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Abstract
This paper describes the solution to Medical Multimedia Task: Transparent Tracking of Spermatozoa using
YOLOv5 object detection and StrongSORT with OSNet tracking algorithms. Using these techniques
and carefully adjusted parameters and custom methods for motility analysis we achieve the tracking
accuracy of 𝐻𝑂𝑇𝐴𝐴𝑈𝐶 = 0.283 for normal sperm detection task. Furthermore, we propose a novel
method for determining the sperm motility by comparing average cell velocity at different sampling
rates.

1. Introduction

The analysis of spermatozoa motility in human semen samples is an important task in male
fertility treatment. Few attempts were made to solve this task automatically using computer
vision algorithms, however, none of them showed high enough accuracy and reliability. Hence,
this analysis is still being performed manually by qualified technicians which implies high test
costs and inaccuracy due to interpersonal variety in technicians performance.

In this work, we solve the problem of sperm motility measurement in 3 stages:

• Stage 1: Detecting the sperm cells on each frame separately.
• Stage 2: Tracking the sperm cells by assigning them a unique id that does not change

throughout the video.
• Stage 3: Computing and analyzing the sperm cells velocity.

Stages 1 and 2 correspond to sub-task 1 from the Medical Multimedia Task: Transparent Tracking
of Spermatozoa while stage 3 corresponds to sub-tasks 2 and 3. The full details of the task and
sub-tasks are described in [1]. In the following sections we briefly describe the approach,
challenges and results for each stage.

2. Related Work

Object detection is a well-studied computer vision task with numerous good solutions using
deep neural networks. We decided to use the state of the art approach YOLO, first described
by Redmon et al. in 2015[2], which offers high accuracy while preserving fast inference time.
Among many existing solutions to the object tracking problems [3, 4, 5, 6, 7], we decided to use
StrongSORT, first described by Du et al. in 2022 [4] with OSNet by Zhou et al. from 2019 [5].
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Previous studies of sperm analysis [8, 9, 10] show great potential of machine learning approach
to the problem, however they are all based only on raw, unlabeled video frames and do not
leverage the information of bounding boxes manually annotated by human raters.

3. Approach

For stages 1 and 2 (object detection and object tracking) we used the publicly available imple-
mentation of YOLOv5 + StrongSORT and OSNet [11]. We found that adjusting the training
parameters and the train-validation split of the dataset are critical for the final results of the
model.

3.1. Train-validation split of the dataset

The task organizers provided a sample code for object detection using YOLOv5 on the task
dataset. In the solution, the full dataset was split by taking 16 full videos as a training set and
the reminding 4 videos as a validation set. We found that in this setup the network learns well
the training set, while for the validation the precision stays at the level of 𝑚𝐴𝑃0.5 ∼ 14%,
𝑚𝐴𝑃0.5:0.95 ∼ 4%. This means that the differences between the videos from the training set
and the validation set are large and the network does not generalize well beyond the training
set.

The other split we tried was to take every 5th frame (frame 0, 5, 10, 15, ...) as a validation set
while keeping the rest as a training set. In this setup the network quickly overfits and reaches
the precision of 𝑚𝐴𝑃0.5 ∼ 99.5%, 𝑚𝐴𝑃0.5:0.95 ∼ 90% on the validation set. This means that
the validation set is too similar to the training set and we are not able to verify how much
the network generalizes beyond the training set and hence we cannot optimize the training
parameters.

Finally, we decided to construct the training set from the first 24 s of each video and the
validation set from the last 6 s of each video. In this setup the network achieved the accuracy of
𝑚𝐴𝑃0.5 ∼ 91%, 𝑚𝐴𝑃0.5:0.95 ∼ 66% on the validation set. In this approach we are sure that
the network has a chance to learn on each of the different videos and at the same time the
validation set is independent enough that we can adjust the training parameters and analyze
their impact on the precision on the validation set.

3.2. Confidence threshold for object detection

We noticed that for the default confidence threshold (conf_thres) equal to 0.25 for object
detection with YOLOv5, the trained model detects more sperm per frame that it should, according
to a manual assessment — it returns on average 78 sperm per frame in the test set, while there
is only 22 sperm per frame in the labeled training set. We have manually estimated the actual
number of sperm in the test videos and compered it to the average number of sperm returned by
the model for a few different thresholds and found out the most accurate number of sperm per
frame are returned for threshold of 0.75. The average number of sperm detected for different
thresholds are presented in table 1.

