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Abstract
We propose a method to discover periodic traffic-pollution patterns in Dalat City, Vietnam. From the
air pollution, weather, and CCTV stations data recorded in Dalat City, Vietnam, we convert them into
an hourly uncertain temporal database and apply a periodic frequent pattern discovery algorithm to
explore the most occurring patterns in the dataset, as well as finding some insights from the found
patterns. Our source code and results can be found at https://github.com/TranDucHuyVnuHcmUs/
MediaEval2022-UrbanAir-HCMUS-public.

1. Introduction

In 2019, the WHO considers air pollution is the greatest environmental risk to health. Many
activities of citizens in urban areas cause negative impacts on the environment. Because of that,
many regulations have been made to guide, restrict and give punishments for citizen actions
that worsen pollution. If we know the mutual relationship between urban life activities and
air pollution (and the patterns that are most frequent and detrimental to the pollution, then
governments can provide better and more efficient regulations, and citizens can act properly to
lessen the damage caused to our environment.

In order to achieve that, we seek to create a multi-step process to find periodic frequent
patterns in the UrbanAir task at the MediaEval 2022 workshop [1]. The task contains a prediction
task on the future AQI levels using data collected in Datlat City, and finding insights by
discovering periodic traffic-pollution patterns. Our contributions are:

• We propose a method to discover a traffic-pollution periodic frequent pattern in the given
dataset. We attempted to change our implementation to achieve faster runtime while still
producing many results.

• To our surprise, the most intriguing insight we gained from our experiments was that
the air pollution remained very low, even with high traffic signals. Most of the time, the
traffic signal are low.
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2. Related Work

Research has recently been trying to discover the feasibility of various types of data to predict
or understand the mutual relationship between human activities and air pollution. Mike et al
[2] introduces a large-scale dataset from 77 air monitoring and 580 weather stations in Taiwan.
Additionally, they propose a machine learning approach to predict future PM2.5 values and
evaluate the dataset. Minh-Son et al [3] investigate the feasibility of predicting AQI using the
image captured by personal devices such as smartphones. With the weather, AQI and lifelog
dataset, they conclude that there is a correlation between AQI and the environment’s snapshots.
Phuong-Binh et al [4] propose a method that utilizes lifelog data to associate the visual data -
AQI rank relationship and to predict AQI ranks using visual data. Inspired by [5], we aim to
find an interesting pattern to explain and find a connection between traffic and air quality.

3. Approach

3.1. Prepare and preprocess the data

After collecting CCTV data, we discover that the most continuous period is from 13 August 2022
to 31 October 2022. As a result, we download all CCTV images during this time period for training
purposes (220463 images). We use the Yolo-V5 [6] (SOTA real-time instance segmentation),
which is well trained on the COCO dataset [7] to detect and count five main traffic object types:
person, motorbike, car, truck, and bus (more at Appendix A). The COCO dataset is comparable
to our CCTV data because our five target objects are five of the main detected objects of it.
Therefore, we decide to use the pre-trained model on the COCO dataset. Then we use the
latitude and longitude to calculate the nearest cameras for each sensor (see appendix B). Lastly,
following the organizers’ document on how to convert AQI, and their statement on using 1-hour
averages for AQI conversion, we group the values into each hour and calculate AQI based on
each hour’s average concentration values for air pollutants.

3.2. Discover periodic frequent patterns

After we have the table from 3.3, for each row, we apply the fuzzy negation method mentioned
in [5] to generate the items and make the transactions, with the setting shows in Table 1:

Table 1
Initial fuzzy negation mapping for columns

Other columns AQI columns
LOW MED HIGH lv1 lv2 lv3 lv4 lv5 lv6
12.5% 25% 50% 5 12 45 100 200 300

Taking ideas from [5], we use a separate fuzzy mapping for AQI columns. This is due to our
processing the AQI-related items differently - instead of calculating the percentage of [min, max]
range first, we directly use its values to convert with the same mapping for all AQI columns.
See Appendix C for more details on why we choose to do so.

Each transaction will also be linked with a timestamp. A default time is chosen as the
beginning of time. We simply subtract all datetime values with the beginning datetime (converted
to hour) to get the timestamp.

After this step, we’ll have an uncertain temporal database. We reimplement the algorithm
from [8] to find periodic frequent patterns in our uncertain temporal database.



