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Abstract
We describe several approaches to text- and graph-based classification for detecting COVID-19 conspira-
cies on Twitter. We tackle the tasks of text classification with and without graph data, and classification
of Twitter users based on user graph. To this end, we experiment with large transformer ensembles,
GPT-3-based techniques, and a variety of graph neural networks. Our results demonstrate that trans-
former ensembling and GPT-3 text augmentation can improve performance and stability, and that richer
graph data does not necessarily lead to improved performance.

1. Motivation and Background
The COVID-19 pandemic has increased the amount of people’s exposure to digital content and
communications [1]. One of the effects of the rapid digitalization of everyday activities is the
increase of online disinformation, including conspiracy theories [2]. A conspiracy theory can
be defined as a belief that two or more actors have coordinated in secret to achieve a malevolent
outcome [3]. The automatic detection of conspiracy messages on social networks has a huge
potential for combating disinformation.

MediaEval 2022 FakeNews challenge consists of three subtasks focused on detecting COVID-
19 conspiracy theories in tweets. Nine different conspiracy categories are defined. Subtask 1
consists of determining, for each conspiracy theory, whether a tweet supports it, mentions it, or
ignores it. In Subtask 2 the goal is to determine, based on a social network graph, whether a
Twitter user is a misinformation poster. The goal of Subtask 3 is the same as that of Subtask 1,
but the model can use the tweet’s user ID and all the graph data. Both the text and the user
datasets contain 1,913 labeled development tweets/users and 830 test tweets/users. In addition,
a large user graph, with 1,679,011 vertices and 268,694,698 edges, is provided. The metric of
the models’ performance assessment is Matthews correlation coefficient (MCC) [4]. A detailed
description of the subtasks and the datasets can be found in Pogorelov et al. [5].

Our approach to Subtask 1 was to improve on the best-performing transformer-based system
of MediaEval 2021 [6] by adding additional features, creating model ensembles, and augmenting
the training data via GPT-3 model. [7]. For subtasks 2 and 3 we designed and evaluated a
number of GNN models [8], each consisting of two convolutional layers, three fully connected
layers, and a softmax classification layer.

Few works have addressed the detection of conspiracy theories. These include the classi-
fication models proposed in the MediaEval 2021 challenge [9] and in the work of Giachanou
et al. [10]. There exist numerous approaches to text classification [11] and in recent years deep
learning models and especially transformers have led to state-of-art results [12]. Graph neural
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networks (GNNs) have been widely used in recent years for different classification tasks [13, 14],
including text classification [15, 16, 17] where they can lead to top results [15, 16]. The strength
of GNNs is their ability to model relationships between the data points and integrate them with
other features.

2. Approach to Text-based Classification
Subtask 1 of MedEval FakeNews 2022 is identical to Subtask 3 of MedEval 2021, but with a
larger dataset. Our approach is therefore to improve on the best system from the 2021 challenge
[6] (hard baseline), based on domain-specific COVID-Twitter-BERT (CT-BERT) [18] fine-tuned
in a multi-task manner. We attempted to append additional features (TF-IDF, topic models, and
hand-crafted features) before applying the classification layer, but this led to no improvement.
We also experimented with different architectures for the multi-task classifier layer (attention,
additional layers), but the basic logistic regression gave the best results.

We improved upon the hard baseline model by combining a large number of transformers
and examining different options for ensemble creation. This approach is motivated by the
observation that model performances vary significantly, in relation to both the eval/dev/train
split and random initialization. Individual models all use the same preprocessing and training
parameters and differ only in random seeds and train/dev data splits.

Preprocessing and learning settings were tweaked in the initial development phases of the
experiment. We tried the text preprocessing options from [6] but opted to use no preprocessing
for the final models. We used the Adam optimizer with a weight decay of 10−3 and an initial
learning rate (LR) of 7 * 10−5. We reduced the LR by a factor of 0.3 after 3 epochs of no
improvement and stop the training after 6 such epochs. LR used for fine-tuning the transformer
parameters is 10× smaller. We used a nested evaluation scheme based on stratified cross-
validation. On the first level, 7-fold splitting is performed, followed by the second level 6-fold
splitting. This way the development data is split into eval (14.3%), dev (14.3%), and train
(71.4%) subsets.

