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Abstract

Video memorability prediction aims to quantify how much a given video content will be remembered
over time. The main attributes affecting the prediction of memorability are not yet fully understood
and many of the methods in the literature are based on features extracted from content recognition
models. In this paper we demonstrate that features extracted from a model trained with natural language
supervision are effective for estimating video memorability. The proposed method exploits a Vision
Transformer pretrained using Contrastive Language-Image Pretraining (CLIP) for encoding video frames.
A temporal attention mechanism is then used to select and aggregate relevant frame representations into
a video-level feature vector. Finally, a multi-layer perceptron maps the video-level features into a score.
We test several types of encoding and temporal aggregation modules and submit our best solution to the
MediaEval 2022 Predicting Media Memorability task. We achieve a correlation of 0.707 in subtask 1 (i.e.
the Memento10k dataset). In task 2 we obtain a Pearson correlation of 0.487 by training on Memento10k
and testing on videoMem and of 0.529 by training on videoMem and testing on Memento10k.

1. Introduction

The exponential growth of images and videos shared on social media platforms require new ways
to organize and retrieve digital contents. Like other video metrics of importance, such as quality
[1], aesthetics [2, 3] or interestingness [4, 5], memorability can be regarded as a useful aspect to
help make a choice between competing videos. The Predicting Media Memorability Challenge,
hosted within the MediaEval workshop, focuses on the estimation of video memorability. In
its fourth edition, the task is the same as in previous years, but it involves videos depicting
in-the-wild scenes collected from social media. More information can be found in the challenge
description document [6]. Most image and video memorability methods based on deep learning
are usually built on top of models pre-trained on ImageNet [7, 8, 9, 10]. However, we argue
that pre-trained models for semantic content classification may not model important factors
for estimating memorability such as aesthetics and interestingness. Conversely to semantic
categories, natural language can provide a complete description of the video. For this reason we
hypothesize that models trained with natural language supervision might provide richer features
useful for characterizing memorability. In this paper, we exploit the Contrastive Language-
Image Pretraining (CLIP) [11] model for encoding video frames. An attention mechanism is
then proposed for selecting relevant frames. Finally a Multi Layer Perceptron maps the video
features into a memorability score. The experimental results for subtask 1 and subtask 2 of the
MediaEval memorability task demonstrate the effectiveness of the proposed method.
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Figure 1: Overview of the approach proposed for predicting the video memorability score.

2. Approach

Figure 1 shows an overview of the proposed method that achieved the best performance among
our proposals in both subtask 1 and 2 of the MediaEval Memorability challenge. Our method
receives video frames as input and consists of three main modules: (i) a CLIP-based encoder
[11] that extracts the features for each video frame, (ii) a temporal attention module which
aggregates the frame-level features into a video-level feature vector, (iii) an MLP which maps
the video-level features into a memorability score.

CLIP-based frame encoder. Contrastive Language-Image Pretraining (CLIP) [11] is a mul-
timodal model that learns to represent images and text jointly in the same vector space. It
consists of image and text transformer-based encoder networks [12, 13]. CLIP shows very good
performance on content classification datasets [11], but it also demonstrate to be effective in
perceptual tasks [14, 15]. In our method we exploit the CLIP-based Vision Transformer (ViT)
encoder for video frame encoding, as known as ViT L/14. The ViT extracts 14 x 14 patches
from an input image with size 336 x 336 and outputs a 1024-dimensional feature vector'. Given
a video with 7" frames, we resize each frame at a resolution of 336 x 336 pixels and feed it into
the ViT. We obtain E = (ey, ey, ..., e7) with E € RT*1024 yepresenting the set of frame-level
feature vectors of the input video. Each feature vector e; is normalized by its Ly-norm before
further processing.

Temporal attention module. The temporal attention module aims at weighting the contri-
bution of each frame feature vector to obtain the video-level representation. A Bidirectional
Gated Recurrent Unit (Bi-GRU) [16] is used for modelling temporal information among frames.
The GRU consists of 6 GRU layers, each layer has an hidden state with size equal to 64 and is
followed by a dropout layer with a probability of 0.2. The set of frame-level features extracted by
CLIP, E, is fed to the GRU which outputs H = (hy, hy, ..., hy) with size 7' x 128. The matrix
H is converted to a scaling factor w € R7*! per frame throw a linear layer. The video-level
feature vector e, € R1924 is finally obtained as follows:

1 T
e, = T;et * Wt. (1)

Multi-Layer Perceptron. The Multi-Layer Perceptron (MLP) estimates the video memorability
score given the 1024-dimensional video-level feature vector e,. It consists of a stack of three
linear layers. The first two linear layers reduce the size of the feature vector first to 512 and
then to 128 dimensions. Each linear layer is followed by a ReLU activation function. The last
linear layer outputs a scalar representing the video memorability score. The sigmoid activation
function is exploited to limit the values in the range [0, 1].

Thttps://huggingface.co/openai/clip-vit-large-patch14-336
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Figure 2: Scatter plots of the GT vs. predicted memorability scores for the four train/dev combinations.