3.3. Computing the motility of sperm

To compute the motility of sperm, we use a novel approach of comparing the average (vector)
velocities of cells for two different sampling intervals: 𝑇𝑙𝑜𝑛𝑔 and 𝑇𝑠ℎ𝑜𝑟𝑡. The approach is based
on the observation, that progressive sperm have high velocity, independent of sampling interval,



conf_thres avg. number of cells in the test videos
0.25 78
0.50 67
0.70 44
0.75 31
0.80 17

Table 1
Average number of sperm detected per frame in the test videos for different confidence thresholds.

while non progressive sperm have high velocity when sampling on short interval but low
velocity when sampling on longer intervals. We determine the motility of a sperm by comparing
its two average velocities 𝑣𝑙𝑜𝑛𝑔 , 𝑣𝑠ℎ𝑜𝑟𝑡 and comparing them with two threshold velocities: 𝑣𝑖𝑚𝑚

and 𝑣𝑝𝑟𝑜𝑔𝑟 . The exact formula is as follows:

𝑚𝑜𝑡𝑖𝑙𝑖𝑡𝑦 =

⎧⎪⎨⎪⎩
𝑖𝑚𝑚𝑜𝑡𝑖𝑙𝑒 if 𝑣𝑠ℎ𝑜𝑟𝑡 ≤ 𝑣𝑖𝑚𝑚,

𝑛𝑜𝑛𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒 if 𝑣𝑠ℎ𝑜𝑟𝑡 > 𝑣𝑖𝑚𝑚 ∧ 𝑣𝑙𝑜𝑛𝑔 ≤ 𝑣𝑝𝑟𝑜𝑔𝑟,

𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒 if 𝑣𝑠ℎ𝑜𝑟𝑡 > 𝑣𝑖𝑚𝑚 ∧ 𝑣𝑙𝑜𝑛𝑔 > 𝑣𝑝𝑟𝑜𝑔𝑟.

We found that the most accurate results are obtained for 𝑇𝑠ℎ𝑜𝑟𝑡 = 5/50 s, 𝑇𝑙𝑜𝑛𝑔 = 20/50 s,
𝑣𝑖𝑚𝑚 = 0.003𝑣𝑚𝑎𝑥 and 𝑣𝑝𝑟𝑜𝑔𝑟 = 0.01𝑣𝑚𝑎𝑥 where 𝑣𝑚𝑎𝑥 is the maximum sperm velocity,
measured at the 1/50 s sampling intervals.

3.4. Finding the fastest sperm

We achieved the best accuracy in determining the fastest sperm by comparing the average
velocity computed at 4 s sampling intervals. Moreover, to filter out the outliers coming from
wrongly tracked sperms (the same sperm id jumping between two different sperm cells), we
skip the cells with standard deviation of the average velocity higher than 0.05.

4. Results and Analysis

For sub-task 1, the performance of the model was evaluated using the HOTA metric [12].
This metric combines two components: Localization Accuracy and Association Accuracy and
therefore can serve a single number to quantify the performance of both, detection and tracking
parts of the workflow. The detailed HOTA numbers for detecting normal sperm are presented
in table 2.

seq 𝐻𝑂𝑇𝐴𝐴𝑈𝐶

66 23.8%
68 24.6%
73 29.0%
76 37.6%
80 28.6%

combined 28.3%

Table 2
𝐻𝑂𝑇𝐴𝐴𝑈𝐶 metrics for detecting normal sperm in the test set of 5 videos.

Sub-task 2 was evaluated by measuring different statistical errors between the predicted
and ground-truth distribution of progressive/non-progressive/immotile sperm. The results are



presented in table 3.

variable
mean

absolute error
mean

squared error
root mean

squared error
root squared

log error
median

absolute error
progressive % 15.6 295 17.2 1.36 17

non progressive % 8.6 84 9.2 0.26 10
immotile % 22.2 551 23.5 0.24 23

average % 15.5 310 16.6 0.62 17

Table 3
Errors in predicting the progressive/non-progressive/immotile distribution.
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