We also attempted to use the GPT-3 (davinci) model, by way of in-context learning [7, 19].
This approach proved ineffective, but a simple data augmentation method – the addition of
GPT-rephrased tweets with original labels – yielded competitive results. Additionally, we
experimented with the Xgboost classifier [20] applied to topic model features.

3. Approach to Graph-based Classification
Graph-based User Classification (Subtask 2) Subtask 2 consists of classifying Twitter
users as (not) being misinformation spreaders, and we tackle it using graph neural networks
(GNNs). The graph nodes are described by a matrix 𝐴 where each row is a vector containing a
single user’s attributes (location, number of followers, . . . ). Note that our models do not take
into account the user’s textual information, in order to examine the viability of using graph-only
data. Edges are represented with a square matrix 𝑅 – each element corresponds to the weight
of the relation between two users (the weight being 0 if there is no relation).

GNN classification models consist of two convolutional layers, followed by three fully con-
nected layers of 150 neurons (each followed by a normalization layer), followed by the standard
softmax classification layer. We have tested 16 combinations of different convolutional layers –
GCNConv [21], GATv2Conv [22], TAGConv [23] and RGGConv [24]. We trained the model in
200 epochs with a learning rate of 0.01 and a batch size of 64.

Graph-based Text Classification (Subtask 3) Subtask 3 has the same goal as Subtask 1 –
classifying texts for each of the 9 conspiracy categories. However, in Subtask 3 the information



about user connectivity can be added to the classifiers. We used the same approach as for
Subtask 2, but with a modified graph-construction method.

In this subtask, the nodes are texts (instead of users) and each node is represented with a
vector of features extracted from a text using pretrained transformer models. Optionally, we
added the vector of user attributes describing the text’s author. An edge exists between two text
nodes if the authors of the corresponding texts are related, and the edge weight is derived as in
Subtask 2. Another difference with Subtask 2 is that here we solve a multi-label and multi-class
classification problem (instead of binary classification). We trained a classifier per conspiracy
category and combined the results to obtain the final output.

Table 1
Subtask 1 text classification MCCs for single basic model (0), “backup” ensemble (1), best-performing
ensembles (2–4), ensembled (5), and single (6) models with GPT-3-augmented data, and the Xgboost
classifier (7). All the MCCs except the “test” column are calculated on the dev set.

model score aggreg. #models mean std min max test
0 0.724 0.027 0.592 0.797 –
1 avg mult 1 0.749 0.022 0.723 0.785 0.734
2 avg mult 11 0.757 0.025 0.722 0.793 0.733
3 avg mult 8 0.757 0.029 0.717 0.805 0.735
4 cat vote 5 0.755 0.030 0.706 0.796 0.738
5 avg vote 1 0.750 0.028 0.704 0.783 0.738
6 0.745 0.021 0.701 0.788 –
7 0.446 0.046 0.394 0.526 0.376

4. Results and Analysis of the Text-based Classification
Best-performing models were selected by varying several options for scoring and ensemble
creation. The combinations were evaluated on eval/dev/train splits – each outer eval split
was used to calculate the performance of models and ensembles created from inner splits. For
each inner split, we trained 40 models (1680 models in total), changing only the random seed
for initializing the classification layer parameters.

