research field con-
sidering the pervasive applications, especially, when an increasing number of commodity radio
devices provide the access to channel measurements. Among them, channel response-based
direct localization obtains the location estimates through the integration of physical-layer chan-
nel information, which show its priority concerning low signal-to-noise ratio and multi-path
effect [12, 13]. For device-based localization, instead of estimating the intermediate angle and
distance metrics, we exploit the geometrical diversity of the multiple antenna. The user or
target is localized via a matched filter built upon the idea of synthetic aperture. The user’s



location PU can be estimated via

P̂U =argmax
PU

𝒞(PU)

= argmax
PU

⃒⃒⃒⃒
⃒⃒𝑁Tx∑︁
𝑖=1

𝑁Rx∑︁
𝑗=1

𝑁f∑︁
𝑘=1

�̃�𝑖,𝑗,𝑘𝑒
𝒥
(︀
𝜑𝑖,𝑗,𝑘(PUE)−�̃�𝑖,𝑗,𝑘

)︀⃒⃒⃒⃒⃒⃒ , (3)

where �̃�(·), �̃�(·) denote the amplitude and the phase of the measured channel response. 𝑁Tx,
𝑁Rx, and 𝑁f are the number of transceiver’s antennas and sub-carriers, respectively. 𝜑·,·,·(PUE)
is the phase calculated via the location candidates.

For contact-free localization, we can adopt a similar matched filter as in (3), but instead the
�̃�(·), �̃�(·) denote the amplitude and the phase of the targeted channel response after interference
mitigation. Define the range-Doppler profile at a single antenna as Ĥ(𝑖,𝑗) = THH(𝑖,𝑗,·,·)D,
where T and D denote the discrete Fourier transform matrix, then we can obtain the targeted
channel response [ĤTarget](𝑖,𝑗)=Ĥ(𝑖,𝑗,·,·)(�̂�T, �̂�D), where

(�̂�T, �̂�D)=argmax
𝑛T,𝑛D

E
{︀
(THH(𝑖,𝑗,·,·)D)⊙ (THH(𝑖,𝑗,·,·)D)*

}︀
, (4)

and ⊙ denotes the Hadamard product. Note that the maximization in (4) indicates only single-
target tracking is applicable through this method. For multi-target contact-free tracking, the
targets association is needed. To handle this problem, compressive sensing and random finite
set theory can be implemented, which is omitted here but refer to our latest work in [13] due to
page limitation.

To track the user or target, we propose to track the changes of the matched filter in (3)
through particle filter. For each location update, the 𝐾 particles are weighted via the differences
with the maximum of 𝒞(P(𝑖)

U ), given as [13],

�̂�
(𝑖)
𝑤 =exp

(︂
1

2𝜎2
𝑐

(︂
min

1≤𝑖≤𝐾

{︁
𝑃 (𝑖)
𝑤

}︁
− 𝑃 (𝑖)

𝑤

)︂)︂
,

s.t. 𝑃 (𝑖)
𝑤 =

(︁
𝒞max − 𝒞(P(𝑖)

U )
)︁2

,

(5)

where 𝜎𝑐 is the standard deviation of 𝒞(PU). 𝒞max=1 because 𝒞(PU) is normalized to (0, 1].
Fig. 4 shows the device-based and contact-free positioning and tracking results for a single

user or pedestrian based on a sub-6 GHz distributed massive MIMO orthogonal frequency-
division multiplexing (OFDM) communication test bed. The center frequency is 2.61 GHz and
the bandwidth 18 MHz. The other parameter settings are given in Table 1. The transmitter is
with a dipole antenna and the receiver with 64 patch antennas.

For both device-based and contact-free schemes, the impact of the number of antennas on
accuracy is evaluated. The tracking accuracy is represented by the absolute distance errors
between the tracking results and the ground truth. For the device-based scheme, the ground
truth was obtained via the computerized numerical control X-Y table which guarantees a
millimetre-level accuracy of the user equipment. For the contact-free scheme, the ground
truth of the pedestrian was inferred via the active tracking. For the active tracking, we asked



Table 1
Parameters settings of the massive MIMO-OFDM system

System parameters Value
Transmitter power 15 dBm
Sampling rate 100 Hz
Wavelength 11.49 cm
# of Sub-carrier 100
# of antenna 64
Modulation QPSK
Patch antenna size 7 cm×7 cm
Size of experimental space 6.5 m×10 m

Patch antenna

(Receiver)

Transmitter

(a)

(b) (c)

Benchmark

16 antennas

32 antennas

64 antennas

Benchmark

16 antennas

32 antennas

64 antennas

Figure 4: Sub-6 GHz massive MIMO-OFDM system for positioning and tracking: (a) Measurement
setup. (b) Device-based scheme. (c) Contact-free scheme.

each participant to place the antenna (another transmitter) on the top of the head to avoid
the possible body shadowing effect. The active tracking ensures a centimetre-level accuracy
that has been testified in [13], which is sufficient and applicable for pedestrian tracking given
the size of human body. As expected, the accuracy increases as more antennas have been
exploited as shown in Figs. 4(b)-(c). Note that we have not considered the antenna deployment



optimization herein but based on the sequential antenna selection. For device-based tracking,
when 64 antennas are adopted, a (sub-) centimetre-level accuracy can be achieved. Fig. 4(c)
shows the results of contact-free pedestrian tracking, in which a decimetre-level accuracy can
be guaranteed under the assumption of cylindrical body model.