3.3. Discover periodic frequent patterns (updated)

In this attempt, we use all cameras for all sensors (each sensor will be linked with images from
all cameras, that are closest in sensor data’s time).

We make some changes in our implementation. Aside from fixing errors, we change the way
we calculate the prefixed item cap into using the minimal probability of previous items in each
transaction: 𝑃𝐼_𝑐𝑎𝑝(𝑖𝑘, 𝑡𝑡𝑖𝑑) = 𝑃 (𝑖𝑘, 𝑡𝑡𝑖𝑑) *𝑚𝑖𝑛(𝑃 (𝑖1, 𝑡𝑡𝑖𝑑), 𝑃 (𝑖2, 𝑡𝑡𝑖𝑑), ...𝑃 (𝑖𝑘−1, 𝑡𝑡𝑖𝑑)).

We also change our fuzzy negation mapping into as follow:

Table 2
Updated fuzzy negation mapping for columns

Other columns AQI columns
LOW MODERATE HIGH lv1 lv2 lv3 lv4 lv5
10% 20% 40% 5 12 50 100 200

Furthermore, for each transactions, we delete the items with probability below 0.5. This means
no two items from the same feature (for example, Temperature_LOW and Temperature_MED)
can appear in one transaction. By doing this, all transactions will have statistically independent
items, assuming that the features are statistically independent.

We also split a subset of data with only traffic-related features and AQI, to explore the
interesting patterns between traffic and air pollution. We customized our search to use each
and only one AQI item in one mining, and do the same for each traffic item. Please refer to our
source code [9] for more information.

There are also a few temporal gaps in our database, which can be at most 120 hours (5
days). This gap affects the periodicity of those patterns because of their high values (since the
periodicity is calculated by the maximum difference between occurring timestamps). So we
delete a part of our database to lower the effect of these gaps on our results.

4. Results and Analysis

The results reported here are only a notable part of our results.

4.1. Results

Because of the changes in our implementations, we provide our updated results for the full data
mining (using all features) for clarity. We do not think, however, that the new result will change
our insight. So we also provide new results from mining patterns with each AQI-related item
the only AQI-related item present in the database, to see which most frequent factors contribute
to each AQI level.

4.2. Analysis

Our patterns shows that the AQI values are mostly low, even with high traffic. And the traffic
is generally low as well. However, with high traffic signal, especially for motorbike, car and
person, the AQI can still rise and thus affect the environment. Interestingly, in most cases,
highest expected support are found within patterns with no high traffic item included, while
the most periodic patterns are the patterns with at least one high traffic item present.

On a side note, using the min function to calculate the prefixed item cap increase performance
of our implementation. (Appendix D).



Table 3
Example results from our updated approach

Initial (submitted) results
Full data (minSup = 4000, maxPer = 120)
Altitude_HIGH, Truck_LOW, AQI_NO2_lv1, Humidity_HIGH, AQI_SO2_lv1: [5630.8, 120.0]
AQI_CO_lv2, Bus_LOW, Altitude_HIGH, Truck_LOW, AQI_NO2_lv1, Humidity_HIGH,
AQI_SO2_lv1: [4752.2, 120.0]
Results from updated implementation
Full data (minSup = 200, maxPer = 1000)
Motorbike_LOW, AQI_O3_lv1, Person_LOW, AQI_CO_lv2, Truck_LOW, Altitude_HIGH, UV_LOW,
Bus_LOW, AQI_NO2_lv1, Temperature_HIGH, AQI_SO2_lv1, Humidity_HIGH:[698.87, 63.0]
Traffic and AQI features only (minSup = 3, maxPer = 1000)
Motorbike_LOW, AQI_PM2.5_lv3, Car_MODERATE, AQI_O3_lv1, Person_LOW, Truck_LOW,
AQI_PM10_lv2, AQI_CO_lv2, Bus_LOW, AQI_NO2_lv1, AQI_SO2_lv1:[143.128, 92.0]
Motorbike_HIGH, AQI_PM10_lv2, Car_MODERATE, Person_MODERATE, AQI_O3_lv1, Truck_LOW,
AQI_PM2.5_lv3, Bus_LOW, AQI_CO_lv2, AQI_SO2_lv1, AQI_NO2_lv1:[42.44, 81.0]
AQI specific mining patterns
Motorbike_HIGH, Car_MODERATE, Truck_LOW, Person_MODERATE, Bus_LOW,
AQI_PM2.5_lv5:[2.53, 688.0]
Motorbike_HIGH, Car_MODERATE, Person_MODERATE, Truck_LOW, Bus_LOW,
AQI_O3_lv5:[22.95, 163.0]
High traffic specific signal patterns
AQI_PM10_lv2, AQI_O3_lv1, AQI_PM2.5_lv3, AQI_CO_lv2, AQI_SO2_lv1, Motorbike_HIGH,
AQI_NO2_lv1:[353.91, 55.0]