For each inner dev/train split, the best model from all the epochs was selected according
to a scoring method (score option) – either by selecting a model with top average MCC, or the
top model per conspiracy category. Optionally, a number of top models (up to 15) were selected
(#models option). All the models of inner splits were aggregated, either by majority voting
(vote) or by multiplication of the models’ class probabilities (mult). For each combination of
options, all the models from inner splits are aggregated and the performances of these ensembles
on eval splits are averaged to obtain the performance assessment for model selection. For
the final submission, we selected the best ensemble configurations (models 2–4) and used the
average of eval, dev, and train split scores for inner fold model selection. We also created
and evaluated a “backup” model (model 1) created with the default options and using only eval
splits for inner model scoring. The ensemble of models trained with the GPT3-augmented data
(model 5) was created in the same manner as the backup model. Augmentation was performed
by rephrasing the tweets of the entire development set and using them (labeled with original
labels) to duplicate the size of each train split. The best version of the Xgboost classifier
(model 7) uses topic models and SVD features.

The results are presented in Table 1. It can be seen that ensembling improves the single-
model solution (model 0), by increasing the expected mean performance and the worst-case
performance. Interestingly, GPT-3 augmentation without ensembling (model 6) has a similar
effect. All the deep ensemble variants perform very similarly and have good generalization in
terms of dev/test score differences.



5. Results and Analysis of the Graph-based Classification
Graph-based User Classification (Subtask 2) In the construction of the model we consider
4 different convolutional layers described in Section 3 (GCN, GATv2, TAG, and RGGConv).
We evaluated all 16 two-layer combinations to discover the best design for the task. We also
considered two types of graphs, one with all the users in the dataset (big) and another with only
the users from dev and train sets of Subtask 2 (small).

Table 2
Results for Subtask 2 (top half) and Subtask 3 (bottom half), for different GNN models.

Combination of layers Type of graph ACC MCC on dev MCC on test

GCN-GCN big 0.7209 0.2780 0.2411
GCN-GCN small 0.7006 0.3111 0.2319
GATv2-GATv2 small 0.6890 0.1605 -
TAG-TAG small 0.6831 0.2927 0.1301
RGGConv-RGGConv small 0.7180 0.2731 -
TAG-GCN small 0.6686 0.2109 0.2831
RGGConv+GCN small 0.6977 0.2997 0.2480

Combination of layers User encoding ACC MCC on dev MCC on test

GCN-GCN user+miniLM 0.9139 0.0220 -
GCN-GCN miniLM 0.9148 0.4338 -
GCN-GCN covid-bert 0.9177 0.4833 -
RGGConv-RGGConv covid-bert 0.9319 0.5303 0.5036
TAG-GATv2 covid-bert 0.9235 0.5224 0.4906
TAG-GATv2 user+covid-bert 0.9153 0.0657 -

Table 2 shows the results of some model variants for Subtask 2. We can see that using the big
graph does not seem to improve the results and that the GCN layer seems to be a good choice.
The best model on the dev set does not match the best model on test.

Graph-based Text Classification (Subtask 3) For Subtask 3 we evaluated combinations
of two node representation methods: text embeddings and user attributes. We evaluated two
models to obtain the embeddings: COVID-Twitter-BERT-v2 (covid-bert) and all-MiniLM-L6-v2
(miniLM). The results in Table 2 indicate the importance of the node representation – the MCC
values dropped steeply after user attributes were added to text embeddings, and the embeddings
obtained with the COVID-Twitter-BERT-v2 model seem to perform better.

Additionally, we submitted text-only solutions described in Section 4 – two best transformer
ensembles and the Xgboost classifier. The two ensembles have test MCCs of 0.698 and 0.697,
while the Xgboost classifier has a test MCC of 0.395. This indicates that the graph information
might be detrimental to text classification.

6. Discussion
The results for Subtask 1 show that both large transformer ensembles and simple GPT-3 text
augmentation can improve the performance of individual models and lower the expected
performance variance. However, the performance of the best models is similar and it seems
to have reached a limit of cca. 0.74 MCC. This could be due to the inherent task complexity,
or to the noise present in existing labels. It is interesting that the “in-context learning” with
GPT-3, which tends to produce decent results [7, 19], failed for this use case (with 0.172 MCC).
We hypothesize that this is due to inherent task complexity: GPT-3 cannot distinguish, based
on complex prompts with category descriptions, between fine-grained conspiracy categories.
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