5. Discussions and Future Opportunities

Channel response makes the finer-grained positioning and tracking possible and applicable.
However, there are still many challenges for real-world implementation. In the following
subsections, we will discuss some open challenges and future research opportunities for channel
response-based positioning and tracking.

5.1. Probabilistic Positioning and Tracking

Most available localization algorithms are based on such as the AoA and ToF estimates. However,
these distance and angle metrics are only intermediate estimates from which the position is
derived. Their estimation accuracy may be constrained by the resolution of the estimation algo-
rithms. Meanwhile, the super-resolution algorithms generally require complex computations.
One recently emerging solution for accuracy enhancement is based on soft information [23]
instead of using a single-value distance or angle estimate. The ranging or angular likelihood is
extracted from the channel response measurements. The likelihood is generally assumed as a
Gaussian mixture model, which can be solved via the expectation-maximization algorithm or
learned by deep probabilistic learning. On the other hand, soft-ranging or soft-angular infor-
mation rarely appears in contact-free positioning and tracking, which can also be a promising
research direction.

5.2. Simultaneous Localization and Mapping

Simultaneous localization and mapping is to construct the 2-D or 3-D map of an unknown
environment and localize and track the targets simultaneously. To sense the surroundings, it
requires a system that has a very high spatial resolution, such as UWB and mm-wave systems.
With the environment knowledge, we can exploit the specular multi-path to enhance the
localization performance with fewer anchors, so less human exposure as well [18]. However,
obtaining the information on the complete surrounding is not necessary for positioning and
tracking. Abundant knowledge will also increase the computing complexity and the inference
latency. For example, if we use the specular MPCs to help localization, we only need the location
of the planar reflectors (e.g., wall). On the other hand, MPCs exploitation requires complex
association. The factor graph model and random finite set filtering are the two promising
techniques for this issue.

5.3. Contact-Free Multi-Target Positioning and Tracking

Contact-free localization becomes a hot topic due to the advance in integrated communication
and sensing, which achieves the sensing functionality by reusing the allocated spectrum,



hardware, and even signalling resources of the communication systems. First, background
removal or ToI extraction is a big challenge for contact-free localization. The CSI-quotient
model [21] can effectively mitigate the undesired signal using the CSI ratio of adjacent antennas.
Second, according to the authors’ best knowledge, most work on contact-free localization,
especially for sub-6 GHz systems, concentrates on a single target. How to generalize to an
unknown number of targets or multiple targets desires further investigation. The widely adopted
MPCs-based localization requires complex MPCs association for multiple targets. The problem
becomes more difficult if distributed sensors are adopted. Third, investigations on contact-free
multiple static targets or hybrid static-dynamic targets localization are rare. It is challenging to
use the Doppler shifts or channel variations for interference mitigation. One possible solution is
to use high spatial resolution radio to generate the points cloud or image of the targets. Another
method is to detect the vital sign (vibration) of the human (machine). However, how to evade
the interference from the unexpected motion or dynamic targets needs further exploration.

5.4. Networked Positioning and Tracking

When in a cluttered environment, the signal is easy to be blocked by the metallic assets, which
degrades the localizability and the positioning accuracy. On the other hand, for the sub-6 GHz
bandwidth-limited systems, the angular resolution is limited even though a small antenna array
can be installed. Therefore, improving the geometrical diversity of the anchors or access points
can enhance the accuracy and coverage. During tracking, the local access points can share the
channel information with the remote access points as a priori knowledge. Furthermore, for
multi-target device-based tracking, the localized targets can also act as the new access points
if they possess the transceiver functionality, namely, the networked positioning and tracking.
Through information exchange, the field of sensing and the performance of each access point
can be improved greatly.

5.5. Domain-Independent Positioning and Tracking

Even though the learning-based approaches are straightforward to implement and fairly easy to
use, one of the main drawbacks of this scheme is that generalization for a new system setting
(including hardware heterogeneity, antenna orientation, etc.) or a new environment is challeng-
ing. They are namely domain dependent. Training from scratch in a new domain or involving
transfer learning can solve this problem, but it requires newly labelled dataset collection which
adds effort more or less to practical implementations. To handle this problem, one solution is
to establish an open-access dataset that is contributed by the whole community, like the well-
known image recognition dataset ImageNet (https://www.image-net.org/). The open-access
dataset should include the measurements at different sites, using different commodity devices,
having different numbers of anchors, etc. The dataset provides a cross-domain platform for
algorithm development and evaluation. It can also help to mitigate the performance gap from
the well-controlled laboratory to practical implementation. Another potential learning-based
research direction is to feed the less domain-dependent metrics to the model instead of the
raw channel response. The domain-independent metrics generally require elaborated design,
which should retain the rich channel information but be less dependent on the system setting



or environment.

6. Conclusion

Location acquisition has become an important content considering the ubiquitous location-aided
vertical applications. Physical-layer channel information, i.e., channel response, in commodity
devices allows us to better understand the signal propagation and develop the algorithms for
positioning and tracking purposes. In this paper, the representative SOTA regarding device-
based and contact-free schemes are classified into learning-based and model-based approaches.
The corresponding pros and cons are discussed and analysed. This paper also presents of
channel response-based direct positioning and tracking, which provides a micro-benchmark for
both device-based and contact-free schemes. Furthermore, we will point out some limitations
that the available work that have not solved well for channel response-enabled localization.
Some open challenges and future opportunities are given as well.
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