5. Discussion and Outlook

Our approach are prone to error, as we don’t exclude non-moving traffic objects, especially
parking vehicles. We also find that applying the same fuzzy negation to all non-AQI columns
cause the distribution of some items to be imbalanced (for example, Humidity_HIGH appear in
the entire database!). It may be more suitable to have different mappings for different columns.

Further steps for improvement are: optimizing the algorithm, adding environmental and
infrastructure factors, parking vehicles detection,...

6. Conclusion

Da Lat’s air quality is overall good, even when the traffic is high. High traffic, however, can still
worsen air pollution.
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A. Traffic object statistics

We execute the pre-trained YOLO V5 on 20463 images from 16 CCTV stations. Afterward, we
accumulate all the results by CamereID of person, motorbike, car, truck, and bus. We choose
these five types of objects because CCTV mostly covers them (the number of other types is
extremely small compared to these 5 main objects).

Table 4
The average table of traffic factors of CCTV dataset from 13 August 2022 to 31 October 2022. .

CameraCode Person Motorbike Car Truck Bus
Camera01 9.146 11.378 0.715 0.147 0.025
Camera02 2.481 3.684 5.341 0.791 0.237
Camera03 3.497 4.201 1.406 0.035 0.003
Camera04 3.574 8.319 2.247 0.115 0.043
Camera05 2.901 3.94 6.09 0.73 0.333
Camera06 5.618 5.229 3.225 0.18 0.128
Camera07 0.933 2.61 0.254 0.016 0.001
Camera08 1.361 6.232 2.177 0.054 0.002
Camera09 1.425 4.344 0.943 0.07 0.08
Camera10 6.19 8.786 2.84 0.159 0.13
Camera11 1.745 1.497 2.72 0.126 0.086
Camera12 3.547 6.038 2.264 0.066 0.032
Camera13 1.247 1.991 0.475 0.059 0.004
Camera15 3.462 5.016 4.218 0.274 0.056
Camera16 0.008 0.0 0.002 0.0 0.0

According to the result of YOLO-V5 on our CCTV data (Table 4), Camera16 doesn’t find too
many traffic objects (to our own knowledge, Camera16 mostly points to natural scenes from
above). On the other hand, Camera 01 takes the most crowded pictures. We also have a broken
camera - Camera14.

Thís approach are prone to error: Idle objects, especially parking vehicles, though not emitting
chemicals, can still be included.

B. Merging sensor data with camera data

There are two attributes that need to consider before merging: time and space.
For the space, we calculate the geographical distances between all pairs of camera-sensor,

and are calculated using GeoPy [10]. In the first attempt, we merged the traffic data from every
sensor into its nearest camera, as shown in the table below:

For the time, we only merge data rows of the camera-sensor with their time difference
not larger than a defined threshold. In our initial setting, this threshold is 329.015(7) =
(𝑚𝑎𝑥𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒/𝑚𝑖𝑛𝐷𝑟𝑖𝑣𝑖𝑛𝑔𝑆𝑝𝑒𝑒𝑑) * 3600, with 𝑚𝑖𝑛𝐷𝑟𝑖𝑣𝑖𝑛𝑔𝑆𝑝𝑒𝑒𝑑 = 32(𝑘𝑚/ℎ), and
𝑚𝑎𝑥𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 is the maximal value of each nearest camera-sensor pair. The intuition is that
vehicles are mostly moving, and since the sensors recorded their values at a different time
compared to the cameras, we assume that these vehicles would have moved a distance by the
time each sensor’s respective camera took another picture.

In our second attempt, we merged all cameras with all sensor data, and use 300 (second) as
tolerance constant to merge the data by time (which means camera rows can only match with
sensor rows if their time difference is no more than 300 seconds).