2.1. Implementation details

The method is implemented using the PyTorch [17] framework. For each video all T-frames
are considered. During the training phase, the frames are shuffled for data augmentation, the
optimizer Adam [18] is used with an initial learning rate equal to 1 x 10~* which is then reduced
every 5 epochs by 0.95. We train using the L; criterion and a batch size of 8 for a maximum
of 100 epochs. However, the training process stops when there is no improvement after five
consecutive epochs.

3. Results and Analysis

In this section we present the results achieved on the subtask 1 and the subtask 2. For both tasks
we measure the performance in terms of Pearson’s Linear Correlation Coefficient (PLCC) and
Spearman’s Rank Order Correlation Coefficient (SROCC). The results for the development set of
subtask 1 which consists in training and testing on Memento10k [9] are depicted in Table 1. We
highlight that our best approach (whose details are provided in the previous section) achieves a
PLCC of 0.7132 and an SROCC of 0.7100 on the development set. The performance estimated by
the organizers on the Memento10k test set corresponds to 0.707 for both correlation metrics and
0.005 of mean squared error. For subtask2 which consists in a cross-dataset scenario involving
Memento10k and VideoMem [19] datasets, our best method obtains the performance reported
in Table 2. As expected, in cross-dataset scenario performance decreases by about 20% for both
correlations. It can also be noted that the training on VideoMem allows the method to generalize
better on Mement10k with performance about 10% higher than the one obtained by training on
Memento10k and testing on VideoMem. Figure 2 shows scatter plots on the four training/test
combinations for the development set. The distribution of samples in the different plots reflects
what was previously stated, i.e. that apart from the combination Memento10k/VideoMem the
other distributions are well fit. Figure 3 shows the samples with the highest prediction errors. It
is possible to notice that the proposed model tends to overestimate the memorability for such
videos. Particular is the case of Memento10k/VideoMem and VideoMem/VideoMem, for which
the worst error was obtained for the same video.

Ablation study. Table 1 shows the results for our less effective solutions. For the encoder, in
addition to the ViT variants, we proposed several approaches that include an I3D model [20]
pre-trained on Kinetics-400 [21] or Charades [22] used as a feature extractor or finetuned on
memorability. We also proposed a method combining frame-level (ViT) and spatio-temporal
(I3D) features. For the temporal aggregation of the features we experimented with the GRU
used in different ways, a transformer and a combination of linear to reduce the dimensionality
of the frame-level features followed by the temporal averaging. Finally, a simple linear layer or
an MLP were tested for the memorability predictor.



Table 1
Results on the development set of Memento10k for subtask 1. The best and the second-best results on
each metric are marked in boldface and underlined, respectively.

Encoder Temporal aggregator  Predictor PLCC  SROCC

B/32 Linear+Avg. Linear 0.7009  0.7000

B/32 Bi-GRU Linear 0.7052 0.7063

CLIP-ViT L/14 Bi-GRU Linear 0.7075 0.7079
L/14 Bi-GRU attention MLP 0.7132  0.7100

L/14 Transformer Linear 0.7033 0.7038

13D (finetuned for memorability) - Linear 0.5065  0.5142
13D (pretrained on Kinetics) - Linear 0.5915  0.5882
13D (pretrained on Charades) - Linear 0.5724  0.5647

CLIP-ViT-B/32 + 13D (finetuned)  Linear+Avg.+Concat. MLP 0.7059  0.7061
CLIP-ViT-B/32 + 13D (Kinetics) Linear+Avg.+Concat. MLP 0.7040  0.6987
CLIP-ViT-B/32 + 13D (Charades)  Linear+Avg.+Concat. MLP 0.7104  0.6972

Table 2
Results of our best proposal for subtask 2 on both development and testing sets.
Development set Testing set
Memento10k VideoMem

Memento10k VideoMem
PLCC SROCC | PLCC SROCC

PLCC SROCC | PLCC SROCC

Training set

Memento10k - - 0.466 0.452 - - 0.487 0.470
VideoMem 0.511 0.507 0.529 0.523

Memento10k/Memento10k  Memento10k/VideoMem  VideoMem/VideoMem  VideoMem/Memento10k
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Figure 3: (Best viewed in colors and magnified.) Visualization of worst predictions of the proposed
method. For each train/dev combination, a random video frame and the predicted and GT (in parenthesis)
memorability scores are reported.

4. Discussion and Outlook

Our solution involving a CLIP-ViT-L/14 + Bi-GRU attention + MLP achieves better results than
the transformer, the I3D network, and the ViT+I3D. This result confirms our hypothesis that
a model trained with natural language supervision can provide richer features than a model
trained for action recognition. The results can also be attributed to the Bi-GRU-based temporal
attention module allowing the selection of the most relevant video frames. Temporal information
modeling treated as the I3D network allows the model to extract the flow relationship between
frames but lacks relevant semantic information features. Moreover, the limited dataset size and
the small length of the videos, approximately 3s, make complex architectures (like the I3D and
the transformer) prone to overfitting. From the cross-dataset results, we can conclude that the
VideoMem dataset allows the model to generalize better on the Memento10k dataset. This is
likely due to the wide variation in content, scenes, and memorability score of the Memento10k
dataset. As future works, we will first exploit a frame sampling algorithm to avoid processing
frames containing redundant information [1]. Secondly, we will investigate the use of spatial
attention mechanisms for estimating video memorability.
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