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Abstract
The memorability of a video has been de�ned in the literature as an intrinsic property of its visual
features, expressed as the proportion of an audience that successfully remembers having watched that
video on a subsequent viewing. Hence our brains must cope not only with information about pixel
statistics and scene semantics, but also to encode whether it is worth keeping information about them in
memory for future retrieval. These are the hypothesis behind the 5th edition of the Predicting Media
Memorability challenge, which we tackle from a two-fold perspective: �rst we pursue a semantics-based
approach, using both pre-trained and �ne-tuned visual and textual Transformers; on the other hand,
we process Event-Related Potential (ERP) data according to two feature extraction methods to obtain
a representation compatible with cross-subject predictive models of media memorability, namely: (1)
to extract sample-level functionals and feed them as input features to a random forest classi�er, and
(2) to compute coherence maps between sensor recordings at four frequency bands, training a shallow
neural classi�er from them. Ultimately, we seek to further comprehend why, whereas some of our visual
models display performances that rival that of the current state-of-the-art predictive systems, ERP-based
approaches pose a far more complex challenge.

1. Introduction

A detailed scienti�c modelling of the factors by which some visual memories remain attached
to us for a long time while others fade shortly after has eluded a mathematical formulation for
decades. Recent studies point to the possibility that all the visual information that reaches our
eyes carry along a measure that would account for its likelihood to be remembered in subsequent
viewings, i.e., its intrinsic memorability [1, 2, 3]. With the rise of social media, an automatic
system able to classify a video on these terms is of the utmost interest, both from a commercial
and a scienti�c perspective. In this paper, we report on our experience during the 5th edition of
the Predicting Media Memorability Challenge [4]. The availability of Electroencephalography
(EEG) data enables us not only to study the link between visual features and memorability but
also to explore possible mechanisms by which human brain stores that information, building
predictive models of media memorability accordingly.

2. Related Work

Although studies on the issue date back to R.N. Shepard (1967) and Standing (1973) [5, 6], it has
not been until the work of Isola et al.[3] that researchers began to think of media memorability as
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Figure 1: In order to predict memorability from EEG data we developed two di�erent approaches,
(1) based on extracting statistical functionals of the record for each subject and video pair, and (2)
computing coherence maps between sensors at 4 frequency bands during the first second of exposition
of a subject to a given video.

Run# Model description MSE PCC SRCC
Val.* Test Val.* Test Val.* Test

1 VisualCLIP (adapted) 0.009 0.009 0.430 0.401 0.427 0.395
2 TextCLIP (adapted) 0.007 0.008 0.597 0.557 0.6 0.556
3 Mean late-fusion (1) & (2) 0.007 0.007 0.601 0.595 0.599 0.592
4 Pretrained VisualCLIP 0.008 0.006 0.547 0.647 0.549 0.64
5 Mean late-fusion (2) & (4) 0.007 0.006 0.628 0.664 0.629 0.658

Table 1
Prediction rates both at validation and testing time for the models submitted to the subtask 1. MSE:
Mean Squared Error; PCC: Pearson’s Correlation Coe�icient; SPCC: Spearman’s Rank Correlation
Coe�icient. *Validation is carried out using a 5-fold cross-validation scheme over both train and dev
data partitions.

a deterministic function of fundamental visual properties (such as image colour or its brightness)
and/or the high-level semantic features of a multimedia clip [7, 8, 9]. We use Transfomers,
highly successful in an array of di�erent tasks [10, 11], either as visual and textual feature
extractors or �ne-tuning them as predictive models of media memorability (Section 3.1).
EEG data open the path for further understanding of the mechanisms underpinning the

encoding of media memorability by the human brain. Much of the di�culty lies in the entangle-
ment between di�erent brain regions operating simultaneously along the process [12, 13, 14].
However, coherence between di�erent brain areas (a measure of the strength of the coupling
between the signal recorded by two sensors at speci�c frequency bands) has been found to
relate to memory impairment in Alzheimer’s disease [15, 16] and other dementia-related health
disorders [17]. Furthermore, techniques based on similar functional connectivity between EEG
channels has been demonstrated to correlate with long-term semantic memory [18]. Therefore
in Section 3.2 we propose two alternative preprocessing methods for ERP data, both outlined in
Figure 1.

3. Experimental setup and results

A detailed description of both the requirements and the data resources available for each subtask
can be consulted at [4]. During the experimental phase we placed a special emphasis not only
on accurately predicting memorability but also on explaining the decisions made by our models.