Table 5
The nearest cameras for each sensor, and their respective distance

SensorCode CameraCode Distance
Sensor01 Camera11 0.4150114345835359
Sensor02 Camera15 0.6724809262023985
Sensor03 Camera09 0.5866375637048777
Sensor04 Camera06 0.4050335834399718
Sensor05 Camera16 0.820374327598685
Sensor06 Camera12 1.0222252540677688
Sensor07 Camera10 1.5597868694504484
Sensor08 Camera12 2.9245846846435417
Sensor09 Camera13 0.8956313587788634
Sensor10 Camera06 1.7211426697457426

C. Fuzzy negation

Two tables below explain our initial mappings (see table 1) used for our submission. For values
in one column X (not related to AQI) that are in 0% - 12.5% of its [min, max] range, these
transactions will be given an item as X_LOW(1). For values in 18.75% (average of 12.5% and
25%) of its range, those transactions will have 2 items X_LOW(0.5) and X_MED(0.5). Note that
both items will exist in those transactions.

Table 6
Initial fuzzy negation mapping for other columns (explained)

Percentage of value Label
0% - 12.5% LOW(1)
12.5% - 25% LOW(1-0)/MED(0-1)
25% - 50% MED(1-0)/HIGH(0-1)
50% - 100% HIGH(1)

We process the AQI-related items differently - instead of calculating the percentage of [min,
max] range first, we directly use its values to convert. Because the meaning and purpose of
AQI is a unified metric for measuring the concentration of (and health affect caused by) air
pollutants, and each air pollutant has a different [min, max] range, we don’t convert the values
to percentages to not lose the unified meaning.

Table 7
Initial fuzzy negation mapping for AQI columns (explained)

AQI range Label
0 - 5 lv1(1)
5 - 12 lv1(1-0)/lv2(0-1)
12 - 45 lv2(1-0)/lv3(0-1)
45 - 100 lv3(1-0)/lv4(0-1)
100 - 200 lv4(1-0)/lv5(0-1)
200 - 300 lv5(1-0)/lv6(0-1)
>= 300 lv6(1)

It’s worth noticing that our mapping is not the same as the AQI conversion table provided for
us: lv1, lv2, and lv3 are in the ’GOOD’ category. Our reasoning to divide the first 3 levels into
such small gaps is because the average AQI values of each air pollutant are below 50 (’GOOD’



category). Especially for NO2, SO2 and PM10 air pollutant, their mean values are lower than 14,
and for SO2, its max values is 14.285714.

Table 8
AQI columns’ statistics of our grouped table (used for making uncertain temporal databases), consisting
of 7098 data rows.

Attribute AQI_O3 AQI_NO2 AQI_SO2 AQI_CO AQI_PM2.5 AQI_PM10
mean 39.15 1.9 1.44 38.61 44.99 13.01

std 96.13 2.21 0.21 88.85 30.12 11.63
min 0.0 0.0 0.0 13.64 0.0 0.0
25% 0.0 0.0 1.43 13.64 20.83 4.63
50% 0.0 0.94 1.43 13.64 41.25 9.26
75% 0.0 3.77 1.43 13.64 63.41 17.59
max 501.0 15.09 14.29 501.0 342.82 188.12

D. Performance of the algorithm

Our experiments with both max and min functions (’mode’) to calculate the prefixed item cap
show that the second algorithm run faster than the previous implementation, and with fewer
potential patterns (patterns that may meet the requirements, but not ensured). Due to stronger
bounds to the actual probabilities, more recursive calls are pruned, thus results in less time and
fewer potential patterns to be considered, and will be included or filtered out in the final step.

Figure 1: Running time and the number of potential pattern from our implementation with different
max period and min support = 2. Mode 1 use the min function, mode 2 use the max function.

Our results also show that two modes can produce different longest patterns, both potential
and final.

High difference (more than 1) of the longest length between potential patterns and final
patterns can be a problem, as too many potential patterns are not satisfying the requirements,
thus increasing runtime while not gaining better results. Therefore, it’s our future works to
reduce this difference. An improvement that can be made is to introduce closer bounds to prune
more recursive calls.



Figure 2: Running time and the number of potential pattern from our implementation with different
min supports and max period = 2048. Mode 1 use the min function, mode 2 use the max function.

Figure 3: Longest lengths of potential and final pattern. Longer patterns mean better results.
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