System description AUC
Val.* Test

Statistical Functionals 0.529 0.501
Delta channel only 0.490 0.500
Beta channel only 0.514 0.509
Late-fusion of all channels (Median) 0.534 0.509
Late-fusion of all channels (Max.) 0.529 0.509

Table 2
Prediction rates for validation and test sets for the model predictions for subtask 3. AUC: Area Under
Curve score. *Validation rates are computed using a 5-fold cross-validation strategy with a Leave-One-
Subject-Out (LOSO) scheme.

3.1. Subtask 1: Predicting memorability rates from visual features

Our fundamental hypothesis, supported by previous experiences [9, 19], is that video-level
semantic features are robust indicators of video memorability, given the strong correlation
found between certain topics and the average memorability rates of videos depicting them.
Here we elaborate on this idea: either keeping a frame-wise (extracted at 1FPS) pre-trained
CLIP Visual Transformer (ViT) as a feature extractor upon which a linear regressor is trained
on the task of media memorability (run #4), or �ne-tuning a ViT and its textual counterpart on
Memento10K data [8] (run #1, run #2). We also investigate the degree to which both modalities
can help each other in making a prediction, and hence the output of the run #3 is the average
between the prediction made by run #1 and run #2, while run #5 is the analogous for run #2
and run #4. In all cases, �ne-tuning is performed optimizing the mean square loss between
predicted labels and the ground-truth memorability scores for 10 epochs. Prediction rates at
both validation and testing are shown in Table 1.

3.2. Subtask 3: Memorability classification from ERP

We propose two di�erent processing pipelines, illustrated in Figure 1, aimed both at computing
useful numerical representations for the �nal task of predicting whether a video will be re-
membered, irrespective of the subject data comes from. This is an inherently complex scenario,
since two subjects can respond very di�erently to the same video. Validation and testing classi-
�cation Area Under the Curve (AUC) rates are shown in Table 2. Our �rst approach consists
on concatenating statistical functionals - mean value, standard deviation, median, maximum
and minimum values, kurtosis index and the �rst three quartiles of a sample - to describe
each trial (subject-video pair). As predictive algorithm, we train a random forest model. For
our second approach, for each subject and video we compute the coherency between each
ERP channel pairwise. We used the function “coherencyc” from Matlab’s® third party toolbox
Chronux1 to compute the mean coherency value for di�erent power bands: delta (0.5-4Hz),
theta (4-8Hz), alpha (8-14Hz) and beta (14-30Hz). This yields a 28x28x4 matrix of coherencies
between channels in speci�c spectral bands. These values, once arranged as a single vector
embedding, conform to the input features for a shallow neural network whose hidden layer
has 256 neurons, with a ReLU activation function [20] and Adam optimizer [21] and adaptive
learning rate.

1https://doi.org/10.1016/j.jneumeth.2010.06.020



Figure 2: From le� to right: Original frame, and LIME explanations for predictions made by runs
(2), (1) and (4) from Table 1, respectively. Green indicates areas that contribute positively to greater
memorability scores while red regions denote the opposite.

Figure 3: Average coherence maps at each power band for 3 subjects in the training set. Each point in
these matrices represents the pair-wise average coherence between two sensors at a given frequency
band, coloured according to the strength of their coupling. We found significant di�erences amidst
these features between participants, even when their success rates are similar.

4. Discussion and outlook

Interestingly enough, a �ne-tuned ViT performs worse than a simpler linear regressor trained
from the features obtained by a pretrained version of the full model, even though the same
does not seem to happen in the case of text. Computing explanations using a custom version of
LIME [22], a popular post-hoc local surrogate method [23], we notice that while the text-based
model bases its predictions on concepts that we know correlate well with memorability [9], our
�ne-tuned ViT (run #1) might be generalising worse due to over�tting (Fig. 2). As illustrated in
Figure 3, it is hard to notice a clear pattern of neural activity amidst the subjects when using
ERP data to predict memorability. Di�erent people show high memorability rates (subjects 4
and 9), yet the rest fail about 80% of the time, hence leaving an extremely unbalanced dataset
that adds up to the overall complexity of the task. As a future line of research, we believe it
would be particularly interesting to explore multimodal EEG-visual-textual models, in order to
further develop scienti�c knowledge on what information from a video clip is actually leaving
a lasting footprint on our brains.
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